#ifndef _LINUX_MM_H #define _LINUX_MM_H #include #include #ifdef __KERNEL__ #include extern unsigned long max_mapnr; extern unsigned long num_physpages; extern void * high_memory; extern int page_cluster; #include #include /* * Linux kernel virtual memory manager primitives. * The idea being to have a "virtual" mm in the same way * we have a virtual fs - giving a cleaner interface to the * mm details, and allowing different kinds of memory mappings * (from shared memory to executable loading to arbitrary * mmap() functions). */ /* * This struct defines a memory VMM memory area. There is one of these * per VM-area/task. A VM area is any part of the process virtual memory * space that has a special rule for the page-fault handlers (ie a shared * library, the executable area etc). */ struct vm_area_struct { struct mm_struct * vm_mm; /* VM area parameters */ unsigned long vm_start; unsigned long vm_end; /* linked list of VM areas per task, sorted by address */ struct vm_area_struct *vm_next; pgprot_t vm_page_prot; unsigned short vm_flags; /* AVL tree of VM areas per task, sorted by address */ short vm_avl_height; struct vm_area_struct * vm_avl_left; struct vm_area_struct * vm_avl_right; /* For areas with inode, the list inode->i_mmap, for shm areas, * the list of attaches, otherwise unused. */ struct vm_area_struct *vm_next_share; struct vm_area_struct **vm_pprev_share; struct vm_operations_struct * vm_ops; unsigned long vm_offset; struct file * vm_file; unsigned long vm_pte; /* shared mem */ }; /* * vm_flags.. */ #define VM_READ 0x0001 /* currently active flags */ #define VM_WRITE 0x0002 #define VM_EXEC 0x0004 #define VM_SHARED 0x0008 #define VM_MAYREAD 0x0010 /* limits for mprotect() etc */ #define VM_MAYWRITE 0x0020 #define VM_MAYEXEC 0x0040 #define VM_MAYSHARE 0x0080 #define VM_GROWSDOWN 0x0100 /* general info on the segment */ #define VM_GROWSUP 0x0200 #define VM_SHM 0x0400 /* shared memory area, don't swap out */ #define VM_DENYWRITE 0x0800 /* ETXTBSY on write attempts.. */ #define VM_EXECUTABLE 0x1000 #define VM_LOCKED 0x2000 #define VM_IO 0x4000 /* Memory mapped I/O or similar */ #define VM_STACK_FLAGS 0x0177 /* * mapping from the currently active vm_flags protection bits (the * low four bits) to a page protection mask.. */ extern pgprot_t protection_map[16]; /* * These are the virtual MM functions - opening of an area, closing and * unmapping it (needed to keep files on disk up-to-date etc), pointer * to the functions called when a no-page or a wp-page exception occurs. */ struct vm_operations_struct { void (*open)(struct vm_area_struct * area); void (*close)(struct vm_area_struct * area); void (*unmap)(struct vm_area_struct *area, unsigned long, size_t); void (*protect)(struct vm_area_struct *area, unsigned long, size_t, unsigned int newprot); int (*sync)(struct vm_area_struct *area, unsigned long, size_t, unsigned int flags); void (*advise)(struct vm_area_struct *area, unsigned long, size_t, unsigned int advise); unsigned long (*nopage)(struct vm_area_struct * area, unsigned long address, int write_access); unsigned long (*wppage)(struct vm_area_struct * area, unsigned long address, unsigned long page); int (*swapout)(struct vm_area_struct *, struct page *); pte_t (*swapin)(struct vm_area_struct *, unsigned long, unsigned long); }; /* * Try to keep the most commonly accessed fields in single cache lines * here (16 bytes or greater). This ordering should be particularly * beneficial on 32-bit processors. * * The first line is data used in page cache lookup, the second line * is used for linear searches (eg. clock algorithm scans). */ typedef struct page { /* these must be first (free area handling) */ struct page *next; struct page *prev; struct inode *inode; unsigned long offset; struct page *next_hash; atomic_t count; unsigned long flags; /* atomic flags, some possibly updated asynchronously */ struct wait_queue *wait; struct page **pprev_hash; struct buffer_head * buffers; } mem_map_t; /* Page flag bit values */ #define PG_locked 0 #define PG_error 1 #define PG_referenced 2 #define PG_dirty 3 #define PG_uptodate 4 #define PG_free_after 5 #define PG_decr_after 6 #define PG_swap_unlock_after 7 #define PG_DMA 8 #define PG_Slab 9 #define PG_swap_cache 10 #define PG_skip 11 #define PG_reserved 31 /* Make it prettier to test the above... */ #define PageLocked(page) (test_bit(PG_locked, &(page)->flags)) #define PageError(page) (test_bit(PG_error, &(page)->flags)) #define PageReferenced(page) (test_bit(PG_referenced, &(page)->flags)) #define PageDirty(page) (test_bit(PG_dirty, &(page)->flags)) #define PageUptodate(page) (test_bit(PG_uptodate, &(page)->flags)) #define PageFreeAfter(page) (test_bit(PG_free_after, &(page)->flags)) #define PageDecrAfter(page) (test_bit(PG_decr_after, &(page)->flags)) #define PageSwapUnlockAfter(page) (test_bit(PG_swap_unlock_after, &(page)->flags)) #define PageDMA(page) (test_bit(PG_DMA, &(page)->flags)) #define PageSlab(page) (test_bit(PG_Slab, &(page)->flags)) #define PageSwapCache(page) (test_bit(PG_swap_cache, &(page)->flags)) #define PageReserved(page) (test_bit(PG_reserved, &(page)->flags)) #define PageSetSlab(page) (set_bit(PG_Slab, &(page)->flags)) #define PageSetSwapCache(page) (set_bit(PG_swap_cache, &(page)->flags)) #define PageTestandSetDirty(page) \ (test_and_set_bit(PG_dirty, &(page)->flags)) #define PageTestandSetSwapCache(page) \ (test_and_set_bit(PG_swap_cache, &(page)->flags)) #define PageClearSlab(page) (clear_bit(PG_Slab, &(page)->flags)) #define PageClearSwapCache(page)(clear_bit(PG_swap_cache, &(page)->flags)) #define PageTestandClearDirty(page) \ (test_and_clear_bit(PG_dirty, &(page)->flags)) #define PageTestandClearSwapCache(page) \ (test_and_clear_bit(PG_swap_cache, &(page)->flags)) /* * Various page->flags bits: * * PG_reserved is set for a page which must never be accessed (which * may not even be present). * * PG_DMA is set for those pages which lie in the range of * physical addresses capable of carrying DMA transfers. * * Multiple processes may "see" the same page. E.g. for untouched * mappings of /dev/null, all processes see the same page full of * zeroes, and text pages of executables and shared libraries have * only one copy in memory, at most, normally. * * For the non-reserved pages, page->count denotes a reference count. * page->count == 0 means the page is free. * page->count == 1 means the page is used for exactly one purpose * (e.g. a private data page of one process). * * A page may be used for kmalloc() or anyone else who does a * get_free_page(). In this case the page->count is at least 1, and * all other fields are unused but should be 0 or NULL. The * management of this page is the responsibility of the one who uses * it. * * The other pages (we may call them "process pages") are completely * managed by the Linux memory manager: I/O, buffers, swapping etc. * The following discussion applies only to them. * * A page may belong to an inode's memory mapping. In this case, * page->inode is the pointer to the inode, and page->offset is the * file offset of the page (not necessarily a multiple of PAGE_SIZE). * * A page may have buffers allocated to it. In this case, * page->buffers is a circular list of these buffer heads. Else, * page->buffers == NULL. * * For pages belonging to inodes, the page->count is the number of * attaches, plus 1 if buffers are allocated to the page. * * All pages belonging to an inode make up a doubly linked list * inode->i_pages, using the fields page->next and page->prev. (These * fields are also used for freelist management when page->count==0.) * There is also a hash table mapping (inode,offset) to the page * in memory if present. The lists for this hash table use the fields * page->next_hash and page->pprev_hash. * * All process pages can do I/O: * - inode pages may need to be read from disk, * - inode pages which have been modified and are MAP_SHARED may need * to be written to disk, * - private pages which have been modified may need to be swapped out * to swap space and (later) to be read back into memory. * During disk I/O, PG_locked is used. This bit is set before I/O * and reset when I/O completes. page->wait is a wait queue of all * tasks waiting for the I/O on this page to complete. * PG_uptodate tells whether the page's contents is valid. * When a read completes, the page becomes uptodate, unless a disk I/O * error happened. * When a write completes, and PG_free_after is set, the page is * freed without any further delay. * * For choosing which pages to swap out, inode pages carry a * PG_referenced bit, which is set any time the system accesses * that page through the (inode,offset) hash table. * * PG_skip is used on sparc/sparc64 architectures to "skip" certain * parts of the address space. * * PG_error is set to indicate that an I/O error occurred on this page. */ extern mem_map_t * mem_map; /* * This is timing-critical - most of the time in getting a new page * goes to clearing the page. If you want a page without the clearing * overhead, just use __get_free_page() directly.. */ #define __get_free_page(gfp_mask) __get_free_pages((gfp_mask),0) #define __get_dma_pages(gfp_mask, order) __get_free_pages((gfp_mask) | GFP_DMA,(order)) extern unsigned long FASTCALL(__get_free_pages(int gfp_mask, unsigned long gfp_order)); extern inline unsigned long get_free_page(int gfp_mask) { unsigned long page; page = __get_free_page(gfp_mask); if (page) clear_page(page); return page; } extern int low_on_memory; /* memory.c & swap.c*/ #define free_page(addr) free_pages((addr),0) extern void FASTCALL(free_pages(unsigned long addr, unsigned long order)); extern void FASTCALL(__free_page(struct page *)); extern void show_free_areas(void); extern unsigned long put_dirty_page(struct task_struct * tsk,unsigned long page, unsigned long address); extern void free_page_tables(struct mm_struct * mm); extern void clear_page_tables(struct mm_struct *, unsigned long, int); extern int new_page_tables(struct task_struct * tsk); extern void zap_page_range(struct mm_struct *mm, unsigned long address, unsigned long size); extern int copy_page_range(struct mm_struct *dst, struct mm_struct *src, struct vm_area_struct *vma); extern int remap_page_range(unsigned long from, unsigned long to, unsigned long size, pgprot_t prot); extern int zeromap_page_range(unsigned long from, unsigned long size, pgprot_t prot); extern void vmtruncate(struct inode * inode, unsigned long offset); extern int handle_mm_fault(struct task_struct *tsk,struct vm_area_struct *vma, unsigned long address, int write_access); extern int make_pages_present(unsigned long addr, unsigned long end); extern int pgt_cache_water[2]; extern int check_pgt_cache(void); extern unsigned long paging_init(unsigned long start_mem, unsigned long end_mem); extern void mem_init(unsigned long start_mem, unsigned long end_mem); extern void show_mem(void); extern void si_meminfo(struct sysinfo * val); /* mmap.c */ extern void vma_init(void); extern void merge_segments(struct mm_struct *, unsigned long, unsigned long); extern void insert_vm_struct(struct mm_struct *, struct vm_area_struct *); extern void build_mmap_avl(struct mm_struct *); extern void exit_mmap(struct mm_struct *); extern unsigned long get_unmapped_area(unsigned long, unsigned long); extern unsigned long do_mmap(struct file *, unsigned long, unsigned long, unsigned long, unsigned long, unsigned long); extern int do_munmap(unsigned long, size_t); /* filemap.c */ extern void remove_inode_page(struct page *); extern unsigned long page_unuse(struct page *); extern int shrink_mmap(int, int); extern void truncate_inode_pages(struct inode *, unsigned long); extern unsigned long get_cached_page(struct inode *, unsigned long, int); extern void put_cached_page(unsigned long); /* * GFP bitmasks.. */ #define __GFP_WAIT 0x01 #define __GFP_LOW 0x02 #define __GFP_MED 0x04 #define __GFP_HIGH 0x08 #define __GFP_IO 0x10 #define __GFP_SWAP 0x20 #define __GFP_DMA 0x80 #define GFP_BUFFER (__GFP_LOW | __GFP_WAIT) #define GFP_ATOMIC (__GFP_HIGH) #define GFP_USER (__GFP_LOW | __GFP_WAIT | __GFP_IO) #define GFP_KERNEL (__GFP_MED | __GFP_WAIT | __GFP_IO) #define GFP_NFS (__GFP_HIGH | __GFP_WAIT | __GFP_IO) #define GFP_KSWAPD (__GFP_IO | __GFP_SWAP) /* Flag - indicates that the buffer will be suitable for DMA. Ignored on some platforms, used as appropriate on others */ #define GFP_DMA __GFP_DMA /* vma is the first one with address < vma->vm_end, * and even address < vma->vm_start. Have to extend vma. */ static inline int expand_stack(struct vm_area_struct * vma, unsigned long address) { unsigned long grow; address &= PAGE_MASK; grow = vma->vm_start - address; if ((vma->vm_end - address > current->rlim[RLIMIT_STACK].rlim_cur) || ((current->rlim[RLIMIT_AS].rlim_cur < RLIM_INFINITY) && ((vma->vm_mm->total_vm << PAGE_SHIFT) + grow > current->rlim[RLIMIT_AS].rlim_cur))) return -ENOMEM; vma->vm_start = address; vma->vm_offset -= grow; vma->vm_mm->total_vm += grow >> PAGE_SHIFT; if (vma->vm_flags & VM_LOCKED) vma->vm_mm->locked_vm += grow >> PAGE_SHIFT; return 0; } /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); /* Look up the first VMA which intersects the interval start_addr..end_addr-1, NULL if none. Assume start_addr < end_addr. */ static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) { struct vm_area_struct * vma = find_vma(mm,start_addr); if (vma && end_addr <= vma->vm_start) vma = NULL; return vma; } #define buffer_under_min() ((buffermem >> PAGE_SHIFT) * 100 < \ buffer_mem.min_percent * num_physpages) #define pgcache_under_min() (page_cache_size * 100 < \ page_cache.min_percent * num_physpages) #endif /* __KERNEL__ */ #endif