1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
|
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University.
* Copyright (c) 1993,1994 The University of Utah and
* the Computer Systems Laboratory (CSL).
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
* THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
* OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
* THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* File: vm/vm_pageout.c
* Author: Avadis Tevanian, Jr., Michael Wayne Young
* Date: 1985
*
* The proverbial page-out daemon.
*/
#include <device/net_io.h>
#include <mach/mach_types.h>
#include <mach/memory_object.h>
#include <vm/memory_object_default.user.h>
#include <vm/memory_object_user.user.h>
#include <mach/vm_param.h>
#include <mach/vm_statistics.h>
#include <kern/counters.h>
#include <kern/debug.h>
#include <kern/slab.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <machine/locore.h>
#ifndef VM_PAGEOUT_BURST_MAX
#define VM_PAGEOUT_BURST_MAX 10 /* number of pages */
#endif /* VM_PAGEOUT_BURST_MAX */
#ifndef VM_PAGEOUT_BURST_MIN
#define VM_PAGEOUT_BURST_MIN 5 /* number of pages */
#endif /* VM_PAGEOUT_BURST_MIN */
#ifndef VM_PAGEOUT_BURST_WAIT
#define VM_PAGEOUT_BURST_WAIT 10 /* milliseconds per page */
#endif /* VM_PAGEOUT_BURST_WAIT */
#ifndef VM_PAGEOUT_EMPTY_WAIT
#define VM_PAGEOUT_EMPTY_WAIT 75 /* milliseconds */
#endif /* VM_PAGEOUT_EMPTY_WAIT */
#ifndef VM_PAGEOUT_PAUSE_MAX
#define VM_PAGEOUT_PAUSE_MAX 10 /* number of pauses */
#endif /* VM_PAGEOUT_PAUSE_MAX */
/*
* To obtain a reasonable LRU approximation, the inactive queue
* needs to be large enough to give pages on it a chance to be
* referenced a second time. This macro defines the fraction
* of active+inactive pages that should be inactive.
* The pageout daemon uses it to update vm_page_inactive_target.
*
* If the number of free pages falls below vm_page_free_target and
* vm_page_inactive_count is below vm_page_inactive_target,
* then the pageout daemon starts running.
*/
#ifndef VM_PAGE_INACTIVE_TARGET
#define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 2 / 3)
#endif /* VM_PAGE_INACTIVE_TARGET */
/*
* Once the pageout daemon starts running, it keeps going
* until the number of free pages meets or exceeds vm_page_free_target.
*/
#ifndef VM_PAGE_FREE_TARGET
#define VM_PAGE_FREE_TARGET(free) (150 + (free) * 10 / 100)
#endif /* VM_PAGE_FREE_TARGET */
/*
* The pageout daemon always starts running once the number of free pages
* falls below vm_page_free_min.
*/
#ifndef VM_PAGE_FREE_MIN
#define VM_PAGE_FREE_MIN(free) (100 + (free) * 8 / 100)
#endif /* VM_PAGE_FREE_MIN */
/* When vm_page_external_count exceeds vm_page_external_limit,
* allocations of externally paged pages stops.
*/
#ifndef VM_PAGE_EXTERNAL_LIMIT
#define VM_PAGE_EXTERNAL_LIMIT(free) ((free) / 2)
#endif /* VM_PAGE_EXTERNAL_LIMIT */
/* Attempt to keep the number of externally paged pages less
* than vm_pages_external_target.
*/
#ifndef VM_PAGE_EXTERNAL_TARGET
#define VM_PAGE_EXTERNAL_TARGET(free) ((free) / 4)
#endif /* VM_PAGE_EXTERNAL_TARGET */
/*
* When the number of free pages falls below vm_page_free_reserved,
* only vm-privileged threads can allocate pages. vm-privilege
* allows the pageout daemon and default pager (and any other
* associated threads needed for default pageout) to continue
* operation by dipping into the reserved pool of pages. */
#ifndef VM_PAGE_FREE_RESERVED
#define VM_PAGE_FREE_RESERVED 500
#endif /* VM_PAGE_FREE_RESERVED */
/*
* When the number of free pages falls below vm_pageout_reserved_internal,
* the pageout daemon no longer trusts external pagers to clean pages.
* External pagers are probably all wedged waiting for a free page.
* It forcibly double-pages dirty pages belonging to external objects,
* getting the pages to the default pager to clean.
*/
#ifndef VM_PAGEOUT_RESERVED_INTERNAL
#define VM_PAGEOUT_RESERVED_INTERNAL(reserve) ((reserve) - 250)
#endif /* VM_PAGEOUT_RESERVED_INTERNAL */
/*
* When the number of free pages falls below vm_pageout_reserved_really,
* the pageout daemon stops work entirely to let the default pager
* catch up (assuming the default pager has pages to clean).
* Beyond this point, it is too dangerous to consume memory
* even for memory_object_data_write messages to the default pager.
*/
#ifndef VM_PAGEOUT_RESERVED_REALLY
#define VM_PAGEOUT_RESERVED_REALLY(reserve) ((reserve) - 400)
#endif /* VM_PAGEOUT_RESERVED_REALLY */
unsigned int vm_pageout_reserved_internal = 0;
unsigned int vm_pageout_reserved_really = 0;
unsigned int vm_page_external_target = 0;
unsigned int vm_pageout_burst_max = 0;
unsigned int vm_pageout_burst_min = 0;
unsigned int vm_pageout_burst_wait = 0; /* milliseconds per page */
unsigned int vm_pageout_empty_wait = 0; /* milliseconds */
unsigned int vm_pageout_pause_count = 0;
unsigned int vm_pageout_pause_max = 0;
/*
* These variables record the pageout daemon's actions:
* how many pages it looks at and what happens to those pages.
* No locking needed because only one thread modifies the variables.
*/
unsigned int vm_pageout_active = 0; /* debugging */
unsigned int vm_pageout_inactive = 0; /* debugging */
unsigned int vm_pageout_inactive_nolock = 0; /* debugging */
unsigned int vm_pageout_inactive_busy = 0; /* debugging */
unsigned int vm_pageout_inactive_absent = 0; /* debugging */
unsigned int vm_pageout_inactive_used = 0; /* debugging */
unsigned int vm_pageout_inactive_clean = 0; /* debugging */
unsigned int vm_pageout_inactive_dirty = 0; /* debugging */
unsigned int vm_pageout_inactive_double = 0; /* debugging */
unsigned int vm_pageout_inactive_cleaned_external = 0;
/*
* Routine: vm_pageout_setup
* Purpose:
* Set up a page for pageout.
*
* Move or copy the page to a new object, as part
* of which it will be sent to its memory manager
* in a memory_object_data_write or memory_object_initialize
* message.
*
* The "paging_offset" argument specifies the offset
* of the page within its external memory object.
*
* The "new_object" and "new_offset" arguments
* indicate where the page should be moved.
*
* The "flush" argument specifies whether the page
* should be flushed from its object. If not, a
* copy of the page is moved to the new object.
*
* In/Out conditions:
* The page in question must not be on any pageout queues,
* and must be busy. The object to which it belongs
* must be unlocked, and the caller must hold a paging
* reference to it. The new_object must not be locked.
*
* If the page is flushed from its original object,
* this routine returns a pointer to a place-holder page,
* inserted at the same offset, to block out-of-order
* requests for the page. The place-holder page must
* be freed after the data_write or initialize message
* has been sent. If the page is copied,
* the holding page is VM_PAGE_NULL.
*
* The original page is put on a paging queue and marked
* not busy on exit.
*/
vm_page_t
vm_pageout_setup(
vm_page_t m,
vm_offset_t paging_offset,
vm_object_t new_object,
vm_offset_t new_offset,
boolean_t flush)
{
vm_object_t old_object = m->object;
vm_page_t holding_page = 0; /*'=0'to quiet gcc warnings*/
vm_page_t new_m;
assert(m->busy && !m->absent && !m->fictitious);
/*
* If we are not flushing the page, allocate a
* page in the object. If we cannot get the
* page, flush instead.
*/
if (!flush) {
vm_object_lock(new_object);
new_m = vm_page_alloc(new_object, new_offset);
if (new_m == VM_PAGE_NULL)
flush = TRUE;
vm_object_unlock(new_object);
}
if (flush) {
/*
* Create a place-holder page where the old one was,
* to prevent anyone from attempting to page in this
* page while we`re unlocked.
*/
while ((holding_page = vm_page_grab_fictitious())
== VM_PAGE_NULL)
vm_page_more_fictitious();
vm_object_lock(old_object);
vm_page_lock_queues();
vm_page_remove(m);
vm_page_unlock_queues();
PAGE_WAKEUP_DONE(m);
vm_page_lock_queues();
vm_page_insert(holding_page, old_object, m->offset);
vm_page_unlock_queues();
/*
* Record that this page has been written out
*/
#if MACH_PAGEMAP
vm_external_state_set(old_object->existence_info,
paging_offset,
VM_EXTERNAL_STATE_EXISTS);
#endif /* MACH_PAGEMAP */
vm_object_unlock(old_object);
vm_object_lock(new_object);
/*
* Move this page into the new object
*/
vm_page_lock_queues();
vm_page_insert(m, new_object, new_offset);
vm_page_unlock_queues();
m->dirty = TRUE;
m->precious = FALSE;
m->page_lock = VM_PROT_NONE;
m->unlock_request = VM_PROT_NONE;
}
else {
/*
* Copy the data into the new page,
* and mark the new page as clean.
*/
vm_page_copy(m, new_m);
vm_object_lock(old_object);
m->dirty = FALSE;
pmap_clear_modify(m->phys_addr);
/*
* Deactivate old page.
*/
vm_page_lock_queues();
vm_page_deactivate(m);
vm_page_unlock_queues();
PAGE_WAKEUP_DONE(m);
/*
* Record that this page has been written out
*/
#if MACH_PAGEMAP
vm_external_state_set(old_object->existence_info,
paging_offset,
VM_EXTERNAL_STATE_EXISTS);
#endif /* MACH_PAGEMAP */
vm_object_unlock(old_object);
vm_object_lock(new_object);
/*
* Use the new page below.
*/
m = new_m;
m->dirty = TRUE;
assert(!m->precious);
PAGE_WAKEUP_DONE(m);
}
/*
* Make the old page eligible for replacement again; if a
* user-supplied memory manager fails to release the page,
* it will be paged out again to the default memory manager.
*
* Note that pages written to the default memory manager
* must be wired down -- in return, it guarantees to free
* this page, rather than reusing it.
*/
vm_page_lock_queues();
vm_stat.pageouts++;
if (m->laundry) {
/*
* vm_pageout_scan is telling us to put this page
* at the front of the inactive queue, so it will
* be immediately paged out to the default pager.
*/
assert(!old_object->internal);
m->laundry = FALSE;
queue_enter_first(&vm_page_queue_inactive, m,
vm_page_t, pageq);
m->inactive = TRUE;
vm_page_inactive_count++;
} else if (old_object->internal) {
m->laundry = TRUE;
vm_page_laundry_count++;
vm_page_wire(m);
} else
vm_page_activate(m);
vm_page_unlock_queues();
/*
* Since IPC operations may block, we drop locks now.
* [The placeholder page is busy, and we still have
* paging_in_progress incremented.]
*/
vm_object_unlock(new_object);
/*
* Return the placeholder page to simplify cleanup.
*/
return (flush ? holding_page : VM_PAGE_NULL);
}
/*
* Routine: vm_pageout_page
* Purpose:
* Causes the specified page to be written back to
* the appropriate memory object.
*
* The "initial" argument specifies whether this
* data is an initialization only, and should use
* memory_object_data_initialize instead of
* memory_object_data_write.
*
* The "flush" argument specifies whether the page
* should be flushed from the object. If not, a
* copy of the data is sent to the memory object.
*
* In/out conditions:
* The page in question must not be on any pageout queues.
* The object to which it belongs must be locked.
* Implementation:
* Move this page to a completely new object, if flushing;
* copy to a new page in a new object, if not.
*/
void
vm_pageout_page(
vm_page_t m,
boolean_t initial,
boolean_t flush)
{
vm_map_copy_t copy;
vm_object_t old_object;
vm_object_t new_object;
vm_page_t holding_page;
vm_offset_t paging_offset;
kern_return_t rc;
boolean_t precious_clean;
assert(m->busy);
/*
* Cleaning but not flushing a clean precious page is a
* no-op. Remember whether page is clean and precious now
* because vm_pageout_setup will mark it dirty and not precious.
*
* XXX Check if precious_clean && !flush can really happen.
*/
precious_clean = (!m->dirty) && m->precious;
if (precious_clean && !flush) {
PAGE_WAKEUP_DONE(m);
return;
}
/*
* Verify that we really want to clean this page.
*/
if (m->absent || m->error || (!m->dirty && !m->precious)) {
VM_PAGE_FREE(m);
return;
}
/*
* Create a paging reference to let us play with the object.
*/
old_object = m->object;
paging_offset = m->offset + old_object->paging_offset;
vm_object_paging_begin(old_object);
vm_object_unlock(old_object);
/*
* Allocate a new object into which we can put the page.
*/
new_object = vm_object_allocate(PAGE_SIZE);
/*
* Move the page into the new object.
*/
holding_page = vm_pageout_setup(m,
paging_offset,
new_object,
0, /* new offset */
flush); /* flush */
rc = vm_map_copyin_object(new_object, 0, PAGE_SIZE, ©);
assert(rc == KERN_SUCCESS);
if (initial || old_object->use_old_pageout) {
rc = (*(initial ? memory_object_data_initialize
: memory_object_data_write))
(old_object->pager,
old_object->pager_request,
paging_offset, (pointer_t) copy, PAGE_SIZE);
}
else {
rc = memory_object_data_return(
old_object->pager,
old_object->pager_request,
paging_offset, (pointer_t) copy, PAGE_SIZE,
!precious_clean, !flush);
}
if (rc != KERN_SUCCESS)
vm_map_copy_discard(copy);
/*
* Clean up.
*/
vm_object_lock(old_object);
if (holding_page != VM_PAGE_NULL)
VM_PAGE_FREE(holding_page);
vm_object_paging_end(old_object);
}
/*
* vm_pageout_scan does the dirty work for the pageout daemon.
* It returns with vm_page_queue_free_lock held and
* vm_page_free_wanted == 0.
*/
void vm_pageout_scan(void)
{
unsigned int burst_count;
unsigned int want_pages;
/*
* We want to gradually dribble pages from the active queue
* to the inactive queue. If we let the inactive queue get
* very small, and then suddenly dump many pages into it,
* those pages won't get a sufficient chance to be referenced
* before we start taking them from the inactive queue.
*
* We must limit the rate at which we send pages to the pagers.
* data_write messages consume memory, for message buffers and
* for map-copy objects. If we get too far ahead of the pagers,
* we can potentially run out of memory.
*
* We can use the laundry count to limit directly the number
* of pages outstanding to the default pager. A similar
* strategy for external pagers doesn't work, because
* external pagers don't have to deallocate the pages sent them,
* and because we might have to send pages to external pagers
* even if they aren't processing writes. So we also
* use a burst count to limit writes to external pagers.
*
* When memory is very tight, we can't rely on external pagers to
* clean pages. They probably aren't running, because they
* aren't vm-privileged. If we kept sending dirty pages to them,
* we could exhaust the free list. However, we can't just ignore
* pages belonging to external objects, because there might be no
* pages belonging to internal objects. Hence, we get the page
* into an internal object and then immediately double-page it,
* sending it to the default pager.
*
* slab_collect should be last, because the other operations
* might return memory to caches. When we pause we use
* vm_pageout_scan_continue as our continuation, so we will
* reenter vm_pageout_scan periodically and attempt to reclaim
* internal memory even if we never reach vm_page_free_target.
*/
stack_collect();
net_kmsg_collect();
consider_task_collect();
if (0) /* XXX: pcb_collect doesn't do anything yet, so it is
pointless to call consider_thread_collect. */
consider_thread_collect();
slab_collect();
for (burst_count = 0;;) {
vm_page_t m;
vm_object_t object;
unsigned long free_count;
/*
* Recalculate vm_page_inactivate_target.
*/
vm_page_lock_queues();
vm_page_inactive_target =
VM_PAGE_INACTIVE_TARGET(vm_page_active_count +
vm_page_inactive_count);
/*
* Move pages from active to inactive.
*/
while ((vm_page_inactive_count < vm_page_inactive_target) &&
!queue_empty(&vm_page_queue_active)) {
vm_object_t obj;
vm_pageout_active++;
m = (vm_page_t) queue_first(&vm_page_queue_active);
assert(m->active && !m->inactive);
obj = m->object;
if (!vm_object_lock_try(obj)) {
/*
* Move page to end and continue.
*/
queue_remove(&vm_page_queue_active, m,
vm_page_t, pageq);
queue_enter(&vm_page_queue_active, m,
vm_page_t, pageq);
vm_page_unlock_queues();
vm_page_lock_queues();
continue;
}
/*
* If the page is busy, then we pull it
* off the active queue and leave it alone.
*/
if (m->busy) {
vm_object_unlock(obj);
queue_remove(&vm_page_queue_active, m,
vm_page_t, pageq);
m->active = FALSE;
vm_page_active_count--;
continue;
}
/*
* Deactivate the page while holding the object
* locked, so we know the page is still not busy.
* This should prevent races between pmap_enter
* and pmap_clear_reference. The page might be
* absent or fictitious, but vm_page_deactivate
* can handle that.
*/
vm_page_deactivate(m);
vm_object_unlock(obj);
}
/*
* We are done if we have met our targets *and*
* nobody is still waiting for a page.
*/
simple_lock(&vm_page_queue_free_lock);
free_count = vm_page_mem_free();
if ((free_count >= vm_page_free_target) &&
(vm_page_external_count <= vm_page_external_target) &&
(vm_page_free_wanted == 0)) {
vm_page_unlock_queues();
break;
}
want_pages = ((free_count < vm_page_free_target) ||
vm_page_free_wanted);
simple_unlock(&vm_page_queue_free_lock);
/*
* Sometimes we have to pause:
* 1) No inactive pages - nothing to do.
* 2) Flow control - wait for pagers to catch up.
* 3) Extremely low memory - sending out dirty pages
* consumes memory. We don't take the risk of doing
* this if the default pager already has work to do.
*/
pause:
if (queue_empty(&vm_page_queue_inactive) ||
(burst_count >= vm_pageout_burst_max) ||
(vm_page_laundry_count >= vm_pageout_burst_max) ||
((free_count < vm_pageout_reserved_really) &&
(vm_page_laundry_count > 0))) {
unsigned int pages, msecs;
/*
* vm_pageout_burst_wait is msecs/page.
* If there is nothing for us to do, we wait
* at least vm_pageout_empty_wait msecs.
*/
if (vm_page_laundry_count > burst_count)
pages = vm_page_laundry_count;
else
pages = burst_count;
msecs = pages * vm_pageout_burst_wait;
if (queue_empty(&vm_page_queue_inactive) &&
(msecs < vm_pageout_empty_wait))
msecs = vm_pageout_empty_wait;
vm_page_unlock_queues();
thread_will_wait_with_timeout(current_thread(), msecs);
counter(c_vm_pageout_scan_block++);
thread_block(vm_pageout_scan_continue);
call_continuation(vm_pageout_scan_continue);
/*NOTREACHED*/
}
vm_pageout_inactive++;
/* Find a page we are interested in paging out. If we
need pages, then we'll page anything out; otherwise
we only page out external pages. */
m = (vm_page_t) queue_first (&vm_page_queue_inactive);
while (1)
{
assert (!m->active && m->inactive);
if (want_pages || m->external)
break;
m = (vm_page_t) queue_next (&m->pageq);
if (!m)
goto pause;
}
object = m->object;
/*
* Try to lock object; since we've got the
* page queues lock, we can only try for this one.
*/
if (!vm_object_lock_try(object)) {
/*
* Move page to end and continue.
*/
queue_remove(&vm_page_queue_inactive, m,
vm_page_t, pageq);
queue_enter(&vm_page_queue_inactive, m,
vm_page_t, pageq);
vm_page_unlock_queues();
vm_pageout_inactive_nolock++;
continue;
}
/*
* Remove the page from the inactive list.
*/
queue_remove(&vm_page_queue_inactive, m, vm_page_t, pageq);
vm_page_inactive_count--;
m->inactive = FALSE;
if (m->busy || !object->alive) {
/*
* Somebody is already playing with this page.
* Leave it off the pageout queues.
*/
vm_page_unlock_queues();
vm_object_unlock(object);
vm_pageout_inactive_busy++;
continue;
}
/*
* If it's absent, we can reclaim the page.
*/
if (want_pages && m->absent) {
vm_pageout_inactive_absent++;
reclaim_page:
vm_page_free(m);
vm_page_unlock_queues();
vm_object_unlock(object);
continue;
}
/*
* If it's being used, reactivate.
* (Fictitious pages are either busy or absent.)
*/
assert(!m->fictitious);
if (m->reference || pmap_is_referenced(m->phys_addr)) {
vm_object_unlock(object);
vm_page_activate(m);
vm_stat.reactivations++;
current_task()->reactivations++;
vm_page_unlock_queues();
vm_pageout_inactive_used++;
continue;
}
/*
* Eliminate all mappings.
*/
m->busy = TRUE;
pmap_page_protect(m->phys_addr, VM_PROT_NONE);
if (!m->dirty)
m->dirty = pmap_is_modified(m->phys_addr);
if (m->external) {
/* Figure out if we still care about this
page in the limit of externally managed pages.
Clean pages don't actually cause system hosage,
so it's ok to stop considering them as
"consumers" of memory. */
if (m->dirty && !m->extcounted) {
m->extcounted = TRUE;
vm_page_external_count++;
} else if (!m->dirty && m->extcounted) {
m->extcounted = FALSE;
vm_page_external_count--;
}
}
/* If we don't actually need more memory, and the page
is not dirty, put it on the tail of the inactive queue
and move on to the next page. */
if (!want_pages && !m->dirty) {
queue_remove (&vm_page_queue_inactive, m,
vm_page_t, pageq);
queue_enter (&vm_page_queue_inactive, m,
vm_page_t, pageq);
vm_page_unlock_queues();
vm_pageout_inactive_cleaned_external++;
continue;
}
/*
* If it's clean and not precious, we can free the page.
*/
if (!m->dirty && !m->precious) {
vm_pageout_inactive_clean++;
goto reclaim_page;
}
/*
* If we are very low on memory, then we can't
* rely on an external pager to clean a dirty page,
* because external pagers are not vm-privileged.
*
* The laundry bit tells vm_pageout_setup to
* put the page back at the front of the inactive
* queue instead of activating the page. Hence,
* we will pick the page up again immediately and
* resend it to the default pager.
*/
assert(!m->laundry);
if ((free_count < vm_pageout_reserved_internal) &&
!object->internal) {
m->laundry = TRUE;
vm_pageout_inactive_double++;
}
vm_page_unlock_queues();
/*
* If there is no memory object for the page, create
* one and hand it to the default pager.
* [First try to collapse, so we don't create
* one unnecessarily.]
*/
if (!object->pager_initialized)
vm_object_collapse(object);
if (!object->pager_initialized)
vm_object_pager_create(object);
if (!object->pager_initialized)
panic("vm_pageout_scan");
vm_pageout_inactive_dirty++;
vm_pageout_page(m, FALSE, TRUE); /* flush it */
vm_object_unlock(object);
burst_count++;
}
}
void vm_pageout_scan_continue(void)
{
/*
* We just paused to let the pagers catch up.
* If vm_page_laundry_count is still high,
* then we aren't waiting long enough.
* If we have paused some vm_pageout_pause_max times without
* adjusting vm_pageout_burst_wait, it might be too big,
* so we decrease it.
*/
vm_page_lock_queues();
if (vm_page_laundry_count > vm_pageout_burst_min) {
vm_pageout_burst_wait++;
vm_pageout_pause_count = 0;
} else if (++vm_pageout_pause_count > vm_pageout_pause_max) {
vm_pageout_burst_wait = (vm_pageout_burst_wait * 3) / 4;
if (vm_pageout_burst_wait < 1)
vm_pageout_burst_wait = 1;
vm_pageout_pause_count = 0;
}
vm_page_unlock_queues();
vm_pageout_continue();
/*NOTREACHED*/
}
/*
* vm_pageout is the high level pageout daemon.
*/
void vm_pageout_continue(void)
{
/*
* The pageout daemon is never done, so loop forever.
* We should call vm_pageout_scan at least once each
* time we are woken, even if vm_page_free_wanted is
* zero, to check vm_page_free_target and
* vm_page_inactive_target.
*/
for (;;) {
vm_pageout_scan();
/* we hold vm_page_queue_free_lock now */
assert(vm_page_free_wanted == 0);
assert_wait(&vm_page_free_wanted, FALSE);
simple_unlock(&vm_page_queue_free_lock);
counter(c_vm_pageout_block++);
thread_block(vm_pageout_continue);
}
}
void vm_pageout(void)
{
unsigned long free_after_reserve;
current_thread()->vm_privilege = TRUE;
stack_privilege(current_thread());
thread_set_own_priority(0);
/*
* Initialize some paging parameters.
*/
if (vm_pageout_burst_max == 0)
vm_pageout_burst_max = VM_PAGEOUT_BURST_MAX;
if (vm_pageout_burst_min == 0)
vm_pageout_burst_min = VM_PAGEOUT_BURST_MIN;
if (vm_pageout_burst_wait == 0)
vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT;
if (vm_pageout_empty_wait == 0)
vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT;
if (vm_page_free_reserved == 0)
vm_page_free_reserved = VM_PAGE_FREE_RESERVED;
if (vm_pageout_pause_max == 0)
vm_pageout_pause_max = VM_PAGEOUT_PAUSE_MAX;
if (vm_pageout_reserved_internal == 0)
vm_pageout_reserved_internal =
VM_PAGEOUT_RESERVED_INTERNAL(vm_page_free_reserved);
if (vm_pageout_reserved_really == 0)
vm_pageout_reserved_really =
VM_PAGEOUT_RESERVED_REALLY(vm_page_free_reserved);
free_after_reserve = vm_page_mem_free() - vm_page_free_reserved;
if (vm_page_external_limit == 0)
vm_page_external_limit =
VM_PAGE_EXTERNAL_LIMIT (free_after_reserve);
if (vm_page_external_target == 0)
vm_page_external_target =
VM_PAGE_EXTERNAL_TARGET (free_after_reserve);
if (vm_page_free_min == 0)
vm_page_free_min = vm_page_free_reserved +
VM_PAGE_FREE_MIN(free_after_reserve);
if (vm_page_free_target == 0)
vm_page_free_target = vm_page_free_reserved +
VM_PAGE_FREE_TARGET(free_after_reserve);
if (vm_page_free_target < vm_page_free_min + 5)
vm_page_free_target = vm_page_free_min + 5;
/*
* vm_pageout_scan will set vm_page_inactive_target.
*/
vm_pageout_continue();
/*NOTREACHED*/
}
|