/* xkb.c -- Main XKB routines. Copyright (C) 2002, 2003, 2004 Marco Gerards Written by Marco Gerards This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include "xkb.h" #include #define XK_XKB_KEYS #define XK_MISCELLANY #include "keysymdef.h" #include #include #include #define NoSymbol 0 /* The converter. */ extern iconv_t cd; /* All interpretations for compatibility. (Translation from keysymbol to actions). */ xkb_interpret_t *interpretations; /* All keysymbols and how they are handled by XKB. */ struct key *keys = NULL; int min_keys; int max_keys; /* The current set of modifiers. */ static modmap_t bmods; /* Temporary set of modifiers. This is a copy of mods, so mods won't be consumed (Effective modifiers). */ static modmap_t emods; /* Effective group. */ static group_t egroup; /* Base group. */ static group_t bgroup; /* Locked group. */ static group_t lgroup; /* Latched group. */ static group_t latchedgroup; static boolctrls bboolctrls; /* A counter to count how often the modifier was set. This is used when two seperate actions set the same modifier. (example: Left Shift and Right Shift.). */ modcount_t modsc; keystate_t keystate[255]; /* The locked modifiers. Lock simply works an an invertion. */ static modmap_t lmods = {0, 0}; /* When the modifier is used the modifier will be consumed. */ static modmap_t latchedmods = {0, 0}; /* Not setting GroupsWrap uses modulus to keep the value into the range. */ static int GroupsWrap = 0; /* MouseKeys, default: off. */ static int MouseKeys = 0; /* Default mousebutton. */ static int default_button = 0; static xkb_indicator_t *indicators; static int indicator_count; static int indicator_map = 0; /* unused static int stickykeys_active = 1; */ int debug_printf (const char *f, ...) { va_list ap; int ret = 0; va_start (ap, f); #ifdef XKB_DEBUG ret = vfprintf (stderr, f, ap); #endif va_end (ap); return ret; } static void interpret_kc (keycode_t kc) { int cursym; int rmods = keys[kc].mods.rmods; struct xkb_interpret *interp; for (interp = interpretations; interp; interp = interp->next) { group_t group; for (group = 0; group < keys[kc].numgroups; group++) { int width = keys[kc].groups[group].width; for (cursym = 0; cursym < width; cursym++) { int symbol = keys[kc].groups[group].symbols[cursym]; /* Check if a keysymbol requirement exists or if it matches. */ if (interp->symbol == 0 || (symbol && (interp->symbol == symbol))) { int flags = interp->match & 0x7f; /* XXX: use enum. */ if ((flags == 0 && (!(interp->rmods & rmods))) || (flags == 1) || (flags == 2 && (interp->rmods & rmods)) || (flags == 3 && ((interp->rmods & rmods) == interp->rmods)) || (flags == 4 && interp->rmods == rmods)) { xkb_action_t *action; if (keys[kc].groups[group].actionwidth > cursym && keys[kc].groups[group].actions[cursym] && keys[kc].groups[group].actions[cursym]->type != SA_NoAction) continue; /* if (action->type == 13) */ /* printf ("AA %d AAAAAAAAAAAAAAA %d: %d - %d\n", kc, flags, symbol, interp->symbol); */ action = malloc (sizeof (xkb_action_t)); memcpy (action, &interp->action, sizeof (xkb_action_t)); key_set_action (&keys[kc], group, cursym, action); keys[kc].flags = interp->flags | KEYHASACTION; if (!keys[kc].mods.vmods) keys[kc].mods.vmods = interp->vmod; } } } } } } /* Test if c is an uppercase letter. */ static int islatin_upper (int c) { return (c >= 'A' && c <= 'Z'); } /* Test if c is an lowercase letter. */ static int islatin_lower (int c) { return (c >= 'a' && c <= 'z'); } /* A key is of the keytype KEYPAD when one of the symbols that can be produced by this key is in the KEYPAD symbol range. */ static int iskeypad (int width, int *sym) { int i; for (i = 0; i <= width; i++, sym++) { /* Numlock is in the keypad range but shouldn't be of the type keypad because it will depend on itself in that case. */ if (*sym == XK_Num_Lock) return 0; if (*sym >= KEYPAD_FIRST_KEY && *sym <= KEYPAD_LAST_KEY) return 1; } return 0; } /* Get the keytype (the keytype determines which modifiers are used for shifting. For reference, see FindAutomaticType@xkbcomp/symbols.c. These rules are used: * If the width is 1 the keytype is ONE_LEVEL. * If the first symbol is lowercase and the second is uppercase (latin alphabeth) the keytype is ALPHABETHIC. * If one of the symbols is in the keypad range the keytype is KEYPAD. * If width is 4 the type is either FOUR_LEVEL, FOUR_LEVEL_ALPHABETIC, FOUR_LEVEL_SEMI_ALPHABETIC (first sym pair is alphabetic) or FOUR_LEVEL_KEYPAD. * Else the keytype is TWO_LEVEL. */ static struct keytype * get_keytype (int width, symbol *sym) { struct keytype *ktfound = NULL; if (!sym) ktfound = keytype_find ("TWO_LEVEL"); else if ((width == 1) || (width == 0)) ktfound = keytype_find ("ONE_LEVEL"); else if (width == 2) { if (islatin_lower (sym[0]) && islatin_upper (sym[1])) ktfound = keytype_find ("ALPHABETIC"); else if (iskeypad (width, sym)) ktfound = keytype_find ("KEYPAD"); else ktfound = keytype_find ("TWO_LEVEL"); } else if (width <= 4) { if (islatin_lower (sym[0]) && islatin_upper (sym[1])) if (islatin_lower(sym[2]) && islatin_upper(sym[3])) ktfound = keytype_find ("FOUR_LEVEL_ALPHABETIC"); else ktfound = keytype_find ("FOUR_LEVEL_SEMIALPHABETIC"); else if (iskeypad (2, sym)) ktfound = keytype_find ("FOUR_LEVEL_KEYPAD"); else ktfound = keytype_find ("FOUR_LEVEL"); } if (!ktfound) ktfound = keytype_find ("TWO_LEVEL"); if (!ktfound) { console_error (L"Default keytypes have not been defined!\n"); exit (1); } return ktfound; } /* Create XKB style actions for every action described by keysymbols. */ static void interpret_all (void) { keycode_t curkc; /* Check every key. */ for (curkc = 0; curkc < max_keys; curkc++) interpret_kc (curkc); } static void determine_keytypes (void) { keycode_t curkc; /* Check every key. */ for (curkc = 0; curkc < max_keys; curkc++) { group_t group; for (group = 0; group < 4; group++) { struct keygroup *kg = &keys[curkc].groups[group]; if (!kg->keytype) kg->keytype = get_keytype (kg->width, kg->symbols); } } } /* Wrap the group GROUP into a valid group range. The method to use is defined by the GroupsWrap control. */ static int wrapgroup (group_t group, int maxgroup) { /* If the group is in an invalid range, fix it. */ if (group < 0 || group >= maxgroup) { /* If RedirectIntoRange should be used use the 4 LSbs of the GroupsWrap control instead of the current group. */ if (GroupsWrap & RedirectIntoRange) group = GroupsWrap & 0x0F; /* Select the closest valid group. */ else if (GroupsWrap & ClampIntoRange) { if (group < 0) group = 0; else group = maxgroup - 1; } else /* Default: use modulus to wrap the group. */ group %= maxgroup; } return group; } /* This function must be called after a modifier, group or control has been changed. The indicator map will be regenerated and the hardwre representation of this map will be updated. */ static void set_indicator_mods (void) { int i; /* Calculate the effective modmap. */ emods = bmods; emods.rmods |= lmods.rmods; emods.vmods |= lmods.vmods; emods.rmods |= latchedmods.rmods; emods.vmods |= latchedmods.vmods; for (i = 0; i < indicator_count; i++) { if (!(indicators[i].flags & IM_NoAutomatic)) { if (indicators[i].which_mods & IM_UseBase) { if (((indicators[i].modmap.rmods & bmods.rmods) == indicators[i].modmap.rmods) && ((indicators[i].modmap.vmods & bmods.vmods) == indicators[i].modmap.vmods)) { indicator_map |= (1 << i); continue; } } if (indicators[i].which_mods & IM_UseLatched) { if (((indicators[i].modmap.rmods & latchedmods.rmods) == indicators[i].modmap.rmods) && ((indicators[i].modmap.vmods & latchedmods.vmods) == indicators[i].modmap.vmods)) { indicator_map |= (1 << i); continue; } } if (indicators[i].which_mods & IM_UseLocked) { if (((indicators[i].modmap.rmods & lmods.rmods) == indicators[i].modmap.rmods) && ((indicators[i].modmap.vmods & lmods.vmods) == indicators[i].modmap.vmods)) { indicator_map |= (1 << i); continue; } } if (indicators[i].which_mods & IM_UseEffective) { if (((indicators[i].modmap.rmods & emods.rmods) == indicators[i].modmap.rmods) && ((indicators[i].modmap.vmods & emods.vmods) == indicators[i].modmap.vmods)) { indicator_map |= (1 << i); continue; } } /* The indicator shouldn't be on anymore so turn it off. */ indicator_map &= ~(1 << i); } } debug_printf ("INDICATOR: %d\n", indicator_map); } /* Set base modifiers. A counter exists for every modifier. When a modifier is set this counter will be incremented with one. */ static void setmods (modmap_t smods, keypress_t key) { /* Higher the modcount for every set modifier. */ void set_xmods (int xmods, int modsc[]) { int i = 0; while (xmods) { if (xmods & 1) modsc[i]++; xmods >>= 1; i++; } } bmods.rmods |= smods.rmods; bmods.vmods |= smods.vmods; set_xmods (smods.rmods, modsc.rmods); set_xmods (smods.vmods, modsc.vmods); set_indicator_mods (); } /* Clear base modifiers. A counter exists for every modifier. When a key release wants to clear a modifier this counter will be decreased with one. When the counter becomes 0 the modifier will be cleared and unlocked if the clearLocks flag is set. */ static void clearmods (modmap_t cmods, keypress_t key, int flags) { #define CLEAR_XMOD(MODTYPE) \ { \ int i = 0; \ int mmods = cmods.MODTYPE; \ \ while (mmods) \ { \ if (mmods & 1) \ if (!(--modsc.MODTYPE[i])) \ { \ bmods.MODTYPE &= ~(1 << i); \ if (flags & clearLocks) \ lmods.MODTYPE &= ~(1 << i); \ } \ mmods >>= 1; \ i++; \ } \ } CLEAR_XMOD(rmods); CLEAR_XMOD(vmods); set_indicator_mods (); } /* Set modifiers in smods and also lock them if the flag noLock is not set. */ static void setlocks (modmap_t smods, keypress_t key, int flags) { if (!key.rel) { modmap_t cmods; cmods.rmods = lmods.rmods & smods.rmods; cmods.vmods = lmods.vmods & smods.vmods; /* Locking also sets the base modifiers. */ setmods (smods, key); if (!(flags & noUnlock)) { lmods.rmods &= ~cmods.rmods; lmods.vmods &= ~cmods.vmods; } if (!(flags & noLock)) { lmods.rmods |= (~cmods.rmods & smods.rmods); lmods.vmods |= (~cmods.vmods & smods.vmods); } } else clearmods (smods, key, flags); } /* Latch the modifiers smods for key KEY. When another key is operated while KEY is pressed the release of KEY will just clear the base modifiers, otherwise latch the modifiers like is described in the protocol specification. */ static void latchmods (modmap_t smods, keypress_t key, int flags) { if (!key.rel) setmods (smods, key); else { modmap_t oldlmods; oldlmods = lmods; clearmods (smods, key, flags); /* Modifier that have been unlocked don't have effect anymore. */ smods.rmods &= ~(lmods.rmods & oldlmods.rmods); smods.vmods &= ~(lmods.vmods & oldlmods.vmods); /* If another key has been pressed while this modifier key was pressed don't latch, just behave as SetMods. */ if (key.keycode == key.prevkc) { if (flags & latchToLock) { /* When a modifier exists as a locked modifier, consume and unlock. */ lmods.rmods |= latchedmods.rmods & smods.rmods; lmods.vmods |= latchedmods.vmods & smods.vmods; smods.rmods &= ~(latchedmods.rmods & smods.rmods); smods.vmods &= ~(latchedmods.vmods & smods.vmods); } /* Use the remaining modifiers for latching. */ latchedmods.rmods |= smods.rmods; latchedmods.vmods |= smods.vmods; } } } static void setgroup (keypress_t key, group_t group, int flags) { debug_printf ("Setgroup ()\n"); if (!key.rel) { if (flags & groupAbsolute) { bgroup = group; keystate[key.keycode].oldgroup = bgroup; } else bgroup += group; } else { if ((key.keycode == key.prevkc) && (flags & clearLocks)) lgroup = 0; if (flags & groupAbsolute) bgroup = keystate[key.keycode].oldgroup; else /* XXX: Maybe oldgroup should be restored for !groupAbsolute too, because wrapgroup might have affected the calculation and substracting will not undo the set operation. However this way of handeling relative groups is better because the order of releasing keys when multiple relative setgroup keys are pressed doesn't matter. */ bgroup -= group; } } static void latchgroup (keypress_t key, group_t sgroup, int flags) { group_t oldlgroup = sgroup; setgroup (key, sgroup, flags); debug_printf ("Latchgroup ()\n"); if (key.keycode == key.prevkc && oldlgroup == lgroup) { if ((flags & latchToLock) && latchedgroup) { lgroup += sgroup; latchedgroup -= sgroup; } else latchedgroup += sgroup; } } static void lockgroup (keypress_t key, group_t group, int flags) { debug_printf (">L: %d, g: %d\n", lgroup, group); keystate[key.keycode].oldgroup = lgroup; if (flags & groupAbsolute) lgroup = group; else lgroup += group; lgroup = wrapgroup (lgroup, 4); debug_printf ("type); switch (action->type) { /* LockMods: Lock/Unlock modifiers when the key is pressed. */ case SA_LockMods: { action_setmods_t *setmodmap = (action_setmods_t *) action; modmap_t modm = setmodmap->modmap; /* UseModMap */ if (setmodmap->flags & useModMap) { modm.rmods |= keys[key.keycode].mods.rmods; modm.vmods |= keys[key.keycode].mods.vmods; } setlocks (modm, key, setmodmap->flags); } break; /* SetMods: Set/Unset modifiers. Those modifier will be set as long the key is pressed. Keys like shift, alt and control are used here often. */ case SA_SetMods: { action_setmods_t *setmodmap = (action_setmods_t *) action; modmap_t modm = setmodmap->modmap; /* UseModMapMods means: also use the real modifiers specified in the key's modmap. */ if (setmodmap->flags & useModMap) { debug_printf ("Apply modmaps\n"); modm.rmods |= keys[key.keycode].mods.rmods; modm.vmods |= keys[key.keycode].mods.vmods; } /* When the key is pressed set the modifiers. */ if (!key.rel) setmods (modm, key); else /* When the key is released clear the modifiers. */ clearmods (modm, key, setmodmap->flags); break; } /* Set the basegroup. When groupAbsolute isn't used add it to the basegroup. */ case SA_LatchMods: { action_setmods_t *setmodmap = (action_setmods_t *) action; modmap_t modm = setmodmap->modmap; /* UseModMapMods means: also use the real modifiers specified in the key's modmap. */ if (setmodmap->flags & useModMap) { modm.rmods |= keys[key.keycode].mods.rmods; modm.vmods |= keys[key.keycode].mods.vmods; } latchmods (modm, key, setmodmap->flags); break; } case SA_SetGroup: { action_setgroup_t *setgroupac = (action_setgroup_t *) action; setgroup (key, setgroupac->group, setgroupac->flags); break; } case SA_LockGroup: { action_setgroup_t *setgroupac = (action_setgroup_t *) action; if (!key.rel) lockgroup (key, setgroupac->group, setgroupac->flags); break; } case SA_LatchGroup: { action_setgroup_t *setgroupac = (action_setgroup_t *) action; latchgroup (key, setgroupac->group, setgroupac->flags); break; } case SA_PtrBtn: { action_ptrbtn_t *ptrbtnac = (action_ptrbtn_t *) action; int i; int button; if (!MouseKeys) return KEYNOTCONSUMED; if (ptrbtnac->flags & useDfltBtn) button = default_button; else button = ptrbtnac->button; if (ptrbtnac->count) for (i = 0; i < ptrbtnac->count; i++) { /* XXX: Should there be a delay? */ mouse_button_press (button); mouse_button_release (button); } else if (!key.rel) mouse_button_press (button); else mouse_button_release (button); break; } case SA_LockPtrBtn: { action_ptrbtn_t *ptrbtnac = (action_ptrbtn_t *) action; int button; if (!MouseKeys) return KEYNOTCONSUMED; if (ptrbtnac->flags & useDfltBtn) button = default_button; else button = ptrbtnac->button; /* XXX: Do stuff. */ break; } case SA_SetPtrDflt: { action_ptr_dflt_t *ptrdfltac = (action_ptr_dflt_t *) action; if (!MouseKeys) return KEYNOTCONSUMED; if (!key.rel) { if (ptrdfltac->flags & DfltBtnAbsolute) default_button = ptrdfltac->value; else default_button += ptrdfltac->value; } if (default_button < 0) default_button = 0; if (default_button > 5) default_button = 5; break; } case SA_TerminateServer: /* Zap! */ console_exit (); break; case SA_SwitchScreen: { action_switchscrn_t *switchscrnac = (action_switchscrn_t *) action; if (key.rel) break; if (switchscrnac->flags & screenAbs) /* Switch to screen. */ console_switch ((char) switchscrnac->screen, 0); else /* Move to next/prev. screen. */ console_switch (0, (char) switchscrnac->screen); break; } case SA_RedirectKey: { action_redirkey_t *redirkeyac = (action_redirkey_t *) action; key.keycode = redirkeyac->newkey & (key.rel ? 0x80:0); /* For the redirected key other modifiers should be used. */ emods.rmods = bmods.rmods | lmods.rmods | latchedmods.rmods; emods.vmods = bmods.vmods | lmods.vmods | latchedmods.vmods; emods.rmods &= ~redirkeyac->rmodsmask; emods.rmods |= redirkeyac->rmods; emods.vmods &= ~redirkeyac->vmods; emods.vmods |= redirkeyac->vmodsmask; /* XXX: calc group etc. */ handle_key (key); break; } case SA_ConsScroll: { action_consscroll_t *scrollac = (action_consscroll_t *) action; if (key.rel) break; if (scrollac->flags & usePercentage) console_scrollback (CONS_SCROLL_ABSOLUTE_PERCENTAGE, 100 - scrollac->percent); if (scrollac->screen) console_scrollback (CONS_SCROLL_DELTA_SCREENS, -scrollac->screen); if (scrollac->line) { int type = (scrollac->flags & lineAbs) ? CONS_SCROLL_ABSOLUTE_LINE : CONS_SCROLL_DELTA_LINES; console_scrollback (type, -scrollac->line); } break; } case SA_ActionMessage: case SA_DeviceBtn: case SA_LockDeviceBtn: case SA_DeviceValuator: return KEYNOTCONSUMED; case SA_MovePtr: { action_moveptr_t *moveptrac = (action_moveptr_t *) action; if (!MouseKeys) return KEYNOTCONSUMED; if (moveptrac->flags & MoveAbsoluteX) mouse_x_move_to (moveptrac->x); else mouse_x_move (moveptrac->x); if (moveptrac->flags & MoveAbsoluteY) mouse_y_move_to (moveptrac->y); else mouse_y_move (moveptrac->y); break; } case SA_SetControls: { action_setcontrols_t *controlsac = (action_setcontrols_t *) action; if (key.rel) clearcontrols (key, controlsac->controls, 0); else setcontrols (key, controlsac->controls, 0); break; } case SA_LockControls: { action_setcontrols_t *controlsac = (action_setcontrols_t *) action; lockcontrols (key, controlsac->controls, 0); break; } default: /* Preserve the keycode. */ return KEYNOTCONSUMED; break; } /* Don't preserve the keycode because it was consumed. */ return KEYCONSUMED; } /* Calculate the shift level for a specific key. */ static int calc_shift (keycode_t key) { /* The keytype for this key. */ struct keytype *keytype = keys[key].groups[egroup].keytype; struct typemap *map; /* XXX: Shouldn't happen, another way to fix this? */ if (!keytype) return 0; /* Scan though all modifier to level maps of this keytype to search the level. */ for (map = keytype->maps; map; map = map->next) /* Does this map meet our requirements? */ if (map->mods.rmods == (emods.rmods & keytype->modmask.rmods) && map->mods.vmods == (emods.vmods & keytype->modmask.vmods)) { /* Preserve all modifiers specified in preserve for this map. */ emods.rmods &= ~(map->mods.rmods & (~map->preserve.rmods)); emods.vmods &= ~(map->mods.vmods & (~map->preserve.vmods)); return map->level; } /* When no map is found use the default shift level and consume all modifiers. */ emods.vmods &= ~keytype->modmask.vmods; emods.rmods &= ~keytype->modmask.rmods; return 0; } static symbol symtoctrlsym (symbol c) { c = toupper (c); switch (c) { case 'A' ... 'Z': c = c - 'A' + 1; break; case '[': case '3': c = '\e'; break; case '\\': case '4': c = ''; break; case ']': case '5': c = ''; break; case '^': case '6': c = ''; break; case '/': c = '/'; break; case ' ': c = '\0'; break; case '_': case '7': c= ''; break; case '8': c = '\x7f'; break; } return c; } /* Handle all actions, etc. bound to the key KEYCODE and return a XKB symbol if one is generated by this key. If redirected_key contains 1 this is keypress generated by the action SA_RedirectKey, don't change the effective modifiers because they exist and have been changed by SA_RedirectKey. */ static symbol handle_key (keypress_t key) { int actioncompl = 0; modmap_t oldmods; group_t oldgroup = 0; /* The level for this key. */ int level; /* The symbol this keypress generated. */ symbol sym = 0; debug_printf ("groups\n"); /* If the key does not have a group there is nothing to do. */ if (keys[key.keycode].numgroups == 0) return -1; /* The effective group is the current group, but it can't be out of range. */ egroup = wrapgroup (bgroup + lgroup, keys[key.keycode].numgroups); if (keys[key.keycode].groups[egroup].actions) { if (key.rel) { debug_printf ("action\n"); if (!keystate[key.keycode].prevstate) /* Executing the inverse action of a never executed action... Stop! */ return -1; keystate[key.keycode].prevstate = 0; emods = keystate[key.keycode].prevmods; egroup = wrapgroup (keystate[key.keycode].prevgroup, keys[key.keycode].numgroups); } else /* This is a keypress event. */ { /* Calculate the effective modmap. */ emods = bmods; emods.rmods |= lmods.rmods; emods.vmods |= lmods.vmods; emods.rmods |= latchedmods.rmods; emods.vmods |= latchedmods.vmods; } oldmods = emods; oldgroup = egroup; level = calc_shift (key.keycode);// % if (keys[key.keycode].groups[egroup].actionwidth >= level + 1 && keys[key.keycode].groups[egroup].actions[level]) { actioncompl = action_exec (keys[key.keycode].groups[egroup].actions[level], key); } } if (actioncompl == KEYCONSUMED && !key.rel) { /* An action was executed. Store the effective modifier this key so the reverse action can be called on key release. */ keystate[key.keycode].prevstate = 1; keystate[key.keycode].prevmods = oldmods; keystate[key.keycode].prevgroup = oldgroup; } debug_printf ("consumed: %d - %d -%d\n", actioncompl, key.rel, !keys[key.keycode].groups[egroup].width); /* If the action comsumed the keycode, this is a key release event or if the key doesn't have any symbols bound to it there is no symbol returned. */ if (actioncompl == KEYCONSUMED || key.rel || !keys[key.keycode].groups[egroup].width) return -1; /* Calculate the effective modmap. */ emods = bmods; emods.rmods |= lmods.rmods; emods.vmods |= lmods.vmods; emods.rmods |= latchedmods.rmods; emods.vmods |= latchedmods.vmods; level = calc_shift (key.keycode) % keys[key.keycode].groups[egroup].width; /* The latched modifier is used for a symbol, clear it. */ latchedmods.rmods = latchedmods.vmods = 0; /* Search the symbol for this key in the keytable. Make sure the group and shift level exists. */ sym = keys[key.keycode].groups[egroup].symbols[level]; /* Convert keypad symbols to symbols. XXX: Is this the right place to do this? */ if ((sym >= XK_KP_Multiply && sym <= XK_KP_Equal) || sym == XK_KP_Enter) sym &= ~0xFF80; /* Check if this keypress was a part of a compose sequence. */ sym = compose_symbols (sym); return sym; } void xkb_input (keypress_t key) { char buf[100]; size_t size = 0; wchar_t input; debug_printf ("input: %d, rel: %d, rep: %d\n", key.keycode, key.rel, key.repeat); if (key.rel) keystate[key.keycode].lmods = lmods; input = handle_key (key); //printf ("sym: %d\n", input); debug_printf ("handle: %d\n", input); if (input == -1) return; /* If the realmodifier MOD1 (AKA Alt) is set generate an ESC symbol. */ if (emods.rmods & RMOD_MOD1) buf[size++] = '\e'; buf[size] = '\0'; debug_printf ("input: %d\n", input); if (!input) return; /* Special key, generate escape sequence. */ char *escseq = NULL; switch (input) { case XK_Up: case XK_KP_Up: escseq = CONS_KEY_UP; break; case XK_Down: case XK_KP_Down: escseq = CONS_KEY_DOWN; break; case XK_Left: case XK_KP_Left: escseq = CONS_KEY_LEFT; break; case XK_Right: case XK_KP_Right: escseq = CONS_KEY_RIGHT; break; case XK_BackSpace: escseq = CONS_KEY_BACKSPACE; break; case XK_F1: case XK_KP_F1: escseq = CONS_KEY_F1; break; case XK_F2: case XK_KP_F2: escseq = CONS_KEY_F2; break; case XK_F3: case XK_KP_F3: escseq = CONS_KEY_F3; break; case XK_F4: case XK_KP_F4: escseq = CONS_KEY_F4; break; case XK_F5: escseq = CONS_KEY_F5; break; case XK_F6: escseq = CONS_KEY_F6; break; case XK_F7: escseq = CONS_KEY_F7; break; case XK_F8: escseq = CONS_KEY_F8; break; case XK_F9: escseq = CONS_KEY_F9; break; case XK_F10: escseq = CONS_KEY_F10; break; case XK_F11: escseq = CONS_KEY_F11; break; case XK_F12: escseq = CONS_KEY_F12; break; case XK_F13: escseq = CONS_KEY_F13; break; case XK_F14: escseq = CONS_KEY_F14; break; case XK_F15: escseq = CONS_KEY_F15; break; case XK_F16: escseq = CONS_KEY_F16; break; case XK_F17: escseq = CONS_KEY_F17; break; case XK_F18: escseq = CONS_KEY_F18; break; case XK_F19: escseq = CONS_KEY_F19; break; case XK_F20: escseq = CONS_KEY_F20; break; case XK_Home: case XK_KP_Home: escseq = CONS_KEY_HOME; break; case XK_Insert: case XK_KP_Insert: escseq = CONS_KEY_IC; break; case XK_Delete: case XK_KP_Delete: escseq = CONS_KEY_DC; break; case XK_End: case XK_KP_End: escseq = CONS_KEY_END; break; case XK_Page_Up: case XK_KP_Page_Up: escseq = CONS_KEY_PPAGE; break; case XK_Page_Down: case XK_KP_Page_Down: escseq = CONS_KEY_NPAGE; break; case XK_KP_Begin: escseq = CONS_KEY_B2; break; case XK_ISO_Left_Tab: escseq = CONS_KEY_BTAB; break; case XK_Return: case XK_KP_Enter: escseq = "\x0d"; break; case XK_Tab: case XK_KP_Tab: escseq = "\t"; break; case XK_Escape: escseq = "\e"; break; } debug_printf ("bla\n"); if (escseq != NULL) { strcat (buf + size, escseq); size += strlen (escseq); } else { char *buffer = &buf[size]; size_t left = sizeof (buf) - size; char *inbuf = (char *) &input; size_t inbufsize = sizeof (wchar_t); size_t nr; /* Control key behaviour. */ if (bmods.rmods & RMOD_CTRL) input = symtoctrlsym (input); /* Convert the Keysym to a UCS4 characted. */ input = KeySymToUcs4 (input); /* if (!input) */ /* continue; */ debug_printf ("UCS4: %d -- %c\n", (int) input, input); /* If CAPSLOCK is active capitalize the symbol. */ if (emods.rmods & 2) input = towupper (input); nr = iconv (cd, &inbuf, &inbufsize, &buffer, &left); if (nr == (size_t) -1) { if (errno == E2BIG) console_error (L"Input buffer overflow"); else if (errno == EILSEQ) console_error (L"Input contained invalid byte sequence"); else if (errno == EINVAL) console_error (L"Input contained incomplete byte sequence"); else console_error (L"Input caused unexpected error"); } size = sizeof (buf) - left; } // printf ("SIZE: %d\n", size); if (size) console_input (buf, size); size = 0; } error_t parse_xkbconfig (char *xkbdir, char *xkbkeymapfile, char *xkbkeymap); error_t xkb_load_layout (char *xkbdir, char *xkbkeymapfile, char *xkbkeymap) { error_t err; err = parse_xkbconfig (xkbdir, xkbkeymapfile, xkbkeymap); if (err) return err; determine_keytypes (); interpret_all (); return 0; }