/* Copyright (C) 1995 Free Software Foundation, Inc. Written by Michael I. Bushnell, p/BSG. This file is part of the GNU Hurd. The GNU Hurd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. The GNU Hurd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. */ #include "pfinet.h" #include "io_S.h" #include <netinet/in.h> #include <linux/wait.h> #include <linux-inet/sock.h> #include <fcntl.h> #include <string.h> #include <unistd.h> #include <mach/notify.h> error_t S_io_write (struct sock_user *user, char *data, u_int datalen, off_t offset, mach_msg_type_number_t *amount) { error_t err; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); become_task (user); err = (*user->sock->ops->write) (user->sock, data, datalen, user->sock->userflags); mutex_unlock (&global_lock); if (err >= 0) { *amount = err; err = 0; } return err; } error_t S_io_read (struct sock_user *user, char **data, u_int *datalen, off_t offset, mach_msg_type_number_t amount) { error_t err; int alloced = 0; if (!user) return EOPNOTSUPP; /* Instead of this, we should peek and the socket and only allocate as much as necessary. */ if (amount > *datalen) { vm_allocate (mach_task_self (), (vm_address_t *)data, amount, 1); alloced = 1; } mutex_lock (&global_lock); become_task (user); err = (*user->sock->ops->read) (user->sock, *data, amount, user->sock->userflags); mutex_unlock (&global_lock); if (err < 0) err = -err; else { *datalen = err; if (alloced && round_page (*datalen) < round_page (amount)) vm_deallocate (mach_task_self (), (vm_address_t) *data + round_page (*datalen), round_page (amount) - round_page (*datalen)); err = 0; } return err; } error_t S_io_seek (struct sock_user *user, off_t offset, int whence, off_t *newp) { return user ? ESPIPE : EOPNOTSUPP; } error_t S_io_readable (struct sock_user *user, mach_msg_type_number_t *amount) { struct sock *sk; error_t err; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); become_task (user); /* We need to avoid calling the Linux ioctl routines, so here is a rather ugly break of modularity. */ sk = (struct sock *) user->sock->data; err = 0; /* Linux's af_inet.c ioctl routine just calls the protocol-specific ioctl routine; it's those routines that we need to simulate. So this switch corresponds to the initialization of SK->prot in af_inet.c:inet_create. */ switch (user->sock->type) { case SOCK_STREAM: case SOCK_SEQPACKET: /* These guts are copied from tcp.c:tcp_ioctl. */ if (sk->state == TCP_LISTEN) err = EINVAL; else { sk->inuse = 1; *amount = tcp_readable (sk); release_sock (sk); } break; case SOCK_DGRAM: /* These guts are copied from udp.c:udp_ioctl (TIOCINQ). */ if (sk->state == TCP_LISTEN) err = EINVAL; else /* Boy, I really love the C language. */ *amount = (skb_peek (&sk->receive_queue) ? : &((struct sk_buff){}))->len; break; case SOCK_RAW: default: err = EOPNOTSUPP; break; } mutex_unlock (&global_lock); return err; } error_t S_io_set_all_openmodes (struct sock_user *user, int bits) { if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); if (bits & O_NONBLOCK) user->sock->userflags |= O_NONBLOCK; else user->sock->userflags &= ~O_NONBLOCK; mutex_unlock (&global_lock); return 0; } error_t S_io_get_openmodes (struct sock_user *user, int *bits) { struct sock *sk; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); sk = user->sock->data; *bits = 0; if (!(sk->shutdown & SEND_SHUTDOWN)) *bits |= O_WRITE; if (!(sk->shutdown & RCV_SHUTDOWN)) *bits |= O_READ; if (user->sock->userflags & O_NONBLOCK) *bits |= O_NONBLOCK; mutex_unlock (&global_lock); return 0; } error_t S_io_set_some_openmodes (struct sock_user *user, int bits) { if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); if (bits & O_NONBLOCK) user->sock->userflags |= O_NONBLOCK; mutex_unlock (&global_lock); return 0; } error_t S_io_clear_some_openmodes (struct sock_user *user, int bits) { if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); if (bits & O_NONBLOCK) user->sock->userflags &= ~O_NONBLOCK; mutex_unlock (&global_lock); return 0; } error_t S_io_select (struct sock_user *user, mach_port_t reply, mach_msg_type_name_t reply_type, int *select_type, int *id_tag) { int avail = 0; int cancel = 0; int requested_notify = 0; select_table table; struct select_table_elt *elt, *nxt; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); become_task (user); /* In Linux, this means (supposedly) that I/O will never be possible. That's a lose, so prevent it from happening. */ assert (user->sock->ops->select); /* The select function returns one if the specified I/O type is immediately possible. If it returns zero, then it is not immediately possible, and it has called select_wait. Eventually it will wakeup the wait queue specified in the select_wait call; at that point we should retry the call. */ for (;;) { condition_init (&table.master_condition); table.head = 0; if (*select_type & SELECT_READ) avail |= ((*user->sock->ops->select) (user->sock, SEL_IN, &table) ? SELECT_READ : 0); if (*select_type & SELECT_WRITE) avail |= ((*user->sock->ops->select) (user->sock, SEL_OUT, &table) ? SELECT_WRITE : 0); if (*select_type & SELECT_URG) avail |= ((*user->sock->ops->select) (user->sock, SEL_EX, &table) ? SELECT_URG : 0); if (!avail) { if (! requested_notify) { ports_interrupt_self_on_notification (user, reply, MACH_NOTIFY_DEAD_NAME); requested_notify = 1; } cancel = hurd_condition_wait (&table.master_condition, &global_lock); } /* Drop the conditions implications and structures allocated in the select table. */ for (elt = table.head; elt; elt = nxt) { condition_unimplies (elt->dependent_condition, &table.master_condition); nxt = elt->next; free (elt); } if (avail) { mutex_unlock (&global_lock); *select_type = avail; return 0; } if (cancel) { mutex_unlock (&global_lock); return EINTR; } } } /* Establish that the condition in WAIT_ADDRESS should imply the condition in P. Also, add us to the queue in P so that the relation can be undone at the proper time. */ void select_wait (struct wait_queue **wait_address, select_table *p) { struct select_table_elt *elt; /* tcp.c happens to use an uninitalized wait queue; so this special hack is for that. */ if (*wait_address == 0) { *wait_address = malloc (sizeof (struct wait_queue)); condition_init (&(*wait_address)->c); } elt = malloc (sizeof (struct select_table_elt)); elt->dependent_condition = &(*wait_address)->c; elt->next = p->head; p->head = elt; condition_implies (elt->dependent_condition, &p->master_condition); } error_t S_io_stat (struct sock_user *user, struct stat *st) { if (!user) return EOPNOTSUPP; bzero (st, sizeof (struct stat)); st->st_fstype = FSTYPE_SOCKET; st->st_fsid = getpid (); st->st_ino = (ino_t) user->sock; /* why not? */ st->st_blksize = 512; /* ???? */ return 0; } error_t S_io_reauthenticate (struct sock_user *user, mach_port_t rend) { struct sock_user *newuser; uid_t gubuf[20], ggbuf[20], aubuf[20], agbuf[20]; uid_t *gen_uids, *gen_gids, *aux_uids, *aux_gids; u_int genuidlen, gengidlen, auxuidlen, auxgidlen; error_t err; int i; auth_t auth; if (!user) return EOPNOTSUPP; genuidlen = gengidlen = auxuidlen = auxgidlen = 20; gen_uids = gubuf; gen_gids = ggbuf; aux_uids = aubuf; aux_gids = agbuf; mutex_lock (&global_lock); newuser = make_sock_user (user->sock, 0); auth = getauth (); err = auth_server_authenticate (auth, ports_get_right (user), MACH_MSG_TYPE_MAKE_SEND, rend, MACH_MSG_TYPE_MOVE_SEND, ports_get_right (newuser), MACH_MSG_TYPE_MAKE_SEND, &gen_uids, &genuidlen, &aux_uids, &auxuidlen, &gen_gids, &gengidlen, &aux_gids, &auxgidlen); assert (!err); /* XXX */ mach_port_deallocate (mach_task_self (), auth); for (i = 0; i < genuidlen; i++) if (gen_uids[i] == 0) newuser->isroot = 1; mutex_unlock (&global_lock); ports_port_deref (newuser); if (gubuf != gen_uids) vm_deallocate (mach_task_self (), (u_int) gen_uids, genuidlen * sizeof (uid_t)); if (ggbuf != gen_gids) vm_deallocate (mach_task_self (), (u_int) gen_gids, gengidlen * sizeof (uid_t)); if (aubuf != aux_uids) vm_deallocate (mach_task_self (), (u_int) aux_uids, auxuidlen * sizeof (uid_t)); if (agbuf != aux_gids) vm_deallocate (mach_task_self (), (u_int) aux_gids, auxgidlen * sizeof (uid_t)); return 0; } error_t S_io_restrict_auth (struct sock_user *user, mach_port_t *newobject, mach_msg_type_name_t *newobject_type, uid_t *uids, u_int uidslen, uid_t *gids, u_int gidslen) { struct sock_user *newuser; int i = 0; int isroot; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); isroot = 0; if (user->isroot) for (i = 0; i < uidslen && !isroot; i++) if (uids[i] == 0) isroot = 1; newuser = make_sock_user (user->sock, isroot); *newobject = ports_get_right (newuser); *newobject_type = MACH_MSG_TYPE_MAKE_SEND; ports_port_deref (newuser); mutex_unlock (&global_lock); return 0; } error_t S_io_duplicate (struct sock_user *user, mach_port_t *newobject, mach_msg_type_name_t *newobject_type) { struct sock_user *newuser; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); newuser = make_sock_user (user->sock, user->isroot); *newobject = ports_get_right (newuser); *newobject_type = MACH_MSG_TYPE_MAKE_SEND; ports_port_deref (newuser); mutex_unlock (&global_lock); return 0; } error_t S_io_async (struct sock_user *user, mach_port_t notify, mach_port_t *id, mach_msg_type_name_t *idtype) { return EOPNOTSUPP; } error_t S_io_mod_owner (struct sock_user *user, pid_t owner) { return EOPNOTSUPP; } error_t S_io_get_owner (struct sock_user *user, pid_t *owner) { return EOPNOTSUPP; } error_t S_io_get_icky_async_id (struct sock_user *user, mach_port_t *id, mach_msg_type_name_t *idtype) { return EOPNOTSUPP; } error_t S_io_server_version (struct sock_user *user, char *name, int *major, int *minor, int *edit) { return EOPNOTSUPP; } error_t S_io_pathconf (struct sock_user *user, int name, int *value) { return EOPNOTSUPP; } error_t S_io_map (struct sock_user *user, mach_port_t *rdobj, mach_msg_type_name_t *rdobj_type, mach_port_t *wrobj, mach_msg_type_name_t *wrobj_type) { return EOPNOTSUPP; } error_t S_io_map_cntl (struct sock_user *user, mach_port_t *obj, mach_msg_type_name_t *obj_type) { return EOPNOTSUPP; } error_t S_io_get_conch (struct sock_user *user) { return EOPNOTSUPP; } error_t S_io_release_conch (struct sock_user *user) { return EOPNOTSUPP; } error_t S_io_eofnotify (struct sock_user *user) { return EOPNOTSUPP; } error_t S_io_prenotify (struct sock_user *user, vm_offset_t start, vm_offset_t end) { return EOPNOTSUPP; } error_t S_io_postnotify (struct sock_user *user, vm_offset_t start, vm_offset_t end) { return EOPNOTSUPP; } error_t S_io_readnotify (struct sock_user *user) { return EOPNOTSUPP; } error_t S_io_readsleep (struct sock_user *user) { return EOPNOTSUPP; } error_t S_io_sigio (struct sock_user *user) { return EOPNOTSUPP; }