summaryrefslogtreecommitdiff
path: root/vm/vm_resident.c
blob: 547036885240b80cb860a8e71b6afb48eb80d526 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
/*
 * Mach Operating System
 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University.
 * Copyright (c) 1993,1994 The University of Utah and
 * the Computer Systems Laboratory (CSL).
 * All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
 * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
 * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
 * THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 *	File:	vm/vm_page.c
 *	Author:	Avadis Tevanian, Jr., Michael Wayne Young
 *
 *	Resident memory management module.
 */

#include <kern/printf.h>
#include <string.h>

#include <mach/vm_prot.h>
#include <kern/counters.h>
#include <kern/debug.h>
#include <kern/sched_prim.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <mach/vm_statistics.h>
#include <machine/vm_param.h>
#include <kern/xpr.h>
#include <kern/zalloc.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_kern.h>

#if	MACH_VM_DEBUG
#include <mach/kern_return.h>
#include <mach_debug/hash_info.h>
#include <vm/vm_user.h>
#endif

/* in zalloc.c XXX */
extern vm_offset_t	zdata;
extern vm_size_t	zdata_size;

/*
 *	Associated with eacn page of user-allocatable memory is a
 *	page structure.
 */

/*
 *	These variables record the values returned by vm_page_bootstrap,
 *	for debugging purposes.  The implementation of pmap_steal_memory
 *	and pmap_startup here also uses them internally.
 */

vm_offset_t virtual_space_start;
vm_offset_t virtual_space_end;

/*
 *	The vm_page_lookup() routine, which provides for fast
 *	(virtual memory object, offset) to page lookup, employs
 *	the following hash table.  The vm_page_{insert,remove}
 *	routines install and remove associations in the table.
 *	[This table is often called the virtual-to-physical,
 *	or VP, table.]
 */
typedef struct {
	decl_simple_lock_data(,lock)
	vm_page_t pages;
} vm_page_bucket_t;

vm_page_bucket_t *vm_page_buckets;		/* Array of buckets */
unsigned int	vm_page_bucket_count = 0;	/* How big is array? */
unsigned int	vm_page_hash_mask;		/* Mask for hash function */

/*
 *	Resident page structures are initialized from
 *	a template (see vm_page_alloc).
 *
 *	When adding a new field to the virtual memory
 *	object structure, be sure to add initialization
 *	(see vm_page_bootstrap).
 */
struct vm_page	vm_page_template;

/*
 *	Resident pages that represent real memory
 *	are allocated from a free list.
 */
vm_page_t	vm_page_queue_free;
vm_page_t	vm_page_queue_fictitious;
decl_simple_lock_data(,vm_page_queue_free_lock)
unsigned int	vm_page_free_wanted;
int		vm_page_free_count;
int		vm_page_fictitious_count;
int		vm_page_external_count;

unsigned int	vm_page_free_count_minimum;	/* debugging */

/*
 *	Occasionally, the virtual memory system uses
 *	resident page structures that do not refer to
 *	real pages, for example to leave a page with
 *	important state information in the VP table.
 *
 *	These page structures are allocated the way
 *	most other kernel structures are.
 */
zone_t	vm_page_zone;

/*
 *	Fictitious pages don't have a physical address,
 *	but we must initialize phys_addr to something.
 *	For debugging, this should be a strange value
 *	that the pmap module can recognize in assertions.
 */
vm_offset_t vm_page_fictitious_addr = (vm_offset_t) -1;

/*
 *	Resident page structures are also chained on
 *	queues that are used by the page replacement
 *	system (pageout daemon).  These queues are
 *	defined here, but are shared by the pageout
 *	module.
 */
queue_head_t	vm_page_queue_active;
queue_head_t	vm_page_queue_inactive;
decl_simple_lock_data(,vm_page_queue_lock)
int	vm_page_active_count;
int	vm_page_inactive_count;
int	vm_page_wire_count;

/*
 *	Several page replacement parameters are also
 *	shared with this module, so that page allocation
 *	(done here in vm_page_alloc) can trigger the
 *	pageout daemon.
 */
int	vm_page_free_target = 0;
int	vm_page_free_min = 0;
int	vm_page_inactive_target = 0;
int	vm_page_free_reserved = 0;
int	vm_page_laundry_count = 0;
int	vm_page_external_limit = 0;


/*
 *	The VM system has a couple of heuristics for deciding
 *	that pages are "uninteresting" and should be placed
 *	on the inactive queue as likely candidates for replacement.
 *	These variables let the heuristics be controlled at run-time
 *	to make experimentation easier.
 */

boolean_t vm_page_deactivate_behind = TRUE;
boolean_t vm_page_deactivate_hint = TRUE;

/*
 *	vm_page_bootstrap:
 *
 *	Initializes the resident memory module.
 *
 *	Allocates memory for the page cells, and
 *	for the object/offset-to-page hash table headers.
 *	Each page cell is initialized and placed on the free list.
 *	Returns the range of available kernel virtual memory.
 */

void vm_page_bootstrap(
	vm_offset_t *startp,
	vm_offset_t *endp)
{
	register vm_page_t m;
	int i;

	/*
	 *	Initialize the vm_page template.
	 */

	m = &vm_page_template;
	m->object = VM_OBJECT_NULL;	/* reset later */
	m->offset = 0;			/* reset later */
	m->wire_count = 0;

	m->inactive = FALSE;
	m->active = FALSE;
	m->laundry = FALSE;
	m->free = FALSE;
	m->external = FALSE;

	m->busy = TRUE;
	m->wanted = FALSE;
	m->tabled = FALSE;
	m->fictitious = FALSE;
	m->private = FALSE;
	m->absent = FALSE;
	m->error = FALSE;
	m->dirty = FALSE;
	m->precious = FALSE;
	m->reference = FALSE;

	m->phys_addr = 0;		/* reset later */

	m->page_lock = VM_PROT_NONE;
	m->unlock_request = VM_PROT_NONE;

	/*
	 *	Initialize the page queues.
	 */

	simple_lock_init(&vm_page_queue_free_lock);
	simple_lock_init(&vm_page_queue_lock);

	vm_page_queue_free = VM_PAGE_NULL;
	vm_page_queue_fictitious = VM_PAGE_NULL;
	queue_init(&vm_page_queue_active);
	queue_init(&vm_page_queue_inactive);

	vm_page_free_wanted = 0;

	/*
	 *	Steal memory for the zone system.
	 */

	kentry_data_size = kentry_count * sizeof(struct vm_map_entry);
	kentry_data = pmap_steal_memory(kentry_data_size);

	zdata = pmap_steal_memory(zdata_size);

	/*
	 *	Allocate (and initialize) the virtual-to-physical
	 *	table hash buckets.
	 *
	 *	The number of buckets should be a power of two to
	 *	get a good hash function.  The following computation
	 *	chooses the first power of two that is greater
	 *	than the number of physical pages in the system.
	 */

	if (vm_page_bucket_count == 0) {
		unsigned int npages = pmap_free_pages();

		vm_page_bucket_count = 1;
		while (vm_page_bucket_count < npages)
			vm_page_bucket_count <<= 1;
	}

	vm_page_hash_mask = vm_page_bucket_count - 1;

	if (vm_page_hash_mask & vm_page_bucket_count)
		printf("vm_page_bootstrap: WARNING -- strange page hash\n");

	vm_page_buckets = (vm_page_bucket_t *)
		pmap_steal_memory(vm_page_bucket_count *
				  sizeof(vm_page_bucket_t));

	for (i = 0; i < vm_page_bucket_count; i++) {
		register vm_page_bucket_t *bucket = &vm_page_buckets[i];

		bucket->pages = VM_PAGE_NULL;
		simple_lock_init(&bucket->lock);
	}

	/*
	 *	Machine-dependent code allocates the resident page table.
	 *	It uses vm_page_init to initialize the page frames.
	 *	The code also returns to us the virtual space available
	 *	to the kernel.  We don't trust the pmap module
	 *	to get the alignment right.
	 */

	pmap_startup(&virtual_space_start, &virtual_space_end);
	virtual_space_start = round_page(virtual_space_start);
	virtual_space_end = trunc_page(virtual_space_end);

	*startp = virtual_space_start;
	*endp = virtual_space_end;

	/*	printf("vm_page_bootstrap: %d free pages\n", vm_page_free_count);*/
	vm_page_free_count_minimum = vm_page_free_count;
}

#ifndef	MACHINE_PAGES
/*
 *	We implement pmap_steal_memory and pmap_startup with the help
 *	of two simpler functions, pmap_virtual_space and pmap_next_page.
 */

vm_offset_t pmap_steal_memory(
	vm_size_t size)
{
	vm_offset_t addr, vaddr, paddr;

	/*
	 *	We round the size to an integer multiple.
	 */

	size = (size + 3) &~ 3;

	/*
	 *	If this is the first call to pmap_steal_memory,
	 *	we have to initialize ourself.
	 */

	if (virtual_space_start == virtual_space_end) {
		pmap_virtual_space(&virtual_space_start, &virtual_space_end);

		/*
		 *	The initial values must be aligned properly, and
		 *	we don't trust the pmap module to do it right.
		 */

		virtual_space_start = round_page(virtual_space_start);
		virtual_space_end = trunc_page(virtual_space_end);
	}

	/*
	 *	Allocate virtual memory for this request.
	 */

	addr = virtual_space_start;
	virtual_space_start += size;

	/*
	 *	Allocate and map physical pages to back new virtual pages.
	 */

	for (vaddr = round_page(addr);
	     vaddr < addr + size;
	     vaddr += PAGE_SIZE) {
		if (!pmap_next_page(&paddr))
			panic("pmap_steal_memory");

		/*
		 *	XXX Logically, these mappings should be wired,
		 *	but some pmap modules barf if they are.
		 */

		pmap_enter(kernel_pmap, vaddr, paddr,
			   VM_PROT_READ|VM_PROT_WRITE, FALSE);
	}

	return addr;
}

void pmap_startup(
	vm_offset_t *startp,
	vm_offset_t *endp)
{
	unsigned int i, npages, pages_initialized;
	vm_page_t pages;
	vm_offset_t paddr;

	/*
	 *	We calculate how many page frames we will have
	 *	and then allocate the page structures in one chunk.
	 */

	npages = ((PAGE_SIZE * pmap_free_pages() +
		   (round_page(virtual_space_start) - virtual_space_start)) /
		  (PAGE_SIZE + sizeof *pages));

	pages = (vm_page_t) pmap_steal_memory(npages * sizeof *pages);

	/*
	 *	Initialize the page frames.
	 */

	for (i = 0, pages_initialized = 0; i < npages; i++) {
		if (!pmap_next_page(&paddr))
			break;

		vm_page_init(&pages[i], paddr);
		pages_initialized++;
	}

	/*
	 * Release pages in reverse order so that physical pages
	 * initially get allocated in ascending addresses. This keeps
	 * the devices (which must address physical memory) happy if
	 * they require several consecutive pages.
	 */

	for (i = pages_initialized; i > 0; i--) {
		vm_page_release(&pages[i - 1], FALSE);
	}

	/*
	 *	We have to re-align virtual_space_start,
	 *	because pmap_steal_memory has been using it.
	 */

	virtual_space_start = round_page(virtual_space_start);

	*startp = virtual_space_start;
	*endp = virtual_space_end;
}
#endif	/* MACHINE_PAGES */

/*
 *	Routine:	vm_page_module_init
 *	Purpose:
 *		Second initialization pass, to be done after
 *		the basic VM system is ready.
 */
void		vm_page_module_init(void)
{
	vm_page_zone = zinit((vm_size_t) sizeof(struct vm_page), 0,
			     VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
			     PAGE_SIZE,
			     0, "vm pages");
}

/*
 *	Routine:	vm_page_create
 *	Purpose:
 *		After the VM system is up, machine-dependent code
 *		may stumble across more physical memory.  For example,
 *		memory that it was reserving for a frame buffer.
 *		vm_page_create turns this memory into available pages.
 */

void vm_page_create(
	vm_offset_t	start,
	vm_offset_t	end)
{
	vm_offset_t paddr;
	vm_page_t m;

	for (paddr = round_page(start);
	     paddr < trunc_page(end);
	     paddr += PAGE_SIZE) {
		m = (vm_page_t) zalloc(vm_page_zone);
		if (m == VM_PAGE_NULL)
			panic("vm_page_create");

		vm_page_init(m, paddr);
		vm_page_release(m, FALSE);
	}
}

/*
 *	vm_page_hash:
 *
 *	Distributes the object/offset key pair among hash buckets.
 *
 *	NOTE:	To get a good hash function, the bucket count should
 *		be a power of two.
 */
#define vm_page_hash(object, offset) \
	(((unsigned int)(vm_offset_t)object + (unsigned int)atop(offset)) \
		& vm_page_hash_mask)

/*
 *	vm_page_insert:		[ internal use only ]
 *
 *	Inserts the given mem entry into the object/object-page
 *	table and object list.
 *
 *	The object and page must be locked.
 */

void vm_page_insert(
	register vm_page_t	mem,
	register vm_object_t	object,
	register vm_offset_t	offset)
{
	register vm_page_bucket_t *bucket;

	VM_PAGE_CHECK(mem);

	if (mem->tabled)
		panic("vm_page_insert");

	/*
	 *	Record the object/offset pair in this page
	 */

	mem->object = object;
	mem->offset = offset;

	/*
	 *	Insert it into the object_object/offset hash table
	 */

	bucket = &vm_page_buckets[vm_page_hash(object, offset)];
	simple_lock(&bucket->lock);
	mem->next = bucket->pages;
	bucket->pages = mem;
	simple_unlock(&bucket->lock);

	/*
	 *	Now link into the object's list of backed pages.
	 */

	queue_enter(&object->memq, mem, vm_page_t, listq);
	mem->tabled = TRUE;

	/*
	 *	Show that the object has one more resident page.
	 */

	object->resident_page_count++;

	/*
	 *	Detect sequential access and inactivate previous page.
	 *	We ignore busy pages.
	 */

	if (vm_page_deactivate_behind &&
	    (offset == object->last_alloc + PAGE_SIZE)) {
		vm_page_t	last_mem;

		last_mem = vm_page_lookup(object, object->last_alloc);
		if ((last_mem != VM_PAGE_NULL) && !last_mem->busy)
			vm_page_deactivate(last_mem);
	}
	object->last_alloc = offset;
}

/*
 *	vm_page_replace:
 *
 *	Exactly like vm_page_insert, except that we first
 *	remove any existing page at the given offset in object
 *	and we don't do deactivate-behind.
 *
 *	The object and page must be locked.
 */

void vm_page_replace(
	register vm_page_t	mem,
	register vm_object_t	object,
	register vm_offset_t	offset)
{
	register vm_page_bucket_t *bucket;

	VM_PAGE_CHECK(mem);

	if (mem->tabled)
		panic("vm_page_replace");

	/*
	 *	Record the object/offset pair in this page
	 */

	mem->object = object;
	mem->offset = offset;

	/*
	 *	Insert it into the object_object/offset hash table,
	 *	replacing any page that might have been there.
	 */

	bucket = &vm_page_buckets[vm_page_hash(object, offset)];
	simple_lock(&bucket->lock);
	if (bucket->pages) {
		vm_page_t *mp = &bucket->pages;
		register vm_page_t m = *mp;
		do {
			if (m->object == object && m->offset == offset) {
				/*
				 * Remove page from bucket and from object,
				 * and return it to the free list.
				 */
				*mp = m->next;
				queue_remove(&object->memq, m, vm_page_t,
					     listq);
				m->tabled = FALSE;
				object->resident_page_count--;

				/*
				 * Return page to the free list.
				 * Note the page is not tabled now, so this
				 * won't self-deadlock on the bucket lock.
				 */

				vm_page_free(m);
				break;
			}
			mp = &m->next;
		} while ((m = *mp) != 0);
		mem->next = bucket->pages;
	} else {
		mem->next = VM_PAGE_NULL;
	}
	bucket->pages = mem;
	simple_unlock(&bucket->lock);

	/*
	 *	Now link into the object's list of backed pages.
	 */

	queue_enter(&object->memq, mem, vm_page_t, listq);
	mem->tabled = TRUE;

	/*
	 *	And show that the object has one more resident
	 *	page.
	 */

	object->resident_page_count++;
}

/*
 *	vm_page_remove:		[ internal use only ]
 *
 *	Removes the given mem entry from the object/offset-page
 *	table and the object page list.
 *
 *	The object and page must be locked.
 */

void vm_page_remove(
	register vm_page_t	mem)
{
	register vm_page_bucket_t	*bucket;
	register vm_page_t	this;

	assert(mem->tabled);
	VM_PAGE_CHECK(mem);

	/*
	 *	Remove from the object_object/offset hash table
	 */

	bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
	simple_lock(&bucket->lock);
	if ((this = bucket->pages) == mem) {
		/* optimize for common case */

		bucket->pages = mem->next;
	} else {
		register vm_page_t	*prev;

		for (prev = &this->next;
		     (this = *prev) != mem;
		     prev = &this->next)
			continue;
		*prev = this->next;
	}
	simple_unlock(&bucket->lock);

	/*
	 *	Now remove from the object's list of backed pages.
	 */

	queue_remove(&mem->object->memq, mem, vm_page_t, listq);

	/*
	 *	And show that the object has one fewer resident
	 *	page.
	 */

	mem->object->resident_page_count--;

	mem->tabled = FALSE;
}

/*
 *	vm_page_lookup:
 *
 *	Returns the page associated with the object/offset
 *	pair specified; if none is found, VM_PAGE_NULL is returned.
 *
 *	The object must be locked.  No side effects.
 */

vm_page_t vm_page_lookup(
	register vm_object_t	object,
	register vm_offset_t	offset)
{
	register vm_page_t	mem;
	register vm_page_bucket_t *bucket;

	/*
	 *	Search the hash table for this object/offset pair
	 */

	bucket = &vm_page_buckets[vm_page_hash(object, offset)];

	simple_lock(&bucket->lock);
	for (mem = bucket->pages; mem != VM_PAGE_NULL; mem = mem->next) {
		VM_PAGE_CHECK(mem);
		if ((mem->object == object) && (mem->offset == offset))
			break;
	}
	simple_unlock(&bucket->lock);
	return mem;
}

/*
 *	vm_page_rename:
 *
 *	Move the given memory entry from its
 *	current object to the specified target object/offset.
 *
 *	The object must be locked.
 */
void vm_page_rename(
	register vm_page_t	mem,
	register vm_object_t	new_object,
	vm_offset_t		new_offset)
{
	/*
	 *	Changes to mem->object require the page lock because
	 *	the pageout daemon uses that lock to get the object.
	 */

	vm_page_lock_queues();
    	vm_page_remove(mem);
	vm_page_insert(mem, new_object, new_offset);
	vm_page_unlock_queues();
}

/*
 *	vm_page_init:
 *
 *	Initialize the fields in a new page.
 *	This takes a structure with random values and initializes it
 *	so that it can be given to vm_page_release or vm_page_insert.
 */
void vm_page_init(
	vm_page_t	mem,
	vm_offset_t	phys_addr)
{
	*mem = vm_page_template;
	mem->phys_addr = phys_addr;
}

/*
 *	vm_page_grab_fictitious:
 *
 *	Remove a fictitious page from the free list.
 *	Returns VM_PAGE_NULL if there are no free pages.
 */

vm_page_t vm_page_grab_fictitious(void)
{
	register vm_page_t m;

	simple_lock(&vm_page_queue_free_lock);
	m = vm_page_queue_fictitious;
	if (m != VM_PAGE_NULL) {
		vm_page_fictitious_count--;
		vm_page_queue_fictitious = (vm_page_t) m->pageq.next;
		m->free = FALSE;
	}
	simple_unlock(&vm_page_queue_free_lock);

	return m;
}

/*
 *	vm_page_release_fictitious:
 *
 *	Release a fictitious page to the free list.
 */

void vm_page_release_fictitious(
	register vm_page_t m)
{
	simple_lock(&vm_page_queue_free_lock);
	if (m->free)
		panic("vm_page_release_fictitious");
	m->free = TRUE;
	m->pageq.next = (queue_entry_t) vm_page_queue_fictitious;
	vm_page_queue_fictitious = m;
	vm_page_fictitious_count++;
	simple_unlock(&vm_page_queue_free_lock);
}

/*
 *	vm_page_more_fictitious:
 *
 *	Add more fictitious pages to the free list.
 *	Allowed to block.
 */

int vm_page_fictitious_quantum = 5;

void vm_page_more_fictitious(void)
{
	register vm_page_t m;
	int i;

	for (i = 0; i < vm_page_fictitious_quantum; i++) {
		m = (vm_page_t) zalloc(vm_page_zone);
		if (m == VM_PAGE_NULL)
			panic("vm_page_more_fictitious");

		vm_page_init(m, vm_page_fictitious_addr);
		m->fictitious = TRUE;
		vm_page_release_fictitious(m);
	}
}

/*
 *	vm_page_convert:
 *
 *	Attempt to convert a fictitious page into a real page.
 */

boolean_t vm_page_convert(
	register vm_page_t m,
	boolean_t external)
{
	register vm_page_t real_m;

	real_m = vm_page_grab(external);
	if (real_m == VM_PAGE_NULL)
		return FALSE;

	m->phys_addr = real_m->phys_addr;
	m->fictitious = FALSE;

	real_m->phys_addr = vm_page_fictitious_addr;
	real_m->fictitious = TRUE;

	vm_page_release_fictitious(real_m);
	return TRUE;
}

/*
 *	vm_page_grab:
 *
 *	Remove a page from the free list.
 *	Returns VM_PAGE_NULL if the free list is too small.
 */

vm_page_t vm_page_grab(
	boolean_t external)
{
	register vm_page_t	mem;

	simple_lock(&vm_page_queue_free_lock);

	/*
	 *	Only let privileged threads (involved in pageout)
	 *	dip into the reserved pool or exceed the limit
	 *	for externally-managed pages.
	 */

	if (((vm_page_free_count < vm_page_free_reserved)
	     || (external
		 && (vm_page_external_count > vm_page_external_limit)))
	    && !current_thread()->vm_privilege) {
		simple_unlock(&vm_page_queue_free_lock);
		return VM_PAGE_NULL;
	}

	if (vm_page_queue_free == VM_PAGE_NULL)
		panic("vm_page_grab");

	if (--vm_page_free_count < vm_page_free_count_minimum)
		vm_page_free_count_minimum = vm_page_free_count;
	if (external)
		vm_page_external_count++;
	mem = vm_page_queue_free;
	vm_page_queue_free = (vm_page_t) mem->pageq.next;
	mem->free = FALSE;
	mem->extcounted = mem->external = external;
	simple_unlock(&vm_page_queue_free_lock);

	/*
	 *	Decide if we should poke the pageout daemon.
	 *	We do this if the free count is less than the low
	 *	water mark, or if the free count is less than the high
	 *	water mark (but above the low water mark) and the inactive
	 *	count is less than its target.
	 *
	 *	We don't have the counts locked ... if they change a little,
	 *	it doesn't really matter.
	 */

	if ((vm_page_free_count < vm_page_free_min) ||
	    ((vm_page_free_count < vm_page_free_target) &&
	     (vm_page_inactive_count < vm_page_inactive_target)))
		thread_wakeup((event_t) &vm_page_free_wanted);

	return mem;
}

vm_offset_t vm_page_grab_phys_addr()
{
	vm_page_t p = vm_page_grab(FALSE);
	if (p == VM_PAGE_NULL)
		return -1;
	else
		return p->phys_addr;
}

/*
 *	vm_page_grab_contiguous_pages:
 *
 *	Take N pages off the free list, the pages should
 *	cover a contiguous range of physical addresses.
 *	[Used by device drivers to cope with DMA limitations]
 *
 *	Returns the page descriptors in ascending order, or
 *	Returns KERN_RESOURCE_SHORTAGE if it could not.
 */

/* Biggest phys page number for the pages we handle in VM */

vm_size_t	vm_page_big_pagenum = 0;	/* Set this before call! */

kern_return_t
vm_page_grab_contiguous_pages(
	int		npages,
	vm_page_t	pages[],
	natural_t	*bits,
	boolean_t	external)
{
	register int	first_set;
	int		size, alloc_size;
	kern_return_t	ret;
	vm_page_t       mem, prevmem;

#ifndef	NBBY
#define	NBBY	8	/* size in bits of sizeof()`s unity */
#endif

#define	NBPEL	(sizeof(natural_t)*NBBY)

	size = (vm_page_big_pagenum + NBPEL - 1)
		& ~(NBPEL - 1);				/* in bits */

	size = size / NBBY;				/* in bytes */

	/*
	 * If we are called before the VM system is fully functional
	 * the invoker must provide us with the work space. [one bit
	 * per page starting at phys 0 and up to vm_page_big_pagenum]
	 */
	if (bits == 0) {
		alloc_size = round_page(size);
		if (kmem_alloc_wired(kernel_map,
				     (vm_offset_t *)&bits,
				     alloc_size)
			!= KERN_SUCCESS)
		    return KERN_RESOURCE_SHORTAGE;
	} else
		alloc_size = 0;

	memset(bits, 0, size);

	/*
	 * A very large granularity call, its rare so that is ok
	 */
	simple_lock(&vm_page_queue_free_lock);

	/*
	 *	Do not dip into the reserved pool.
	 */

	if ((vm_page_free_count < vm_page_free_reserved)
	    || (vm_page_external_count >= vm_page_external_limit)) {
		simple_unlock(&vm_page_queue_free_lock);
		return KERN_RESOURCE_SHORTAGE;
	}

	/*
	 *	First pass through, build a big bit-array of
	 *	the pages that are free.  It is not going to
	 *	be too large anyways, in 4k we can fit info
	 *	for 32k pages.
	 */
	mem = vm_page_queue_free;
	while (mem) {
		register int word_index, bit_index;

		bit_index = (mem->phys_addr >> PAGE_SHIFT);
		word_index = bit_index / NBPEL;
		bit_index = bit_index - (word_index * NBPEL);
		bits[word_index] |= 1 << bit_index;

		mem = (vm_page_t) mem->pageq.next;
	}

	/*
	 *	Second loop. Scan the bit array for NPAGES
	 *	contiguous bits.  That gives us, if any,
	 *	the range of pages we will be grabbing off
	 *	the free list.
	 */
	{
	    register int	bits_so_far = 0, i;

		first_set = 0;

		for (i = 0; i < size; i += sizeof(natural_t)) {

		    register natural_t	v = bits[i / sizeof(natural_t)];
		    register int	bitpos;

		    /*
		     * Bitscan this one word
		     */
		    if (v) {
			/*
			 * keep counting them beans ?
			 */
			bitpos = 0;

			if (bits_so_far) {
count_ones:
			    while (v & 1) {
				bitpos++;
				/*
				 * got enough beans ?
				 */
				if (++bits_so_far == npages)
				    goto found_em;
				v >>= 1;
			    }
			    /* if we are being lucky, roll again */
			    if (bitpos == NBPEL)
			    	continue;
			}

			/*
			 * search for beans here
			 */
			bits_so_far = 0;
			while ((bitpos < NBPEL) && ((v & 1) == 0)) {
			    bitpos++;
			    v >>= 1;
			}
			if (v & 1) {
			    first_set = (i * NBBY) + bitpos;
			    goto count_ones;
			}
		    }
		    /*
		     * No luck
		     */
		    bits_so_far = 0;
		}
	}

	/*
	 *	We could not find enough contiguous pages.
	 */
	simple_unlock(&vm_page_queue_free_lock);

	ret = KERN_RESOURCE_SHORTAGE;
	goto out;

	/*
	 *	Final pass. Now we know which pages we want.
	 *	Scan the list until we find them all, grab
	 *	pages as we go.  FIRST_SET tells us where
	 *	in the bit-array our pages start.
	 */
found_em:
	vm_page_free_count -= npages;
	if (vm_page_free_count < vm_page_free_count_minimum)
		vm_page_free_count_minimum = vm_page_free_count;
	if (external)
		vm_page_external_count += npages;
	{
	    register vm_offset_t	first_phys, last_phys;

	    /* cache values for compare */
	    first_phys = first_set << PAGE_SHIFT;
	    last_phys = first_phys + (npages << PAGE_SHIFT);/* not included */

	    /* running pointers */
	    mem = vm_page_queue_free;
	    prevmem = VM_PAGE_NULL;

	    while (mem) {

		register vm_offset_t	addr;

		addr = mem->phys_addr;

		if ((addr >= first_phys) &&
		    (addr <  last_phys)) {
		    if (prevmem)
			prevmem->pageq.next = mem->pageq.next;
		    pages[(addr - first_phys) >> PAGE_SHIFT] = mem;
		    mem->free = FALSE;
		    mem->extcounted = mem->external = external;
		    /*
		     * Got them all ?
		     */
		    if (--npages == 0) break;
		} else
		    prevmem = mem;

		mem = (vm_page_t) mem->pageq.next;
	    }
	}

	simple_unlock(&vm_page_queue_free_lock);

	/*
	 *	Decide if we should poke the pageout daemon.
	 *	We do this if the free count is less than the low
	 *	water mark, or if the free count is less than the high
	 *	water mark (but above the low water mark) and the inactive
	 *	count is less than its target.
	 *
	 *	We don't have the counts locked ... if they change a little,
	 *	it doesn't really matter.
	 */

	if ((vm_page_free_count < vm_page_free_min) ||
	    ((vm_page_free_count < vm_page_free_target) &&
	     (vm_page_inactive_count < vm_page_inactive_target)))
		thread_wakeup(&vm_page_free_wanted);

	ret = KERN_SUCCESS;
out:
	if (alloc_size)
		kmem_free(kernel_map, (vm_offset_t) bits, alloc_size);

	return ret;
}

/*
 *	vm_page_release:
 *
 *	Return a page to the free list.
 */

void vm_page_release(
	register vm_page_t	mem,
	boolean_t external)
{
	simple_lock(&vm_page_queue_free_lock);
	if (mem->free)
		panic("vm_page_release");
	mem->free = TRUE;
	mem->pageq.next = (queue_entry_t) vm_page_queue_free;
	vm_page_queue_free = mem;
	vm_page_free_count++;
	if (external)
		vm_page_external_count--;

	/*
	 *	Check if we should wake up someone waiting for page.
	 *	But don't bother waking them unless they can allocate.
	 *
	 *	We wakeup only one thread, to prevent starvation.
	 *	Because the scheduling system handles wait queues FIFO,
	 *	if we wakeup all waiting threads, one greedy thread
	 *	can starve multiple niceguy threads.  When the threads
	 *	all wakeup, the greedy threads runs first, grabs the page,
	 *	and waits for another page.  It will be the first to run
	 *	when the next page is freed.
	 *
	 *	However, there is a slight danger here.
	 *	The thread we wake might not use the free page.
	 *	Then the other threads could wait indefinitely
	 *	while the page goes unused.  To forestall this,
	 *	the pageout daemon will keep making free pages
	 *	as long as vm_page_free_wanted is non-zero.
	 */

	if ((vm_page_free_wanted > 0) &&
	    (vm_page_free_count >= vm_page_free_reserved)) {
		vm_page_free_wanted--;
		thread_wakeup_one((event_t) &vm_page_free_count);
	}

	simple_unlock(&vm_page_queue_free_lock);
}

/*
 *	vm_page_wait:
 *
 *	Wait for a page to become available.
 *	If there are plenty of free pages, then we don't sleep.
 */

void vm_page_wait(
	void (*continuation)(void))
{

	/*
	 *	We can't use vm_page_free_reserved to make this
	 *	determination.  Consider: some thread might
	 *	need to allocate two pages.  The first allocation
	 *	succeeds, the second fails.  After the first page is freed,
	 *	a call to vm_page_wait must really block.
	 */

	simple_lock(&vm_page_queue_free_lock);
	if ((vm_page_free_count < vm_page_free_target)
	    || (vm_page_external_count > vm_page_external_limit)) {
		if (vm_page_free_wanted++ == 0)
			thread_wakeup((event_t)&vm_page_free_wanted);
		assert_wait((event_t)&vm_page_free_count, FALSE);
		simple_unlock(&vm_page_queue_free_lock);
		if (continuation != 0) {
			counter(c_vm_page_wait_block_user++);
			thread_block(continuation);
		} else {
			counter(c_vm_page_wait_block_kernel++);
			thread_block((void (*)(void)) 0);
		}
	} else
		simple_unlock(&vm_page_queue_free_lock);
}

/*
 *	vm_page_alloc:
 *
 *	Allocate and return a memory cell associated
 *	with this VM object/offset pair.
 *
 *	Object must be locked.
 */

vm_page_t vm_page_alloc(
	vm_object_t	object,
	vm_offset_t	offset)
{
	register vm_page_t	mem;

	mem = vm_page_grab(!object->internal);
	if (mem == VM_PAGE_NULL)
		return VM_PAGE_NULL;

	vm_page_lock_queues();
	vm_page_insert(mem, object, offset);
	vm_page_unlock_queues();

	return mem;
}

/*
 *	vm_page_free:
 *
 *	Returns the given page to the free list,
 *	disassociating it with any VM object.
 *
 *	Object and page queues must be locked prior to entry.
 */
void vm_page_free(
	register vm_page_t	mem)
{
	if (mem->free)
		panic("vm_page_free");

	if (mem->tabled)
		vm_page_remove(mem);
	VM_PAGE_QUEUES_REMOVE(mem);

	if (mem->wire_count != 0) {
		if (!mem->private && !mem->fictitious)
			vm_page_wire_count--;
		mem->wire_count = 0;
	}

	if (mem->laundry) {
		vm_page_laundry_count--;
		mem->laundry = FALSE;
	}

	PAGE_WAKEUP_DONE(mem);

	if (mem->absent)
		vm_object_absent_release(mem->object);

	/*
	 *	XXX The calls to vm_page_init here are
	 *	really overkill.
	 */

	if (mem->private || mem->fictitious) {
		vm_page_init(mem, vm_page_fictitious_addr);
		mem->fictitious = TRUE;
		vm_page_release_fictitious(mem);
	} else {
		int external = mem->external && mem->extcounted;
		vm_page_init(mem, mem->phys_addr);
		vm_page_release(mem, external);
	}
}

/*
 *	vm_page_wire:
 *
 *	Mark this page as wired down by yet
 *	another map, removing it from paging queues
 *	as necessary.
 *
 *	The page's object and the page queues must be locked.
 */
void vm_page_wire(
	register vm_page_t	mem)
{
	VM_PAGE_CHECK(mem);

	if (mem->wire_count == 0) {
		VM_PAGE_QUEUES_REMOVE(mem);
		if (!mem->private && !mem->fictitious)
			vm_page_wire_count++;
	}
	mem->wire_count++;
}

/*
 *	vm_page_unwire:
 *
 *	Release one wiring of this page, potentially
 *	enabling it to be paged again.
 *
 *	The page's object and the page queues must be locked.
 */
void vm_page_unwire(
	register vm_page_t	mem)
{
	VM_PAGE_CHECK(mem);

	if (--mem->wire_count == 0) {
		queue_enter(&vm_page_queue_active, mem, vm_page_t, pageq);
		vm_page_active_count++;
		mem->active = TRUE;
		if (!mem->private && !mem->fictitious)
			vm_page_wire_count--;
	}
}

/*
 *	vm_page_deactivate:
 *
 *	Returns the given page to the inactive list,
 *	indicating that no physical maps have access
 *	to this page.  [Used by the physical mapping system.]
 *
 *	The page queues must be locked.
 */
void vm_page_deactivate(
	register vm_page_t	m)
{
	VM_PAGE_CHECK(m);

	/*
	 *	This page is no longer very interesting.  If it was
	 *	interesting (active or inactive/referenced), then we
	 *	clear the reference bit and (re)enter it in the
	 *	inactive queue.  Note wired pages should not have
	 *	their reference bit cleared.
	 */

	if (m->active || (m->inactive && m->reference)) {
		if (!m->fictitious && !m->absent)
			pmap_clear_reference(m->phys_addr);
		m->reference = FALSE;
		VM_PAGE_QUEUES_REMOVE(m);
	}
	if (m->wire_count == 0 && !m->inactive) {
		queue_enter(&vm_page_queue_inactive, m, vm_page_t, pageq);
		m->inactive = TRUE;
		vm_page_inactive_count++;
	}
}

/*
 *	vm_page_activate:
 *
 *	Put the specified page on the active list (if appropriate).
 *
 *	The page queues must be locked.
 */

void vm_page_activate(
	register vm_page_t	m)
{
	VM_PAGE_CHECK(m);

	if (m->inactive) {
		queue_remove(&vm_page_queue_inactive, m, vm_page_t,
						pageq);
		vm_page_inactive_count--;
		m->inactive = FALSE;
	}
	if (m->wire_count == 0) {
		if (m->active)
			panic("vm_page_activate: already active");

		queue_enter(&vm_page_queue_active, m, vm_page_t, pageq);
		m->active = TRUE;
		vm_page_active_count++;
	}
}

/*
 *	vm_page_zero_fill:
 *
 *	Zero-fill the specified page.
 */
void vm_page_zero_fill(
	vm_page_t	m)
{
	VM_PAGE_CHECK(m);

	pmap_zero_page(m->phys_addr);
}

/*
 *	vm_page_copy:
 *
 *	Copy one page to another
 */

void vm_page_copy(
	vm_page_t	src_m,
	vm_page_t	dest_m)
{
	VM_PAGE_CHECK(src_m);
	VM_PAGE_CHECK(dest_m);

	pmap_copy_page(src_m->phys_addr, dest_m->phys_addr);
}

#if	MACH_VM_DEBUG
/*
 *	Routine:	vm_page_info
 *	Purpose:
 *		Return information about the global VP table.
 *		Fills the buffer with as much information as possible
 *		and returns the desired size of the buffer.
 *	Conditions:
 *		Nothing locked.  The caller should provide
 *		possibly-pageable memory.
 */

unsigned int
vm_page_info(
	hash_info_bucket_t *info,
	unsigned int	count)
{
	int i;

	if (vm_page_bucket_count < count)
		count = vm_page_bucket_count;

	for (i = 0; i < count; i++) {
		vm_page_bucket_t *bucket = &vm_page_buckets[i];
		unsigned int bucket_count = 0;
		vm_page_t m;

		simple_lock(&bucket->lock);
		for (m = bucket->pages; m != VM_PAGE_NULL; m = m->next)
			bucket_count++;
		simple_unlock(&bucket->lock);

		/* don't touch pageable memory while holding locks */
		info[i].hib_count = bucket_count;
	}

	return vm_page_bucket_count;
}
#endif	/* MACH_VM_DEBUG */


#if	MACH_KDB
#define	printf	kdbprintf

/*
 *	Routine:	vm_page_print [exported]
 */
void		vm_page_print(p)
	vm_page_t	p;
{
	iprintf("Page 0x%X: object 0x%X,", (vm_offset_t) p, (vm_offset_t) p->object);
	 printf(" offset 0x%X", (vm_offset_t) p->offset);
	 printf("wire_count %d,", p->wire_count);
	 printf(" %s",
		(p->active ? "active" : (p->inactive ? "inactive" : "loose")));
	 printf("%s",
		(p->free ? " free" : ""));
	 printf("%s ",
		(p->laundry ? " laundry" : ""));
	 printf("%s",
		(p->dirty ? "dirty" : "clean"));
	 printf("%s",
	 	(p->busy ? " busy" : ""));
	 printf("%s",
	 	(p->absent ? " absent" : ""));
	 printf("%s",
	 	(p->error ? " error" : ""));
	 printf("%s",
		(p->fictitious ? " fictitious" : ""));
	 printf("%s",
		(p->private ? " private" : ""));
	 printf("%s",
		(p->wanted ? " wanted" : ""));
	 printf("%s,",
		(p->tabled ? "" : "not_tabled"));
	 printf("phys_addr = 0x%X, lock = 0x%X, unlock_request = 0x%X\n",
	 	(vm_offset_t) p->phys_addr,
		(vm_offset_t) p->page_lock,
		(vm_offset_t) p->unlock_request);
}
#endif	/* MACH_KDB */