/* linux/net/inet/arp.c * * Version: $Id: arp.c,v 1.77.2.4 1999/09/23 19:03:36 davem Exp $ * * Copyright (C) 1994 by Florian La Roche * * This module implements the Address Resolution Protocol ARP (RFC 826), * which is used to convert IP addresses (or in the future maybe other * high-level addresses) into a low-level hardware address (like an Ethernet * address). * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Fixes: * Alan Cox : Removed the Ethernet assumptions in * Florian's code * Alan Cox : Fixed some small errors in the ARP * logic * Alan Cox : Allow >4K in /proc * Alan Cox : Make ARP add its own protocol entry * Ross Martin : Rewrote arp_rcv() and arp_get_info() * Stephen Henson : Add AX25 support to arp_get_info() * Alan Cox : Drop data when a device is downed. * Alan Cox : Use init_timer(). * Alan Cox : Double lock fixes. * Martin Seine : Move the arphdr structure * to if_arp.h for compatibility. * with BSD based programs. * Andrew Tridgell : Added ARP netmask code and * re-arranged proxy handling. * Alan Cox : Changed to use notifiers. * Niibe Yutaka : Reply for this device or proxies only. * Alan Cox : Don't proxy across hardware types! * Jonathan Naylor : Added support for NET/ROM. * Mike Shaver : RFC1122 checks. * Jonathan Naylor : Only lookup the hardware address for * the correct hardware type. * Germano Caronni : Assorted subtle races. * Craig Schlenter : Don't modify permanent entry * during arp_rcv. * Russ Nelson : Tidied up a few bits. * Alexey Kuznetsov: Major changes to caching and behaviour, * eg intelligent arp probing and * generation * of host down events. * Alan Cox : Missing unlock in device events. * Eckes : ARP ioctl control errors. * Alexey Kuznetsov: Arp free fix. * Manuel Rodriguez: Gratuitous ARP. * Jonathan Layes : Added arpd support through kerneld * message queue (960314) * Mike Shaver : /proc/sys/net/ipv4/arp_* support * Mike McLagan : Routing by source * Stuart Cheshire : Metricom and grat arp fixes * *** FOR 2.1 clean this up *** * Lawrence V. Stefani: (08/12/96) Added FDDI support. * Alan Cox : Took the AP1000 nasty FDDI hack and * folded into the mainstream FDDI code. * Ack spit, Linus how did you allow that * one in... * Jes Sorensen : Make FDDI work again in 2.1.x and * clean up the APFDDI & gen. FDDI bits. * Alexey Kuznetsov: new arp state machine; * now it is in net/core/neighbour.c. * Julian Anastasov: "hidden" flag: hide the * interface and don't reply for it */ /* RFC1122 Status: 2.3.2.1 (ARP Cache Validation): MUST provide mechanism to flush stale cache entries (OK) SHOULD be able to configure cache timeout (OK) MUST throttle ARP retransmits (OK) 2.3.2.2 (ARP Packet Queue): SHOULD save at least one packet from each "conversation" with an unresolved IP address. (OK) 950727 -- MS */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SYSCTL #include #endif #include #include #include #include #include #include #include #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) #include #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE) #include #endif #endif #include #include /* * Interface to generic neighbour cache. */ static int arp_constructor(struct neighbour *neigh); static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb); static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb); static void parp_redo(struct sk_buff *skb); static struct neigh_ops arp_generic_ops = { AF_INET, NULL, arp_solicit, arp_error_report, neigh_resolve_output, neigh_connected_output, dev_queue_xmit, dev_queue_xmit }; static struct neigh_ops arp_hh_ops = { AF_INET, NULL, arp_solicit, arp_error_report, neigh_resolve_output, neigh_resolve_output, dev_queue_xmit, dev_queue_xmit }; static struct neigh_ops arp_direct_ops = { AF_INET, NULL, NULL, NULL, dev_queue_xmit, dev_queue_xmit, dev_queue_xmit, dev_queue_xmit }; struct neigh_ops arp_broken_ops = { AF_INET, NULL, arp_solicit, arp_error_report, neigh_compat_output, neigh_compat_output, dev_queue_xmit, dev_queue_xmit, }; struct neigh_table arp_tbl = { NULL, AF_INET, sizeof(struct neighbour) + 4, 4, arp_constructor, NULL, NULL, parp_redo, { NULL, NULL, &arp_tbl, 0, NULL, NULL, 30*HZ, 1*HZ, 60*HZ, 30*HZ, 5*HZ, 3, 3, 0, 3, 1*HZ, (8*HZ)/10, 64, 1*HZ }, 30*HZ, 128, 512, 1024, }; int arp_mc_map(u32 addr, u8 *haddr, struct device *dev, int dir) { switch (dev->type) { case ARPHRD_ETHER: case ARPHRD_FDDI: ip_eth_mc_map(addr, haddr) ; return 0 ; case ARPHRD_IEEE802: if ( (dev->name[0] == 't') && (dev->name[1] == 'r')) /* Token Ring */ ip_tr_mc_map(addr,haddr) ; else ip_eth_mc_map(addr, haddr); return 0; default: if (dir) { memcpy(haddr, dev->broadcast, dev->addr_len); return 0; } } return -EINVAL; } static int arp_constructor(struct neighbour *neigh) { u32 addr = *(u32*)neigh->primary_key; struct device *dev = neigh->dev; struct in_device *in_dev = dev->ip_ptr; if (in_dev == NULL) return -EINVAL; neigh->type = inet_addr_type(addr); if (in_dev->arp_parms) neigh->parms = in_dev->arp_parms; if (dev->hard_header == NULL) { neigh->nud_state = NUD_NOARP; neigh->ops = &arp_direct_ops; neigh->output = neigh->ops->queue_xmit; } else { /* Good devices (checked by reading texts, but only Ethernet is tested) ARPHRD_ETHER: (ethernet, apfddi) ARPHRD_FDDI: (fddi) ARPHRD_IEEE802: (tr) ARPHRD_METRICOM: (strip) ARPHRD_ARCNET: etc. etc. etc. ARPHRD_IPDDP will also work, if author repairs it. I did not it, because this driver does not work even in old paradigm. */ #if 1 /* So... these "amateur" devices are hopeless. The only thing, that I can say now: It is very sad that we need to keep ugly obsolete code to make them happy. They should be moved to more reasonable state, now they use rebuild_header INSTEAD OF hard_start_xmit!!! Besides that, they are sort of out of date (a lot of redundant clones/copies, useless in 2.1), I wonder why people believe that they work. */ switch (dev->type) { default: break; case ARPHRD_ROSE: #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) case ARPHRD_AX25: #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE) case ARPHRD_NETROM: #endif neigh->ops = &arp_broken_ops; neigh->output = neigh->ops->output; return 0; #endif } #endif if (neigh->type == RTN_MULTICAST) { neigh->nud_state = NUD_NOARP; arp_mc_map(addr, neigh->ha, dev, 1); } else if (dev->flags&(IFF_NOARP|IFF_LOOPBACK)) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->dev_addr, dev->addr_len); } else if (neigh->type == RTN_BROADCAST || dev->flags&IFF_POINTOPOINT) { neigh->nud_state = NUD_NOARP; memcpy(neigh->ha, dev->broadcast, dev->addr_len); } if (dev->hard_header_cache) neigh->ops = &arp_hh_ops; else neigh->ops = &arp_generic_ops; if (neigh->nud_state&NUD_VALID) neigh->output = neigh->ops->connected_output; else neigh->output = neigh->ops->output; } return 0; } static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb) { dst_link_failure(skb); kfree_skb(skb); } static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb) { u32 saddr; u8 *dst_ha = NULL; struct device *dev = neigh->dev; struct device *dev2; struct in_device *in_dev2; u32 target = *(u32*)neigh->primary_key; int probes = neigh->probes; if (skb && (dev2 = ip_dev_find(skb->nh.iph->saddr)) != NULL && (in_dev2 = dev2->ip_ptr) != NULL && !IN_DEV_HIDDEN(in_dev2)) saddr = skb->nh.iph->saddr; else saddr = inet_select_addr(dev, target, RT_SCOPE_LINK); if ((probes -= neigh->parms->ucast_probes) < 0) { if (!(neigh->nud_state&NUD_VALID)) printk(KERN_DEBUG "trying to ucast probe in NUD_INVALID\n"); dst_ha = neigh->ha; } else if ((probes -= neigh->parms->app_probes) < 0) { #ifdef CONFIG_ARPD neigh_app_ns(neigh); #endif return; } arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr, dst_ha, dev->dev_addr, NULL); } /* OBSOLETE FUNCTIONS */ /* * Find an arp mapping in the cache. If not found, post a request. * * It is very UGLY routine: it DOES NOT use skb->dst->neighbour, * even if it exists. It is supposed that skb->dev was mangled * by a virtual device (eql, shaper). Nobody but broken devices * is allowed to use this function, it is scheduled to be removed. --ANK */ static int arp_set_predefined(int addr_hint, unsigned char * haddr, u32 paddr, struct device * dev) { switch (addr_hint) { case RTN_LOCAL: printk(KERN_DEBUG "ARP: arp called for own IP address\n"); memcpy(haddr, dev->dev_addr, dev->addr_len); return 1; case RTN_MULTICAST: arp_mc_map(paddr, haddr, dev, 1); return 1; case RTN_BROADCAST: memcpy(haddr, dev->broadcast, dev->addr_len); return 1; } return 0; } int arp_find(unsigned char *haddr, struct sk_buff *skb) { struct device *dev = skb->dev; u32 paddr; struct neighbour *n; if (!skb->dst) { printk(KERN_DEBUG "arp_find is called with dst==NULL\n"); kfree_skb(skb); return 1; } paddr = ((struct rtable*)skb->dst)->rt_gateway; if (arp_set_predefined(inet_addr_type(paddr), haddr, paddr, dev)) return 0; start_bh_atomic(); n = __neigh_lookup(&arp_tbl, &paddr, dev, 1); if (n) { n->used = jiffies; if (n->nud_state&NUD_VALID || neigh_event_send(n, skb) == 0) { memcpy(haddr, n->ha, dev->addr_len); neigh_release(n); end_bh_atomic(); return 0; } neigh_release(n); } else kfree_skb(skb); end_bh_atomic(); return 1; } /* END OF OBSOLETE FUNCTIONS */ /* * Note: requires bh_atomic locking. */ int arp_bind_neighbour(struct dst_entry *dst) { struct device *dev = dst->dev; if (dev == NULL) return 0; if (dst->neighbour == NULL) { u32 nexthop = ((struct rtable*)dst)->rt_gateway; if (dev->flags&(IFF_LOOPBACK|IFF_POINTOPOINT)) nexthop = 0; dst->neighbour = __neigh_lookup(&arp_tbl, &nexthop, dev, 1); } return (dst->neighbour != NULL); } /* * Interface to link layer: send routine and receive handler. */ /* * Create and send an arp packet. If (dest_hw == NULL), we create a broadcast * message. */ void arp_send(int type, int ptype, u32 dest_ip, struct device *dev, u32 src_ip, unsigned char *dest_hw, unsigned char *src_hw, unsigned char *target_hw) { struct sk_buff *skb; struct arphdr *arp; unsigned char *arp_ptr; /* * No arp on this interface. */ if (dev->flags&IFF_NOARP) return; /* * Allocate a buffer */ skb = alloc_skb(sizeof(struct arphdr)+ 2*(dev->addr_len+4) + dev->hard_header_len + 15, GFP_ATOMIC); if (skb == NULL) return; skb_reserve(skb, (dev->hard_header_len+15)&~15); skb->nh.raw = skb->data; arp = (struct arphdr *) skb_put(skb,sizeof(struct arphdr) + 2*(dev->addr_len+4)); skb->dev = dev; skb->protocol = __constant_htons (ETH_P_ARP); if (src_hw == NULL) src_hw = dev->dev_addr; if (dest_hw == NULL) dest_hw = dev->broadcast; /* * Fill the device header for the ARP frame */ dev->hard_header(skb,dev,ptype,dest_hw,src_hw,skb->len); /* * Fill out the arp protocol part. * * The arp hardware type should match the device type, except for FDDI, * which (according to RFC 1390) should always equal 1 (Ethernet). */ /* * Exceptions everywhere. AX.25 uses the AX.25 PID value not the * DIX code for the protocol. Make these device structure fields. */ switch (dev->type) { default: arp->ar_hrd = htons(dev->type); arp->ar_pro = __constant_htons(ETH_P_IP); break; #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) case ARPHRD_AX25: arp->ar_hrd = __constant_htons(ARPHRD_AX25); arp->ar_pro = __constant_htons(AX25_P_IP); break; #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE) case ARPHRD_NETROM: arp->ar_hrd = __constant_htons(ARPHRD_NETROM); arp->ar_pro = __constant_htons(AX25_P_IP); break; #endif #endif #ifdef CONFIG_FDDI case ARPHRD_FDDI: arp->ar_hrd = __constant_htons(ARPHRD_ETHER); arp->ar_pro = __constant_htons(ETH_P_IP); break; #endif } arp->ar_hln = dev->addr_len; arp->ar_pln = 4; arp->ar_op = htons(type); arp_ptr=(unsigned char *)(arp+1); memcpy(arp_ptr, src_hw, dev->addr_len); arp_ptr+=dev->addr_len; memcpy(arp_ptr, &src_ip,4); arp_ptr+=4; if (target_hw != NULL) memcpy(arp_ptr, target_hw, dev->addr_len); else memset(arp_ptr, 0, dev->addr_len); arp_ptr+=dev->addr_len; memcpy(arp_ptr, &dest_ip, 4); skb->dev = dev; dev_queue_xmit(skb); } static void parp_redo(struct sk_buff *skb) { arp_rcv(skb, skb->dev, NULL); } /* * Receive an arp request by the device layer. */ int arp_rcv(struct sk_buff *skb, struct device *dev, struct packet_type *pt) { struct arphdr *arp = skb->nh.arph; unsigned char *arp_ptr= (unsigned char *)(arp+1); struct rtable *rt; unsigned char *sha, *tha; u32 sip, tip; u16 dev_type = dev->type; int addr_type; struct in_device *in_dev = dev->ip_ptr; struct neighbour *n; /* * The hardware length of the packet should match the hardware length * of the device. Similarly, the hardware types should match. The * device should be ARP-able. Also, if pln is not 4, then the lookup * is not from an IP number. We can't currently handle this, so toss * it. */ if (in_dev == NULL || arp->ar_hln != dev->addr_len || dev->flags & IFF_NOARP || skb->pkt_type == PACKET_OTHERHOST || skb->pkt_type == PACKET_LOOPBACK || arp->ar_pln != 4) goto out; switch (dev_type) { default: if (arp->ar_pro != __constant_htons(ETH_P_IP)) goto out; if (htons(dev_type) != arp->ar_hrd) goto out; break; #ifdef CONFIG_NET_ETHERNET case ARPHRD_ETHER: /* * ETHERNET devices will accept ARP hardware types of either * 1 (Ethernet) or 6 (IEEE 802.2). */ if (arp->ar_hrd != __constant_htons(ARPHRD_ETHER) && arp->ar_hrd != __constant_htons(ARPHRD_IEEE802)) goto out; if (arp->ar_pro != __constant_htons(ETH_P_IP)) goto out; break; #endif #ifdef CONFIG_FDDI case ARPHRD_FDDI: /* * According to RFC 1390, FDDI devices should accept ARP hardware types * of 1 (Ethernet). However, to be more robust, we'll accept hardware * types of either 1 (Ethernet) or 6 (IEEE 802.2). */ if (arp->ar_hrd != __constant_htons(ARPHRD_ETHER) && arp->ar_hrd != __constant_htons(ARPHRD_IEEE802)) goto out; if (arp->ar_pro != __constant_htons(ETH_P_IP)) goto out; break; #endif #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) case ARPHRD_AX25: if (arp->ar_pro != __constant_htons(AX25_P_IP)) goto out; if (arp->ar_hrd != __constant_htons(ARPHRD_AX25)) goto out; break; #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE) case ARPHRD_NETROM: if (arp->ar_pro != __constant_htons(AX25_P_IP)) goto out; if (arp->ar_hrd != __constant_htons(ARPHRD_NETROM)) goto out; break; #endif #endif } /* Undertsand only these message types */ if (arp->ar_op != __constant_htons(ARPOP_REPLY) && arp->ar_op != __constant_htons(ARPOP_REQUEST)) goto out; /* * Extract fields */ sha=arp_ptr; arp_ptr += dev->addr_len; memcpy(&sip, arp_ptr, 4); arp_ptr += 4; tha=arp_ptr; arp_ptr += dev->addr_len; memcpy(&tip, arp_ptr, 4); /* * Check for bad requests for 127.x.x.x and requests for multicast * addresses. If this is one such, delete it. */ if (LOOPBACK(tip) || MULTICAST(tip)) goto out; /* * Process entry. The idea here is we want to send a reply if it is a * request for us or if it is a request for someone else that we hold * a proxy for. We want to add an entry to our cache if it is a reply * to us or if it is a request for our address. * (The assumption for this last is that if someone is requesting our * address, they are probably intending to talk to us, so it saves time * if we cache their address. Their address is also probably not in * our cache, since ours is not in their cache.) * * Putting this another way, we only care about replies if they are to * us, in which case we add them to the cache. For requests, we care * about those for us and those for our proxies. We reply to both, * and in the case of requests for us we add the requester to the arp * cache. */ /* Special case: IPv4 duplicate address detection packet (RFC2131) */ if (sip == 0) { struct device *dev2; struct in_device *in_dev2; if (arp->ar_op == __constant_htons(ARPOP_REQUEST) && (dev2 = ip_dev_find(tip)) != NULL && (dev2 == dev || ((in_dev2 = dev2->ip_ptr) != NULL && !IN_DEV_HIDDEN(in_dev2)))) arp_send(ARPOP_REPLY,ETH_P_ARP,tip,dev,tip,sha,dev->dev_addr,dev->dev_addr); goto out; } if (arp->ar_op == __constant_htons(ARPOP_REQUEST) && ip_route_input(skb, tip, sip, 0, dev) == 0) { rt = (struct rtable*)skb->dst; addr_type = rt->rt_type; if (addr_type == RTN_LOCAL) { n = neigh_event_ns(&arp_tbl, sha, &sip, dev); if (n) { if (ipv4_devconf.hidden && skb->pkt_type != PACKET_HOST) { struct device *dev2; struct in_device *in_dev2; if ((dev2 = ip_dev_find(tip)) != NULL && dev2 != dev && (in_dev2 = dev2->ip_ptr) != NULL && IN_DEV_HIDDEN(in_dev2)) { neigh_release(n); goto out; } } arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha); neigh_release(n); } goto out; } else if (IN_DEV_FORWARD(in_dev)) { if ((rt->rt_flags&RTCF_DNAT) || (addr_type == RTN_UNICAST && rt->u.dst.dev != dev && (IN_DEV_PROXY_ARP(in_dev) || pneigh_lookup(&arp_tbl, &tip, dev, 0)))) { n = neigh_event_ns(&arp_tbl, sha, &sip, dev); neigh_release(n); if (skb->stamp.tv_sec == 0 || skb->pkt_type == PACKET_HOST || in_dev->arp_parms->proxy_delay == 0) { arp_send(ARPOP_REPLY,ETH_P_ARP,sip,dev,tip,sha,dev->dev_addr,sha); } else { pneigh_enqueue(&arp_tbl, in_dev->arp_parms, skb); return 0; } goto out; } } } /* Update our ARP tables */ n = __neigh_lookup(&arp_tbl, &sip, dev, 0); #ifdef CONFIG_IP_ACCEPT_UNSOLICITED_ARP /* Unsolicited ARP is not accepted by default. It is possible, that this option should be enabled for some devices (strip is candidate) */ if (n == NULL && arp->ar_op == __constant_htons(ARPOP_REPLY) && inet_addr_type(sip) == RTN_UNICAST) n = __neigh_lookup(&arp_tbl, &sip, dev, -1); #endif if (n) { int state = NUD_REACHABLE; int override = 0; /* If several different ARP replies follows back-to-back, use the FIRST one. It is possible, if several proxy agents are active. Taking the first reply prevents arp trashing and chooses the fastest router. */ if (jiffies - n->updated >= n->parms->locktime) override = 1; /* Broadcast replies and request packets do not assert neighbour reachability. */ if (arp->ar_op != __constant_htons(ARPOP_REPLY) || skb->pkt_type != PACKET_HOST) state = NUD_STALE; neigh_update(n, sha, state, override, 1); neigh_release(n); } out: kfree_skb(skb); return 0; } /* * User level interface (ioctl, /proc) */ /* * Set (create) an ARP cache entry. */ int arp_req_set(struct arpreq *r, struct device * dev) { u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr; struct neighbour *neigh; int err; if (r->arp_flags&ATF_PUBL) { u32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr; if (mask && mask != 0xFFFFFFFF) return -EINVAL; if (!dev && (r->arp_flags & ATF_COM)) { dev = dev_getbyhwaddr(r->arp_ha.sa_family, r->arp_ha.sa_data); if (!dev) return -ENODEV; } if (mask) { if (pneigh_lookup(&arp_tbl, &ip, dev, 1) == NULL) return -ENOBUFS; return 0; } if (dev == NULL) { ipv4_devconf.proxy_arp = 1; return 0; } if (dev->ip_ptr) { ((struct in_device*)dev->ip_ptr)->cnf.proxy_arp = 1; return 0; } return -ENXIO; } if (r->arp_flags & ATF_PERM) r->arp_flags |= ATF_COM; if (dev == NULL) { struct rtable * rt; if ((err = ip_route_output(&rt, ip, 0, RTO_ONLINK, 0)) != 0) return err; dev = rt->u.dst.dev; ip_rt_put(rt); if (!dev) return -EINVAL; } if (r->arp_ha.sa_family != dev->type) return -EINVAL; err = -ENOBUFS; start_bh_atomic(); neigh = __neigh_lookup(&arp_tbl, &ip, dev, 1); if (neigh) { unsigned state = NUD_STALE; if (r->arp_flags & ATF_PERM) state = NUD_PERMANENT; err = neigh_update(neigh, (r->arp_flags&ATF_COM) ? r->arp_ha.sa_data : NULL, state, 1, 0); neigh_release(neigh); } end_bh_atomic(); return err; } static unsigned arp_state_to_flags(struct neighbour *neigh) { unsigned flags = 0; if (neigh->nud_state&NUD_PERMANENT) flags = ATF_PERM|ATF_COM; else if (neigh->nud_state&NUD_VALID) flags = ATF_COM; return flags; } /* * Get an ARP cache entry. */ static int arp_req_get(struct arpreq *r, struct device *dev) { u32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr; struct neighbour *neigh; int err = -ENXIO; start_bh_atomic(); neigh = __neigh_lookup(&arp_tbl, &ip, dev, 0); if (neigh) { memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len); r->arp_ha.sa_family = dev->type; strncpy(r->arp_dev, dev->name, sizeof(r->arp_dev)); r->arp_flags = arp_state_to_flags(neigh); neigh_release(neigh); err = 0; } end_bh_atomic(); return err; } int arp_req_delete(struct arpreq *r, struct device * dev) { int err; u32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr; struct neighbour *neigh; if (r->arp_flags & ATF_PUBL) { u32 mask = ((struct sockaddr_in *) &r->arp_netmask)->sin_addr.s_addr; if (mask == 0xFFFFFFFF) return pneigh_delete(&arp_tbl, &ip, dev); if (mask == 0) { if (dev == NULL) { ipv4_devconf.proxy_arp = 0; return 0; } if (dev->ip_ptr) { ((struct in_device*)dev->ip_ptr)->cnf.proxy_arp = 0; return 0; } return -ENXIO; } return -EINVAL; } if (dev == NULL) { struct rtable * rt; if ((err = ip_route_output(&rt, ip, 0, RTO_ONLINK, 0)) != 0) return err; dev = rt->u.dst.dev; ip_rt_put(rt); if (!dev) return -EINVAL; } err = -ENXIO; start_bh_atomic(); neigh = __neigh_lookup(&arp_tbl, &ip, dev, 0); if (neigh) { if (neigh->nud_state&~NUD_NOARP) err = neigh_update(neigh, NULL, NUD_FAILED, 1, 0); neigh_release(neigh); } end_bh_atomic(); return err; } #ifdef _HURD_ #define arp_ioctl 0 #else /* * Handle an ARP layer I/O control request. */ int arp_ioctl(unsigned int cmd, void *arg) { int err; struct arpreq r; struct device * dev = NULL; switch(cmd) { case SIOCDARP: case SIOCSARP: if (!capable(CAP_NET_ADMIN)) return -EPERM; case SIOCGARP: err = copy_from_user(&r, arg, sizeof(struct arpreq)); if (err) return -EFAULT; break; default: return -EINVAL; } if (r.arp_pa.sa_family != AF_INET) return -EPFNOSUPPORT; if (!(r.arp_flags & ATF_PUBL) && (r.arp_flags & (ATF_NETMASK|ATF_DONTPUB))) return -EINVAL; if (!(r.arp_flags & ATF_NETMASK)) ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr=__constant_htonl(0xFFFFFFFFUL); rtnl_lock(); if (r.arp_dev[0]) { err = -ENODEV; if ((dev = dev_get(r.arp_dev)) == NULL) goto out; /* Mmmm... It is wrong... ARPHRD_NETROM==0 */ if (!r.arp_ha.sa_family) r.arp_ha.sa_family = dev->type; err = -EINVAL; if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type) goto out; } else if (cmd == SIOCGARP) { err = -ENODEV; goto out; } switch(cmd) { case SIOCDARP: err = arp_req_delete(&r, dev); break; case SIOCSARP: err = arp_req_set(&r, dev); break; case SIOCGARP: err = arp_req_get(&r, dev); if (!err && copy_to_user(arg, &r, sizeof(r))) err = -EFAULT; break; } out: rtnl_unlock(); return err; } #endif /* * Write the contents of the ARP cache to a PROCfs file. */ #ifdef CONFIG_PROC_FS #define HBUFFERLEN 30 int arp_get_info(char *buffer, char **start, off_t offset, int length, int dummy) { int len=0; off_t pos=0; int size; char hbuffer[HBUFFERLEN]; int i,j,k; const char hexbuf[] = "0123456789ABCDEF"; size = sprintf(buffer,"IP address HW type Flags HW address Mask Device\n"); pos+=size; len+=size; neigh_table_lock(&arp_tbl); for(i=0; i<=NEIGH_HASHMASK; i++) { struct neighbour *n; for (n=arp_tbl.hash_buckets[i]; n; n=n->next) { struct device *dev = n->dev; int hatype = dev->type; /* Do not confuse users "arp -a" with magic entries */ if (!(n->nud_state&~NUD_NOARP)) continue; /* I'd get great pleasure deleting this ugly code. Let's output it in hexadecimal format. "arp" utility will eventually repaired --ANK */ #if 1 /* UGLY CODE */ /* * Convert hardware address to XX:XX:XX:XX ... form. */ #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM) strcpy(hbuffer,ax2asc((ax25_address *)n->ha)); else { #endif for (k=0,j=0;kaddr_len;j++) { hbuffer[k++]=hexbuf[(n->ha[j]>>4)&15 ]; hbuffer[k++]=hexbuf[n->ha[j]&15 ]; hbuffer[k++]=':'; } hbuffer[--k]=0; #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE) } #endif #else if ((neigh->nud_state&NUD_VALID) && dev->addr_len) { int j; for (j=0; j < dev->addr_len; j++) sprintf(hbuffer+2*j, "%02x", neigh->ha[j]); } else sprintf(hbuffer, "0"); #endif size = sprintf(buffer+len, "%-17s0x%-10x0x%-10x%s", in_ntoa(*(u32*)n->primary_key), hatype, arp_state_to_flags(n), hbuffer); size += sprintf(buffer+len+size, " %-17s %s\n", "*", dev->name); len += size; pos += size; if (pos <= offset) len=0; if (pos >= offset+length) goto done; } } for (i=0; i<=PNEIGH_HASHMASK; i++) { struct pneigh_entry *n; for (n=arp_tbl.phash_buckets[i]; n; n=n->next) { struct device *dev = n->dev; int hatype = dev ? dev->type : 0; size = sprintf(buffer+len, "%-17s0x%-10x0x%-10x%s", in_ntoa(*(u32*)n->key), hatype, ATF_PUBL|ATF_PERM, "00:00:00:00:00:00"); size += sprintf(buffer+len+size, " %-17s %s\n", "*", dev ? dev->name : "*"); len += size; pos += size; if (pos <= offset) len=0; if (pos >= offset+length) goto done; } } done: neigh_table_unlock(&arp_tbl); *start = buffer+len-(pos-offset); /* Start of wanted data */ len = pos-offset; /* Start slop */ if (len>length) len = length; /* Ending slop */ if (len<0) len = 0; return len; } #endif /* Note, that it is not on notifier chain. It is necessary, that this routine was called after route cache will be flushed. */ void arp_ifdown(struct device *dev) { neigh_ifdown(&arp_tbl, dev); } /* * Called once on startup. */ static struct packet_type arp_packet_type = { __constant_htons(ETH_P_ARP), NULL, /* All devices */ arp_rcv, NULL, NULL }; #ifdef CONFIG_PROC_FS static struct proc_dir_entry proc_net_arp = { PROC_NET_ARP, 3, "arp", S_IFREG | S_IRUGO, 1, 0, 0, 0, &proc_net_inode_operations, arp_get_info }; #endif __initfunc(void arp_init (void)) { neigh_table_init(&arp_tbl); dev_add_pack(&arp_packet_type); #ifdef CONFIG_PROC_FS proc_net_register(&proc_net_arp); #endif #ifdef CONFIG_SYSCTL neigh_sysctl_register(NULL, &arp_tbl.parms, NET_IPV4, NET_IPV4_NEIGH, "ipv4"); #endif } #ifdef CONFIG_AX25_MODULE /* * ax25 -> ASCII conversion */ char *ax2asc(ax25_address *a) { static char buf[11]; char c, *s; int n; for (n = 0, s = buf; n < 6; n++) { c = (a->ax25_call[n] >> 1) & 0x7F; if (c != ' ') *s++ = c; } *s++ = '-'; if ((n = ((a->ax25_call[6] >> 1) & 0x0F)) > 9) { *s++ = '1'; n -= 10; } *s++ = n + '0'; *s++ = '\0'; if (*buf == '\0' || *buf == '-') return "*"; return buf; } #endif