/* Copyright (C) 1995 Free Software Foundation, Inc. Written by Michael I. Bushnell, p/BSG. This file is part of the GNU Hurd. The GNU Hurd is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. The GNU Hurd is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111, USA. */ error_t S_io_write (struct sock_user *user, char *data, u_int datalen, off_t offset, mach_msg_type_number_t *amount) { error_t err; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); become_task (user); /* O_NONBLOCK for fourth arg? XXX */ err = - (*user->sock->ops->write) (user->sock, data, datalen, 0); mutex_unlock (&global_lock); return err; } error_t S_io_read (struct sock_user *user, char **data, u_int *datalen, off_t offset, mach_msg_type_number_t amount) { error_t err; int alloced = 0; if (!user) return EOPNOTSUPP; /* Instead of this, we should peek and the socket and only allocate as much as necessary. */ if (amount > *datalen) { vm_allocate (mach_task_self (), (vm_address_t *)data, amount, 1); alloced = 1; } mutex_lock (&global_lock); become_task (user); /* O_NONBLOCK for fourth arg? XXX */ err = (*user->sock->ops->read) (user->sock, *data, amount, 0); mutex_unlock (&global_lock); if (err < 0) err = -err; else { *datalen = err; if (alloced && page_round (*datalen) < page_round (amount)) vm_deallocate (mach_task_self (), *data + page_round (*datalen), page_round (amount) - page_round (*datalen)); err = 0; } return err; } error_t S_io_seek (struct sock_user *user, off_t offset, int whence, off_t *newp) { return user ? ESPIPE : EOPNOTSUPP; } error_t S_io_readable (struct sock_user *user, mach_msg_type_number_t *amount) { struct sock *sk; error_t err; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); become_task (user); /* We need to avoid calling the Linux ioctl routines, so here is a rather ugly break of modularity. */ sk = (struct sock *) user->sock->data; err = 0; /* Linux's af_inet.c ioctl routine just calls the protocol-specific ioctl routine; it's those routines that we need to simulate. So this switch corresponds to the initialization of SK->prot in af_inet.c:inet_create. */ switch (sock->type) { case SOCK_STREAM: case SOCK_SEQPACKET: /* These guts are copied from tcp.c:tcp_ioctl. */ if (sk->state == TCP_LISTEN) err = EINVAL; else { sk->inuse = 1; *amount = tcp_readable (sk); release_sock (sk); } break; case SOCK_DGRAM: /* These guts are copied from udp.c:udp_ioctl (TIOCINQ). */ if (sk->state == TCP_LISTEN) err = EINVAL; else /* Boy, I really love the C language. */ *amount = (skb_peek (&sk->receive_queue) ? : &((struct sk_buff){}))->len; break; case SOCK_RAW: default: err = EOPNOTSUPP; break; } mutex_unlock (&global_lock); return err; } error_t S_io_select (struct sock_user *user, int *select_type, int *id_tag) { struct sock *sk; error_t err; int avail = 0; int cancel = 0; struct select_table table; struct select_table_elt *elt, *nxt; if (!user) return EOPNOTSUPP; mutex_lock (&global_lock); become_task (user); /* In Linux, this means (supposedly) that I/O will never be possible. That's a lose, so prevent it from happening. */ assert (user->sock->ops->select); condition_init (&table.master_condition); table.head = 0; /* The select function returns one if the specified I/O type is immediately possible. If it returns zero, then it is not immediately possible, and it has called select_wait. Eventually it will wakeup the wait queue specified in the select_wait call; at that point we should retry the call. */ for (;;) { if (*select_type & SELECT_READ) avail |= ((*user->sock->ops->select) (user->sock, SEL_IN, &table) ? SELECT_READ : 0); if (*select_type & SELECT_WRITE) avail |= ((*user->sock->ops->select) (user->sock, SEL_OUT, &table) ? SELECT_WRITE : 0); if (*select_type & SELECT_URG) avail |= ((*user->sock->ops->select) (user->sock, SEL_EX, &table) ? SELECT_URG : 0); if (!avail) cancel = hurd_condition_wait (&table.master_condition, &global_lock); /* Drop the conditions implications and structures allocated in the select table. */ for (elt = table.head; elt; elt = nxt) { condition_unimplies (elt->dependent_condition, &table.master_condition); nxt = elt->next; free (elt); } if (avail) { mutex_unlock (&global_lock); *select_type = avail; return 0; } if (cancel) { mutex_unlock (&global_lock); return EINTR; } } } /* Establish that the condition in WAIT_ADDRESS should imply the condition in P. Also, add us to the queue in P so that the relation can be undone at the proper time. */ void select_wait (struct wait_queue **wait_address, select_table *p) { struct select_table_elt *elt; elt = malloc (sizeof (struct select_table_elt)); elt->dependent_condition = (*wait_address)->c; elt->next = p->head; p->head = elt; condition_implies (elt->dependent_condition, p->master_condition); }