summaryrefslogtreecommitdiff
path: root/ufs
diff options
context:
space:
mode:
Diffstat (limited to 'ufs')
-rw-r--r--ufs/alloc.c1053
1 files changed, 1053 insertions, 0 deletions
diff --git a/ufs/alloc.c b/ufs/alloc.c
new file mode 100644
index 00000000..161edcb8
--- /dev/null
+++ b/ufs/alloc.c
@@ -0,0 +1,1053 @@
+/* Disk allocation routines
+ Copyright (C) 1993, 1994 Free Software Foundation
+
+This file is part of the GNU Hurd.
+
+The GNU Hurd is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2, or (at your option)
+any later version.
+
+The GNU Hurd is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with the GNU Hurd; see the file COPYING. If not, write to
+the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
+
+/* Modified from UCB by Michael I. Bushnell. */
+
+/*
+ * Copyright (c) 1982, 1986, 1989 Regents of the University of California.
+ * All rights reserved.
+ *
+ * Redistribution is only permitted until one year after the first shipment
+ * of 4.4BSD by the Regents. Otherwise, redistribution and use in source and
+ * binary forms are permitted provided that: (1) source distributions retain
+ * this entire copyright notice and comment, and (2) distributions including
+ * binaries display the following acknowledgement: This product includes
+ * software developed by the University of California, Berkeley and its
+ * contributors'' in the documentation or other materials provided with the
+ * distribution and in all advertising materials mentioning features or use
+ * of this software. Neither the name of the University nor the names of
+ * its contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ * THIS SOFTWARE IS PROVIDED AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
+ * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
+ *
+ * @(#)ufs_alloc.c 7.20 (Berkeley) 6/28/90
+ */
+
+#include "ufs.h"
+#include "fs.h"
+#include "dinode.h"
+
+#include <stdio.h>
+
+static u_long alloccg (int, daddr_t, int);
+static u_long ialloccg (int, daddr_t, int);
+static u_long hashalloc (int, long, int, u_long(*)(int, daddr_t, int));
+static daddr_t fragextend (int, long, int, int);
+static daddr_t alloccgblk (struct cg *, daddr_t);
+static daddr_t mapsearch (struct cg *, daddr_t, int);
+static ino_t dirpref ();
+
+/* These are in tables.c. */
+extern int inside[], around[];
+extern unsigned char *fragtbl[];
+
+static spin_lock_t alloclock = SPIN_LOCK_INITIALIZER;
+
+/*
+ * Allocate a block in the file system.
+ *
+ * The size of the requested block is given, which must be some
+ * multiple of fs_fsize and <= fs_bsize.
+ * A preference may be optionally specified. If a preference is given
+ * the following hierarchy is used to allocate a block:
+ * 1) allocate the requested block.
+ * 2) allocate a rotationally optimal block in the same cylinder.
+ * 3) allocate a block in the same cylinder group.
+ * 4) quadradically rehash into other cylinder groups, until an
+ * available block is located.
+ * If no block preference is given the following heirarchy is used
+ * to allocate a block:
+ * 1) allocate a block in the cylinder group that contains the
+ * inode for the file.
+ * 2) quadradically rehash into other cylinder groups, until an
+ * available block is located.
+ */
+error_t
+alloc(struct node *np,
+ daddr_t lbn,
+ daddr_t bpref,
+ int size,
+ daddr_t *bnp,
+ struct protid *cred)
+{
+ int cg;
+ daddr_t bno;
+
+ *bnp = 0;
+ assert ("Alloc of bad sized block" && (unsigned) size <= sblock->fs_bsize
+ && !fragoff(size));
+
+ spin_lock (&alloclock);
+
+ if (size == sblock->fs_bsize && sblock->fs_cstotal.cs_nbfree == 0)
+ goto nospace;
+ if (cred && !diskfs_isuid (0, cred) && freespace(sblock->fs_minfree) <= 0)
+ goto nospace;
+
+ if (bpref >= sblock->fs_size)
+ bpref = 0;
+ if (bpref == 0)
+ cg = itog(np->dn->number);
+ else
+ cg = dtog(bpref);
+ bno = (daddr_t)hashalloc(cg, (long)bpref, size, alloccg);
+
+ spin_unlock (&alloclock);
+
+ if (bno > 0)
+ {
+ np->dn_stat.st_blocks += btodb(size);
+ np->dn_set_mtime = 1;
+ np->dn_set_ctime = 1;
+ *bnp = bno;
+ return 0;
+ }
+
+ nospace:
+ spin_unlock (&alloclock);
+ printf("file system full\n");
+ return (ENOSPC);
+}
+
+/*
+ * Reallocate a fragment to a bigger size
+ *
+ * The number and size of the old block is given, and a preference
+ * and new size is also specified. The allocator attempts to extend
+ * the original block. Failing that, the regular block allocator is
+ * invoked to get an appropriate block.
+ */
+error_t
+realloccg(struct node *np,
+ daddr_t lbprev,
+ volatile daddr_t bpref,
+ int osize,
+ int nsize,
+ daddr_t *pbn,
+ struct protid *cred)
+{
+ volatile int cg, request;
+ daddr_t bprev, bno;
+ error_t error;
+
+ *pbn = 0;
+ assert ("bad old size" && (unsigned) osize <= sblock->fs_bsize
+ && !fragoff (osize));
+ assert ("bad new size" && (unsigned) nsize <= sblock->fs_bsize
+ && !fragoff (nsize));
+
+ spin_lock (&alloclock);
+
+ if (cred && !diskfs_isuid (0, cred) && freespace(sblock->fs_minfree) <= 0)
+ {
+ spin_unlock (&alloclock);
+ goto nospace;
+ }
+
+ if (error = diskfs_catch_exception ())
+ return error;
+ bprev = dinodes[np->dn->number].di_db[lbprev];
+ diskfs_end_catch_exception ();
+ assert ("old block not allocated" && bprev);
+
+ /*
+ * Check for extension in the existing location.
+ */
+ cg = dtog(bprev);
+ if (bno = fragextend(cg, (long)bprev, osize, nsize))
+ {
+ spin_unlock (&alloclock);
+ assert ("fragextend behaved incorrectly" && bprev == bno);
+ np->dn_stat.st_blocks += btodb(nsize - osize);
+ np->dn_set_mtime = 1;
+ np->dn_set_ctime = 1;
+ *pbn = bno;
+ return (0);
+ }
+ /*
+ * Allocate a new disk location.
+ */
+ if (bpref >= sblock->fs_size)
+ bpref = 0;
+ switch ((int)sblock->fs_optim)
+ {
+ case FS_OPTSPACE:
+ /*
+ * Allocate an exact sized fragment. Although this makes
+ * best use of space, we will waste time relocating it if
+ * the file continues to grow. If the fragmentation is
+ * less than half of the minimum free reserve, we choose
+ * to begin optimizing for time.
+ */
+ request = nsize;
+ if (sblock->fs_minfree < 5 ||
+ sblock->fs_cstotal.cs_nffree >
+ sblock->fs_dsize * sblock->fs_minfree / (2 * 100))
+ break;
+ printf("optimization changed from SPACE to TIME\n");
+ sblock->fs_optim = FS_OPTTIME;
+ break;
+ case FS_OPTTIME:
+ /*
+ * At this point we have discovered a file that is trying
+ * to grow a small fragment to a larger fragment. To save
+ * time, we allocate a full sized block, then free the
+ * unused portion. If the file continues to grow, the
+ * `fragextend' call above will be able to grow it in place
+ * without further copying. If aberrant programs cause
+ * disk fragmentation to grow within 2% of the free reserve,
+ * we choose to begin optimizing for space.
+ */
+ request = sblock->fs_bsize;
+ if (sblock->fs_cstotal.cs_nffree <
+ sblock->fs_dsize * (sblock->fs_minfree - 2) / 100)
+ break;
+ printf("%s: optimization changed from TIME to SPACE\n",
+ sblock->fs_fsmnt);
+ sblock->fs_optim = FS_OPTSPACE;
+ break;
+ default:
+ assert ("filesystem opitimazation bad value" && 0);
+ }
+
+ bno = (daddr_t)hashalloc(cg, (long)bpref, request,
+ (u_long (*)())alloccg);
+
+ spin_unlock (&alloclock);
+
+ if (bno > 0)
+ {
+ blkfree(bprev, (off_t)osize);
+ if (nsize < request)
+ blkfree(bno + numfrags(nsize), (off_t)(request - nsize));
+ np->dn_stat.st_blocks += btodb (nsize - osize);
+ np->dn_set_mtime = 1;
+ np->dn_set_ctime = 1;
+ *pbn = bno;
+ return (0);
+ }
+ nospace:
+ /*
+ * no space available
+ */
+ printf("file system full\n");
+ return (ENOSPC);
+}
+
+
+/* Implement the diskfs_alloc_node callback from the diskfs library.
+ See <hurd/diskfs.h> for the interface description. */
+error_t
+diskfs_alloc_node(struct node *dir,
+ mode_t mode,
+ struct node **npp)
+{
+ int ino;
+ struct node *np;
+ int cg;
+ error_t error;
+ int ipref;
+
+ if (S_ISDIR (mode))
+ ipref = dirpref ();
+ else
+ ipref = dir->dn->number;
+
+ *npp = 0;
+
+ if (sblock->fs_cstotal.cs_nifree == 0)
+ goto noinodes;
+ if (ipref >= sblock->fs_ncg * sblock->fs_ipg)
+ ipref = 0;
+ cg = itog(ipref);
+ spin_lock (&alloclock);
+ ino = (int)hashalloc(cg, (long)ipref, mode, ialloccg);
+ spin_unlock (&alloclock);
+ if (ino == 0)
+ goto noinodes;
+ if (error = iget(ino, &np))
+ return error;
+ *npp = np;
+ assert ("duplicate allocation" && !np->dn_stat.st_mode);
+ if (np->dn_stat.st_blocks)
+ {
+ printf("free inode %d had %d blocks\n", ino, np->dn_stat.st_blocks);
+ np->dn_stat.st_blocks = 0;
+ np->dn_set_ctime = 1;
+ }
+ /*
+ * Set up a new generation number for this inode.
+ */
+ spin_lock (&gennumberlock);
+ if (++nextgennumber < (u_long)diskfs_mtime->seconds)
+ nextgennumber = diskfs_mtime->seconds;
+ np->dn_stat.st_gen = nextgennumber;
+ spin_unlock (&gennumberlock);
+ return (0);
+ noinodes:
+ printf("out of inodes\n");
+ return (ENOSPC);
+}
+
+/*
+ * Find a cylinder to place a directory.
+ *
+ * The policy implemented by this algorithm is to select from
+ * among those cylinder groups with above the average number of
+ * free inodes, the one with the smallest number of directories.
+ */
+static ino_t
+dirpref()
+{
+ int cg, minndir, mincg, avgifree;
+
+ spin_lock (&alloclock);
+ avgifree = sblock->fs_cstotal.cs_nifree / sblock->fs_ncg;
+ minndir = sblock->fs_ipg;
+ mincg = 0;
+ for (cg = 0; cg < sblock->fs_ncg; cg++)
+ if (csum[cg].cs_ndir < minndir && csum[cg].cs_nifree >= avgifree)
+ {
+ mincg = cg;
+ minndir = csum[cg].cs_ndir;
+ }
+ spin_unlock (&alloclock);
+ return ((int)(sblock->fs_ipg * mincg));
+}
+
+/*
+ * Select the desired position for the next block in a file. The file is
+ * logically divided into sections. The first section is composed of the
+ * direct blocks. Each additional section contains fs_maxbpg blocks.
+ *
+ * If no blocks have been allocated in the first section, the policy is to
+ * request a block in the same cylinder group as the inode that describes
+ * the file. If no blocks have been allocated in any other section, the
+ * policy is to place the section in a cylinder group with a greater than
+ * average number of free blocks. An appropriate cylinder group is found
+ * by using a rotor that sweeps the cylinder groups. When a new group of
+ * blocks is needed, the sweep begins in the cylinder group following the
+ * cylinder group from which the previous allocation was made. The sweep
+ * continues until a cylinder group with greater than the average number
+ * of free blocks is found. If the allocation is for the first block in an
+ * indirect block, the information on the previous allocation is unavailable;
+ * here a best guess is made based upon the logical block number being
+ * allocated.
+ *
+ * If a section is already partially allocated, the policy is to
+ * contiguously allocate fs_maxcontig blocks. The end of one of these
+ * contiguous blocks and the beginning of the next is physically separated
+ * so that the disk head will be in transit between them for at least
+ * fs_rotdelay milliseconds. This is to allow time for the processor to
+ * schedule another I/O transfer.
+ */
+daddr_t
+blkpref(struct node *np,
+ daddr_t lbn,
+ int indx,
+ daddr_t *bap)
+{
+ int cg;
+ int avgbfree, startcg;
+ daddr_t nextblk;
+
+ spin_lock (&alloclock);
+ if (indx % sblock->fs_maxbpg == 0 || bap[indx - 1] == 0)
+ {
+ if (lbn < NDADDR)
+ {
+ spin_unlock (&alloclock);
+ cg = itog(np->dn->number);
+ return (sblock->fs_fpg * cg + sblock->fs_frag);
+ }
+ /*
+ * Find a cylinder with greater than average number of
+ * unused data blocks.
+ */
+ if (indx == 0 || bap[indx - 1] == 0)
+ startcg = itog(np->dn->number) + lbn / sblock->fs_maxbpg;
+ else
+ startcg = dtog(bap[indx - 1]) + 1;
+ startcg %= sblock->fs_ncg;
+ avgbfree = sblock->fs_cstotal.cs_nbfree / sblock->fs_ncg;
+ for (cg = startcg; cg < sblock->fs_ncg; cg++)
+ if (csum[cg].cs_nbfree >= avgbfree)
+ {
+ spin_unlock (&alloclock);
+ sblock->fs_cgrotor = cg;
+ return (sblock->fs_fpg * cg + sblock->fs_frag);
+ }
+ for (cg = 0; cg <= startcg; cg++)
+ if (csum[cg].cs_nbfree >= avgbfree)
+ {
+ spin_unlock (&alloclock);
+ sblock->fs_cgrotor = cg;
+ return (sblock->fs_fpg * cg + sblock->fs_frag);
+ }
+ spin_unlock (&alloclock);
+ return 0;
+ }
+
+ spin_unlock (&alloclock);
+
+ /*
+ * One or more previous blocks have been laid out. If less
+ * than fs_maxcontig previous blocks are contiguous, the
+ * next block is requested contiguously, otherwise it is
+ * requested rotationally delayed by fs_rotdelay milliseconds.
+ */
+ nextblk = bap[indx - 1] + sblock->fs_frag;
+ if (indx > sblock->fs_maxcontig &&
+ bap[indx - sblock->fs_maxcontig] + blkstofrags(sblock->fs_maxcontig)
+ != nextblk)
+ return (nextblk);
+ if (sblock->fs_rotdelay != 0)
+ /*
+ * Here we convert ms of delay to frags as:
+ * (frags) = (ms) * (rev/sec) * (sect/rev) /
+ * ((sect/frag) * (ms/sec))
+ * then round up to the next block.
+ */
+ nextblk += roundup(sblock->fs_rotdelay * sblock->fs_rps
+ * sblock->fs_nsect / (NSPF * 1000), sblock->fs_frag);
+ return (nextblk);
+}
+
+/*
+ * Implement the cylinder overflow algorithm.
+ *
+ * The policy implemented by this algorithm is:
+ * 1) allocate the block in its requested cylinder group.
+ * 2) quadradically rehash on the cylinder group number.
+ * 3) brute force search for a free block.
+ */
+/*VARARGS5*/
+static u_long
+hashalloc(int cg,
+ long pref,
+ int size, /* size for data blocks, mode for inodes */
+ u_long (*allocator)(int, daddr_t, int))
+{
+ long result;
+ int i, icg = cg;
+
+ /*
+ * 1: preferred cylinder group
+ */
+ result = (*allocator)(cg, pref, size);
+ if (result)
+ return (result);
+ /*
+ * 2: quadratic rehash
+ */
+ for (i = 1; i < sblock->fs_ncg; i *= 2)
+ {
+ cg += i;
+ if (cg >= sblock->fs_ncg)
+ cg -= sblock->fs_ncg;
+ result = (*allocator)(cg, 0, size);
+ if (result)
+ return (result);
+ }
+ /*
+ * 3: brute force search
+ * Note that we start at i == 2, since 0 was checked initially,
+ * and 1 is always checked in the quadratic rehash.
+ */
+ cg = (icg + 2) % sblock->fs_ncg;
+ for (i = 2; i < sblock->fs_ncg; i++)
+ {
+ result = (*allocator)(cg, 0, size);
+ if (result)
+ return (result);
+ cg++;
+ if (cg == sblock->fs_ncg)
+ cg = 0;
+ }
+ return 0;
+}
+
+/*
+ * Determine whether a fragment can be extended.
+ *
+ * Check to see if the necessary fragments are available, and
+ * if they are, allocate them.
+ */
+static daddr_t
+fragextend(int cg,
+ long bprev,
+ int osize,
+ int nsize)
+{
+ struct cg *cgp;
+ long bno;
+ int frags, bbase;
+ int i;
+
+ if (csum[cg].cs_nffree < numfrags(nsize - osize))
+ return 0;
+ frags = numfrags(nsize);
+ bbase = fragnum(bprev);
+ if (bbase > fragnum((bprev + frags - 1)))
+ /* cannot extend across a block boundary */
+ return 0;
+
+ cgp = (struct cg *) (cgs + sblock->fs_bsize * cg);
+
+ if (diskfs_catch_exception ())
+ return 0; /* bogus, but that's what BSD does... */
+
+ if (!cg_chkmagic(cgp))
+ {
+ printf ("Cylinder group %d bad magic number: %ld/%ld\n",
+ cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
+ diskfs_end_catch_exception ();
+ return 0;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ bno = dtogd(bprev);
+ for (i = numfrags(osize); i < frags; i++)
+ if (isclr(cg_blksfree(cgp), bno + i))
+ {
+ diskfs_end_catch_exception ();
+ return 0;
+ }
+
+ /*
+ * the current fragment can be extended
+ * deduct the count on fragment being extended into
+ * increase the count on the remaining fragment (if any)
+ * allocate the extended piece
+ */
+ for (i = frags; i < sblock->fs_frag - bbase; i++)
+ if (isclr(cg_blksfree(cgp), bno + i))
+ break;
+ cgp->cg_frsum[i - numfrags(osize)]--;
+ if (i != frags)
+ cgp->cg_frsum[i - frags]++;
+ for (i = numfrags(osize); i < frags; i++)
+ {
+ clrbit(cg_blksfree(cgp), bno + i);
+ cgp->cg_cs.cs_nffree--;
+ sblock->fs_cstotal.cs_nffree--;
+ csum[cg].cs_nffree--;
+ }
+ diskfs_end_catch_exception ();
+ return (bprev);
+}
+
+/*
+ * Determine whether a block can be allocated.
+ *
+ * Check to see if a block of the apprpriate size is available,
+ * and if it is, allocate it.
+ */
+static u_long
+alloccg(int cg,
+ volatile daddr_t bpref,
+ int size)
+{
+ struct cg *cgp;
+ int i;
+ int bno, frags, allocsiz;
+
+ if (csum[cg].cs_nbfree == 0 && size == sblock->fs_bsize)
+ return 0;
+ cgp = (struct cg *) (cgs + sblock->fs_bsize * cg);
+
+ if (diskfs_catch_exception ())
+ return 0;
+
+ if (!cg_chkmagic(cgp) ||
+ (cgp->cg_cs.cs_nbfree == 0 && size == sblock->fs_bsize))
+ {
+ printf ("Cylinder group %d bad magic number: %ld/%ld\n",
+ cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
+ diskfs_end_catch_exception ();
+ return 0;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ if (size == sblock->fs_bsize)
+ {
+ bno = alloccgblk(cgp, bpref);
+ diskfs_end_catch_exception ();
+ return (u_long) (bno);
+ }
+ /*
+ * check to see if any fragments are already available
+ * allocsiz is the size which will be allocated, hacking
+ * it down to a smaller size if necessary
+ */
+ frags = numfrags(size);
+ for (allocsiz = frags; allocsiz < sblock->fs_frag; allocsiz++)
+ if (cgp->cg_frsum[allocsiz] != 0)
+ break;
+ if (allocsiz == sblock->fs_frag)
+ {
+ /*
+ * no fragments were available, so a block will be
+ * allocated, and hacked up
+ */
+ if (cgp->cg_cs.cs_nbfree == 0)
+ {
+ diskfs_end_catch_exception ();
+ return 0;
+ }
+
+ bno = alloccgblk(cgp, bpref);
+ bpref = dtogd(bno);
+ for (i = frags; i < sblock->fs_frag; i++)
+ setbit(cg_blksfree(cgp), bpref + i);
+ i = sblock->fs_frag - frags;
+ cgp->cg_cs.cs_nffree += i;
+ sblock->fs_cstotal.cs_nffree += i;
+ csum[cg].cs_nffree += i;
+ cgp->cg_frsum[i]++;
+ return (u_long)(bno);
+ }
+ bno = mapsearch(cgp, bpref, allocsiz);
+ if (bno < 0)
+ {
+ diskfs_end_catch_exception ();
+ return 0;
+ }
+
+ for (i = 0; i < frags; i++)
+ clrbit(cg_blksfree(cgp), bno + i);
+ cgp->cg_cs.cs_nffree -= frags;
+ sblock->fs_cstotal.cs_nffree -= frags;
+ csum[cg].cs_nffree -= frags;
+ cgp->cg_frsum[allocsiz]--;
+ if (frags != allocsiz)
+ cgp->cg_frsum[allocsiz - frags]++;
+ diskfs_end_catch_exception ();
+ return (u_long) (cg * sblock->fs_fpg + bno);
+}
+
+/*
+ * Allocate a block in a cylinder group.
+ *
+ * This algorithm implements the following policy:
+ * 1) allocate the requested block.
+ * 2) allocate a rotationally optimal block in the same cylinder.
+ * 3) allocate the next available block on the block rotor for the
+ * specified cylinder group.
+ * Note that this routine only allocates fs_bsize blocks; these
+ * blocks may be fragmented by the routine that allocates them.
+ */
+static daddr_t
+alloccgblk(struct cg *cgp,
+ volatile daddr_t bpref)
+{
+ daddr_t bno;
+ int cylno, pos, delta;
+ short *cylbp;
+ int i;
+ daddr_t ret;
+
+ if (diskfs_catch_exception ())
+ return 0;
+
+ if (bpref == 0)
+ {
+ bpref = cgp->cg_rotor;
+ goto norot;
+ }
+ bpref = blknum(bpref);
+ bpref = dtogd(bpref);
+ /*
+ * if the requested block is available, use it
+ */
+ if (isblock(cg_blksfree(cgp), fragstoblks(bpref)))
+ {
+ bno = bpref;
+ goto gotit;
+ }
+ /*
+ * check for a block available on the same cylinder
+ */
+ cylno = cbtocylno(bpref);
+ if (cg_blktot(cgp)[cylno] == 0)
+ goto norot;
+ if (sblock->fs_cpc == 0)
+ {
+ /*
+ * block layout info is not available, so just have
+ * to take any block in this cylinder.
+ */
+ bpref = howmany(sblock->fs_spc * cylno, NSPF);
+ goto norot;
+ }
+ /*
+ * check the summary information to see if a block is
+ * available in the requested cylinder starting at the
+ * requested rotational position and proceeding around.
+ */
+ cylbp = cg_blks(cgp, cylno);
+ pos = cbtorpos(bpref);
+ for (i = pos; i < sblock->fs_nrpos; i++)
+ if (cylbp[i] > 0)
+ break;
+ if (i == sblock->fs_nrpos)
+ for (i = 0; i < pos; i++)
+ if (cylbp[i] > 0)
+ break;
+ if (cylbp[i] > 0)
+ {
+ /*
+ * found a rotational position, now find the actual
+ * block. A panic if none is actually there.
+ */
+ pos = cylno % sblock->fs_cpc;
+ bno = (cylno - pos) * sblock->fs_spc / NSPB;
+ assert ("postbl table bad" &&fs_postbl(pos)[i] != -1);
+ for (i = fs_postbl(pos)[i];; )
+ {
+ if (isblock(cg_blksfree(cgp), bno + i))
+ {
+ bno = blkstofrags(bno + i);
+ goto gotit;
+ }
+ delta = fs_rotbl[i];
+ if (delta <= 0 ||
+ delta + i > fragstoblks(sblock->fs_fpg))
+ break;
+ i += delta;
+ }
+ assert ("Inconsistent rotbl table" && 0);
+ }
+ norot:
+ /*
+ * no blocks in the requested cylinder, so take next
+ * available one in this cylinder group.
+ */
+ bno = mapsearch(cgp, bpref, (int)sblock->fs_frag);
+ if (bno < 0)
+ {
+ diskfs_end_catch_exception ();
+ return 0;
+ }
+ cgp->cg_rotor = bno;
+ gotit:
+ clrblock(cg_blksfree(cgp), (long)fragstoblks(bno));
+ cgp->cg_cs.cs_nbfree--;
+ sblock->fs_cstotal.cs_nbfree--;
+ csum[cgp->cg_cgx].cs_nbfree--;
+ cylno = cbtocylno(bno);
+ cg_blks(cgp, cylno)[cbtorpos(bno)]--;
+ cg_blktot(cgp)[cylno]--;
+ ret = cgp->cg_cgx * sblock->fs_fpg + bno;
+ diskfs_end_catch_exception ();
+ return ret;
+}
+
+/*
+ * Determine whether an inode can be allocated.
+ *
+ * Check to see if an inode is available, and if it is,
+ * allocate it using the following policy:
+ * 1) allocate the requested inode.
+ * 2) allocate the next available inode after the requested
+ * inode in the specified cylinder group.
+ */
+static u_long
+ialloccg(int cg,
+ volatile daddr_t ipref,
+ int modein)
+{
+ struct cg *cgp;
+ int start, len, loc, map, i;
+ mode_t mode = (mode_t) modein;
+
+ if (csum[cg].cs_nifree == 0)
+ return 0;
+
+ cgp = (struct cg *)(cgs + sblock->fs_bsize * cg);
+
+ if (diskfs_catch_exception ())
+ return 0;
+
+ if (!cg_chkmagic(cgp) || cgp->cg_cs.cs_nifree == 0)
+ {
+ printf ("Cylinder group %d bad magic number: %ld/%ld\n",
+ cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
+ diskfs_end_catch_exception ();
+ return 0;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ if (ipref)
+ {
+ ipref %= sblock->fs_ipg;
+ if (isclr(cg_inosused(cgp), ipref))
+ goto gotit;
+ }
+ start = cgp->cg_irotor / NBBY;
+ len = howmany(sblock->fs_ipg - cgp->cg_irotor, NBBY);
+ loc = skpc(0xff, len, (u_char *) &cg_inosused(cgp)[start]);
+ if (loc == 0)
+ {
+ len = start + 1;
+ start = 0;
+ loc = skpc(0xff, len, (u_char *) &cg_inosused(cgp)[0]);
+ assert ("inconsistent cg_inosused table" && loc);
+ }
+ i = start + len - loc;
+ map = cg_inosused(cgp)[i];
+ ipref = i * NBBY;
+ for (i = 1; i < (1 << NBBY); i <<= 1, ipref++)
+ {
+ if ((map & i) == 0)
+ {
+ cgp->cg_irotor = ipref;
+ goto gotit;
+ }
+ }
+ assert ("inconsistent cg_inosused table" && 0);
+ gotit:
+ setbit(cg_inosused(cgp), ipref);
+ cgp->cg_cs.cs_nifree--;
+ sblock->fs_cstotal.cs_nifree--;
+ csum[cg].cs_nifree--;
+ if ((mode & IFMT) == IFDIR)
+ {
+ cgp->cg_cs.cs_ndir++;
+ sblock->fs_cstotal.cs_ndir++;
+ csum[cg].cs_ndir++;
+ }
+ diskfs_end_catch_exception ();
+ return (u_long)(cg * sblock->fs_ipg + ipref);
+}
+
+/*
+ * Free a block or fragment.
+ *
+ * The specified block or fragment is placed back in the
+ * free map. If a fragment is deallocated, a possible
+ * block reassembly is checked.
+ */
+void
+blkfree(volatile daddr_t bno,
+ int size)
+{
+ struct cg *cgp;
+ int cg, blk, frags, bbase;
+ int i;
+
+ assert ("free of bad sized block" &&(unsigned) size <= sblock->fs_bsize
+ && !fragoff (size));
+ cg = dtog(bno);
+ if ((unsigned)bno >= sblock->fs_size)
+ {
+ printf("bad block %ld\n", bno);
+ return;
+ }
+
+ cgp = (struct cg *)(cgs + sblock->fs_bsize * cg);
+
+ spin_lock (&alloclock);
+
+ if (diskfs_catch_exception ())
+ {
+ spin_unlock (&alloclock);
+ return;
+ }
+
+ if (!cg_chkmagic(cgp))
+ {
+ spin_unlock (&alloclock);
+ printf ("Cylinder group %d bad magic number: %ld/%ld\n",
+ cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
+ diskfs_end_catch_exception ();
+ return;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ bno = dtogd(bno);
+ if (size == sblock->fs_bsize)
+ {
+ assert ("inconsistent cg_blskfree table"
+ && !isblock (cg_blksfree (cgp), fragstoblks (bno)));
+ setblock(cg_blksfree(cgp), fragstoblks(bno));
+ cgp->cg_cs.cs_nbfree++;
+ sblock->fs_cstotal.cs_nbfree++;
+ csum[cg].cs_nbfree++;
+ i = cbtocylno(bno);
+ cg_blks(cgp, i)[cbtorpos(bno)]++;
+ cg_blktot(cgp)[i]++;
+ }
+ else
+ {
+ bbase = bno - fragnum(bno);
+ /*
+ * decrement the counts associated with the old frags
+ */
+ blk = blkmap(cg_blksfree(cgp), bbase);
+ fragacct(blk, cgp->cg_frsum, -1);
+ /*
+ * deallocate the fragment
+ */
+ frags = numfrags(size);
+ for (i = 0; i < frags; i++)
+ {
+ assert ("inconsistent cg_blksfree table"
+ && !isset (cg_blksfree (cgp), bno + i));
+ setbit(cg_blksfree(cgp), bno + i);
+ }
+ cgp->cg_cs.cs_nffree += i;
+ sblock->fs_cstotal.cs_nffree += i;
+ csum[cg].cs_nffree += i;
+ /*
+ * add back in counts associated with the new frags
+ */
+ blk = blkmap(cg_blksfree(cgp), bbase);
+ fragacct(blk, cgp->cg_frsum, 1);
+ /*
+ * if a complete block has been reassembled, account for it
+ */
+ if (isblock(cg_blksfree(cgp), (daddr_t)fragstoblks(bbase)))
+ {
+ cgp->cg_cs.cs_nffree -= sblock->fs_frag;
+ sblock->fs_cstotal.cs_nffree -= sblock->fs_frag;
+ csum[cg].cs_nffree -= sblock->fs_frag;
+ cgp->cg_cs.cs_nbfree++;
+ sblock->fs_cstotal.cs_nbfree++;
+ csum[cg].cs_nbfree++;
+ i = cbtocylno(bbase);
+ cg_blks(cgp, i)[cbtorpos(bbase)]++;
+ cg_blktot(cgp)[i]++;
+ }
+ }
+ spin_unlock (&alloclock);
+ diskfs_end_catch_exception ();
+}
+
+/*
+ * Free an inode.
+ *
+ * The specified inode is placed back in the free map.
+ */
+void
+diskfs_free_node(struct node *np, mode_t mode)
+{
+ struct cg *cgp;
+ int cg;
+ volatile int ino = np->dn->number;
+
+ assert ("invalid inode number" && ino < sblock->fs_ipg * sblock->fs_ncg);
+
+ cg = itog(ino);
+ cgp = (struct cg *)(cgs + sblock->fs_bsize * cg);
+
+ spin_lock (&alloclock);
+ if (diskfs_catch_exception ())
+ {
+ spin_unlock (&alloclock);
+ return;
+ }
+
+ if (!cg_chkmagic(cgp))
+ {
+ spin_unlock (&alloclock);
+ printf ("Cylinder group %d bad magic number: %ld/%ld\n",
+ cg, cgp->cg_magic, ((struct ocg *)(cgp))->cg_magic);
+ diskfs_end_catch_exception ();
+ return;
+ }
+ cgp->cg_time = diskfs_mtime->seconds;
+ ino %= sblock->fs_ipg;
+ assert ("inconsistent cg_inosused table" && !isclr (cg_inosused (cgp), ino));
+ clrbit(cg_inosused(cgp), ino);
+ if (ino < cgp->cg_irotor)
+ cgp->cg_irotor = ino;
+ cgp->cg_cs.cs_nifree++;
+ sblock->fs_cstotal.cs_nifree++;
+ csum[cg].cs_nifree++;
+ if ((mode & IFMT) == IFDIR)
+ {
+ cgp->cg_cs.cs_ndir--;
+ sblock->fs_cstotal.cs_ndir--;
+ csum[cg].cs_ndir--;
+ }
+ spin_unlock (&alloclock);
+ diskfs_end_catch_exception ();
+}
+
+
+/*
+ * Find a block of the specified size in the specified cylinder group.
+ *
+ * It is a panic if a request is made to find a block if none are
+ * available.
+ */
+/* This routine expects to be called from inside a diskfs_catch_exception */
+static daddr_t
+mapsearch(struct cg *cgp,
+ daddr_t bpref,
+ int allocsiz)
+{
+ daddr_t bno;
+ int start, len, loc, i;
+ int blk, field, subfield, pos;
+
+ /*
+ * find the fragment by searching through the free block
+ * map for an appropriate bit pattern
+ */
+ if (bpref)
+ start = dtogd(bpref) / NBBY;
+ else
+ start = cgp->cg_frotor / NBBY;
+ len = howmany(sblock->fs_fpg, NBBY) - start;
+ loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[start],
+ (u_char *)fragtbl[sblock->fs_frag],
+ (u_char)(1 << (allocsiz - 1 + (sblock->fs_frag % NBBY))));
+ if (loc == 0)
+ {
+ len = start + 1;
+ start = 0;
+ loc = scanc((unsigned)len, (u_char *)&cg_blksfree(cgp)[0],
+ (u_char *)fragtbl[sblock->fs_frag],
+ (u_char)(1 << (allocsiz - 1 + (sblock->fs_frag % NBBY))));
+ assert ("incosistent cg_blksfree table" && loc);
+ }
+ bno = (start + len - loc) * NBBY;
+ cgp->cg_frotor = bno;
+ /*
+ * found the byte in the map
+ * sift through the bits to find the selected frag
+ */
+ for (i = bno + NBBY; bno < i; bno += sblock->fs_frag)
+ {
+ blk = blkmap(cg_blksfree(cgp), bno);
+ blk <<= 1;
+ field = around[allocsiz];
+ subfield = inside[allocsiz];
+ for (pos = 0; pos <= sblock->fs_frag - allocsiz; pos++)
+ {
+ if ((blk & field) == subfield)
+ return (bno + pos);
+ field <<= 1;
+ subfield <<= 1;
+ }
+ }
+ assert ("inconsistent cg_blksfree table" && 0);
+}
+
+