summaryrefslogtreecommitdiff
path: root/vm/vm_fault.c
blob: 10955edd73899dd694f6c9eeee1c73c78b65d503 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
/*
 * Mach Operating System
 * Copyright (c) 1994,1990,1989,1988,1987 Carnegie Mellon University.
 * Copyright (c) 1993,1994 The University of Utah and
 * the Computer Systems Laboratory (CSL).
 * All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
 * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
 * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
 * THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 *	File:	vm_fault.c
 *	Author:	Avadis Tevanian, Jr., Michael Wayne Young
 *
 *	Page fault handling module.
 */

#include <kern/printf.h>
#include <vm/vm_fault.h>
#include <mach/kern_return.h>
#include <mach/message.h>	/* for error codes */
#include <kern/counters.h>
#include <kern/debug.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/pmap.h>
#include <mach/vm_statistics.h>
#include <vm/vm_pageout.h>
#include <mach/vm_param.h>
#include <mach/memory_object.h>
#include <vm/memory_object_user.user.h>
				/* For memory_object_data_{request,unlock} */
#include <kern/macro_help.h>
#include <kern/slab.h>

#if	MACH_PCSAMPLE
#include <kern/pc_sample.h>
#endif



/*
 *	State needed by vm_fault_continue.
 *	This is a little hefty to drop directly
 *	into the thread structure.
 */
typedef struct vm_fault_state {
	struct vm_map *vmf_map;
	vm_offset_t vmf_vaddr;
	vm_prot_t vmf_fault_type;
	boolean_t vmf_change_wiring;
	void (*vmf_continuation)();
	vm_map_version_t vmf_version;
	boolean_t vmf_wired;
	struct vm_object *vmf_object;
	vm_offset_t vmf_offset;
	vm_prot_t vmf_prot;

	boolean_t vmfp_backoff;
	struct vm_object *vmfp_object;
	vm_offset_t vmfp_offset;
	struct vm_page *vmfp_first_m;
	vm_prot_t vmfp_access;
} vm_fault_state_t;

struct kmem_cache	vm_fault_state_cache;

int		vm_object_absent_max = 50;

int		vm_fault_debug = 0;

boolean_t	vm_fault_dirty_handling = FALSE;
boolean_t	vm_fault_interruptible = TRUE;

boolean_t	software_reference_bits = TRUE;

#if	MACH_KDB
extern struct db_watchpoint *db_watchpoint_list;
#endif	/* MACH_KDB */

/*
 *	Routine:	vm_fault_init
 *	Purpose:
 *		Initialize our private data structures.
 */
void vm_fault_init(void)
{
	kmem_cache_init(&vm_fault_state_cache, "vm_fault_state",
			sizeof(vm_fault_state_t), 0, NULL, NULL, NULL, 0);
}

/*
 *	Routine:	vm_fault_cleanup
 *	Purpose:
 *		Clean up the result of vm_fault_page.
 *	Results:
 *		The paging reference for "object" is released.
 *		"object" is unlocked.
 *		If "top_page" is not null,  "top_page" is
 *		freed and the paging reference for the object
 *		containing it is released.
 *
 *	In/out conditions:
 *		"object" must be locked.
 */
void
vm_fault_cleanup(object, top_page)
	register vm_object_t	object;
	register vm_page_t	top_page;
{
	vm_object_paging_end(object);
	vm_object_unlock(object);

	if (top_page != VM_PAGE_NULL) {
	    object = top_page->object;
	    vm_object_lock(object);
	    VM_PAGE_FREE(top_page);
	    vm_object_paging_end(object);
	    vm_object_unlock(object);
	}
}


#if	MACH_PCSAMPLE
/*
 *	Do PC sampling on current thread, assuming
 *	that it is the thread taking this page fault.
 *
 *	Must check for THREAD_NULL, since faults
 *	can occur before threads are running.
 */

#define	vm_stat_sample(flavor) \
    MACRO_BEGIN \
      thread_t _thread_ = current_thread(); \
 \
      if (_thread_ != THREAD_NULL) \
	  take_pc_sample_macro(_thread_, (flavor)); \
    MACRO_END

#else
#define	vm_stat_sample(x)
#endif	/* MACH_PCSAMPLE */



/*
 *	Routine:	vm_fault_page
 *	Purpose:
 *		Find the resident page for the virtual memory
 *		specified by the given virtual memory object
 *		and offset.
 *	Additional arguments:
 *		The required permissions for the page is given
 *		in "fault_type".  Desired permissions are included
 *		in "protection".
 *
 *		If the desired page is known to be resident (for
 *		example, because it was previously wired down), asserting
 *		the "unwiring" parameter will speed the search.
 *
 *		If the operation can be interrupted (by thread_abort
 *		or thread_terminate), then the "interruptible"
 *		parameter should be asserted.
 *
 *	Results:
 *		The page containing the proper data is returned
 *		in "result_page".
 *
 *	In/out conditions:
 *		The source object must be locked and referenced,
 *		and must donate one paging reference.  The reference
 *		is not affected.  The paging reference and lock are
 *		consumed.
 *
 *		If the call succeeds, the object in which "result_page"
 *		resides is left locked and holding a paging reference.
 *		If this is not the original object, a busy page in the
 *		original object is returned in "top_page", to prevent other
 *		callers from pursuing this same data, along with a paging
 *		reference for the original object.  The "top_page" should
 *		be destroyed when this guarantee is no longer required.
 *		The "result_page" is also left busy.  It is not removed
 *		from the pageout queues.
 */
vm_fault_return_t vm_fault_page(first_object, first_offset,
				fault_type, must_be_resident, interruptible,
				protection,
				result_page, top_page,
				resume, continuation)
 /* Arguments: */
	vm_object_t	first_object;	/* Object to begin search */
	vm_offset_t	first_offset;	/* Offset into object */
	vm_prot_t	fault_type;	/* What access is requested */
	boolean_t	must_be_resident;/* Must page be resident? */
	boolean_t	interruptible;	/* May fault be interrupted? */
 /* Modifies in place: */
	vm_prot_t	*protection;	/* Protection for mapping */
 /* Returns: */
	vm_page_t	*result_page;	/* Page found, if successful */
	vm_page_t	*top_page;	/* Page in top object, if
					 * not result_page.
					 */
 /* More arguments: */
	boolean_t	resume;		/* We are restarting. */
	void		(*continuation)(); /* Continuation for blocking. */
{
	register
	vm_page_t	m;
	register
	vm_object_t	object;
	register
	vm_offset_t	offset;
	vm_page_t	first_m;
	vm_object_t	next_object;
	vm_object_t	copy_object;
	boolean_t	look_for_page;
	vm_prot_t	access_required;

	if (resume) {
		register vm_fault_state_t *state =
			(vm_fault_state_t *) current_thread()->ith_other;

		if (state->vmfp_backoff)
			goto after_block_and_backoff;

		object = state->vmfp_object;
		offset = state->vmfp_offset;
		first_m = state->vmfp_first_m;
		access_required = state->vmfp_access;
		goto after_thread_block;
	}

	vm_stat_sample(SAMPLED_PC_VM_FAULTS_ANY);
	vm_stat.faults++;		/* needs lock XXX */

/*
 *	Recovery actions
 */
#define RELEASE_PAGE(m)					\
	MACRO_BEGIN					\
	PAGE_WAKEUP_DONE(m);				\
	vm_page_lock_queues();				\
	if (!m->active && !m->inactive)			\
		vm_page_activate(m);			\
	vm_page_unlock_queues();			\
	MACRO_END

	if (vm_fault_dirty_handling
#if	MACH_KDB
		/*
		 *	If there are watchpoints set, then
		 *	we don't want to give away write permission
		 *	on a read fault.  Make the task write fault,
		 *	so that the watchpoint code notices the access.
		 */
	    || db_watchpoint_list
#endif	/* MACH_KDB */
	    ) {
		/*
		 *	If we aren't asking for write permission,
		 *	then don't give it away.  We're using write
		 *	faults to set the dirty bit.
		 */
		if (!(fault_type & VM_PROT_WRITE))
			*protection &= ~VM_PROT_WRITE;
	}

	if (!vm_fault_interruptible)
		interruptible = FALSE;

	/*
	 *	INVARIANTS (through entire routine):
	 *
	 *	1)	At all times, we must either have the object
	 *		lock or a busy page in some object to prevent
	 *		some other thread from trying to bring in
	 *		the same page.
	 *
	 *		Note that we cannot hold any locks during the
	 *		pager access or when waiting for memory, so
	 *		we use a busy page then.
	 *
	 *		Note also that we aren't as concerned about more than
	 *		one thread attempting to memory_object_data_unlock
	 *		the same page at once, so we don't hold the page
	 *		as busy then, but do record the highest unlock
	 *		value so far.  [Unlock requests may also be delivered
	 *		out of order.]
	 *
	 *	2)	To prevent another thread from racing us down the
	 *		shadow chain and entering a new page in the top
	 *		object before we do, we must keep a busy page in
	 *		the top object while following the shadow chain.
	 *
	 *	3)	We must increment paging_in_progress on any object
	 *		for which we have a busy page, to prevent
	 *		vm_object_collapse from removing the busy page
	 *		without our noticing.
	 *
	 *	4)	We leave busy pages on the pageout queues.
	 *		If the pageout daemon comes across a busy page,
	 *		it will remove the page from the pageout queues.
	 */

	/*
	 *	Search for the page at object/offset.
	 */

	object = first_object;
	offset = first_offset;
	first_m = VM_PAGE_NULL;
	access_required = fault_type;

	/*
	 *	See whether this page is resident
	 */

	while (TRUE) {
		m = vm_page_lookup(object, offset);
		if (m != VM_PAGE_NULL) {
			/*
			 *	If the page is being brought in,
			 *	wait for it and then retry.
			 *
			 *	A possible optimization: if the page
			 *	is known to be resident, we can ignore
			 *	pages that are absent (regardless of
			 *	whether they're busy).
			 */

			if (m->busy) {
				kern_return_t	wait_result;

				PAGE_ASSERT_WAIT(m, interruptible);
				vm_object_unlock(object);
				if (continuation != (void (*)()) 0) {
					register vm_fault_state_t *state =
						(vm_fault_state_t *) current_thread()->ith_other;

					/*
					 *	Save variables in case
					 *	thread_block discards
					 *	our kernel stack.
					 */

					state->vmfp_backoff = FALSE;
					state->vmfp_object = object;
					state->vmfp_offset = offset;
					state->vmfp_first_m = first_m;
					state->vmfp_access =
						access_required;
					state->vmf_prot = *protection;

					counter(c_vm_fault_page_block_busy_user++);
					thread_block(continuation);
				} else
				{
					counter(c_vm_fault_page_block_busy_kernel++);
					thread_block((void (*)()) 0);
				}
			    after_thread_block:
				wait_result = current_thread()->wait_result;
				vm_object_lock(object);
				if (wait_result != THREAD_AWAKENED) {
					vm_fault_cleanup(object, first_m);
					if (wait_result == THREAD_RESTART)
						return(VM_FAULT_RETRY);
					else
						return(VM_FAULT_INTERRUPTED);
				}
				continue;
			}

			/*
			 *	If the page is in error, give up now.
			 */

			if (m->error) {
				VM_PAGE_FREE(m);
				vm_fault_cleanup(object, first_m);
				return(VM_FAULT_MEMORY_ERROR);
			}

			/*
			 *	If the page isn't busy, but is absent,
			 *	then it was deemed "unavailable".
			 */

			if (m->absent) {
				/*
				 * Remove the non-existent page (unless it's
				 * in the top object) and move on down to the
				 * next object (if there is one).
				 */

				offset += object->shadow_offset;
				access_required = VM_PROT_READ;
				next_object = object->shadow;
				if (next_object == VM_OBJECT_NULL) {
					vm_page_t real_m;

					assert(!must_be_resident);

					/*
					 * Absent page at bottom of shadow
					 * chain; zero fill the page we left
					 * busy in the first object, and flush
					 * the absent page.  But first we
					 * need to allocate a real page.
					 */

					real_m = vm_page_grab(!object->internal);
					if (real_m == VM_PAGE_NULL) {
						vm_fault_cleanup(object, first_m);
						return(VM_FAULT_MEMORY_SHORTAGE);
					}

					if (object != first_object) {
						VM_PAGE_FREE(m);
						vm_object_paging_end(object);
						vm_object_unlock(object);
						object = first_object;
						offset = first_offset;
						m = first_m;
						first_m = VM_PAGE_NULL;
						vm_object_lock(object);
					}

					VM_PAGE_FREE(m);
					assert(real_m->busy);
					vm_page_lock_queues();
					vm_page_insert(real_m, object, offset);
					vm_page_unlock_queues();
					m = real_m;

					/*
					 *  Drop the lock while zero filling
					 *  page.  Then break because this
					 *  is the page we wanted.  Checking
					 *  the page lock is a waste of time;
					 *  this page was either absent or
					 *  newly allocated -- in both cases
					 *  it can't be page locked by a pager.
					 */
					vm_object_unlock(object);

					vm_page_zero_fill(m);

					vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS);

					vm_stat.zero_fill_count++;
					vm_object_lock(object);
					pmap_clear_modify(m->phys_addr);
					break;
				} else {
					if (must_be_resident) {
						vm_object_paging_end(object);
					} else if (object != first_object) {
						vm_object_paging_end(object);
						VM_PAGE_FREE(m);
					} else {
						first_m = m;
						m->absent = FALSE;
						vm_object_absent_release(object);
						m->busy = TRUE;

						vm_page_lock_queues();
						VM_PAGE_QUEUES_REMOVE(m);
						vm_page_unlock_queues();
					}
					vm_object_lock(next_object);
					vm_object_unlock(object);
					object = next_object;
					vm_object_paging_begin(object);
					continue;
				}
			}

			/*
			 *	If the desired access to this page has
			 *	been locked out, request that it be unlocked.
			 */

			if (access_required & m->page_lock) {
				if ((access_required & m->unlock_request) != access_required) {
					vm_prot_t	new_unlock_request;
					kern_return_t	rc;

					if (!object->pager_ready) {
						vm_object_assert_wait(object,
							VM_OBJECT_EVENT_PAGER_READY,
							interruptible);
						goto block_and_backoff;
					}

					new_unlock_request = m->unlock_request =
						(access_required | m->unlock_request);
					vm_object_unlock(object);
					if ((rc = memory_object_data_unlock(
						object->pager,
						object->pager_request,
						offset + object->paging_offset,
						PAGE_SIZE,
						new_unlock_request))
					     != KERN_SUCCESS) {
					     	printf("vm_fault: memory_object_data_unlock failed\n");
						vm_object_lock(object);
						vm_fault_cleanup(object, first_m);
						return((rc == MACH_SEND_INTERRUPTED) ?
							VM_FAULT_INTERRUPTED :
							VM_FAULT_MEMORY_ERROR);
					}
					vm_object_lock(object);
					continue;
				}

				PAGE_ASSERT_WAIT(m, interruptible);
				goto block_and_backoff;
			}

			/*
			 *	We mark the page busy and leave it on
			 *	the pageout queues.  If the pageout
			 *	deamon comes across it, then it will
			 *	remove the page.
			 */

			if (!software_reference_bits) {
				vm_page_lock_queues();
				if (m->inactive)  {
				    	vm_stat_sample(SAMPLED_PC_VM_REACTIVATION_FAULTS);
					vm_stat.reactivations++;
				}

				VM_PAGE_QUEUES_REMOVE(m);
				vm_page_unlock_queues();
			}

			assert(!m->busy);
			m->busy = TRUE;
			assert(!m->absent);
			break;
		}

		look_for_page =
			(object->pager_created)
#if	MACH_PAGEMAP
			&& (vm_external_state_get(object->existence_info, offset + object->paging_offset) !=
			 VM_EXTERNAL_STATE_ABSENT)
#endif	/* MACH_PAGEMAP */
			 ;

		if ((look_for_page || (object == first_object))
				 && !must_be_resident) {
			/*
			 *	Allocate a new page for this object/offset
			 *	pair.
			 */

			m = vm_page_grab_fictitious();
			if (m == VM_PAGE_NULL) {
				vm_fault_cleanup(object, first_m);
				return(VM_FAULT_FICTITIOUS_SHORTAGE);
			}

			vm_page_lock_queues();
			vm_page_insert(m, object, offset);
			vm_page_unlock_queues();
		}

		if (look_for_page && !must_be_resident) {
			kern_return_t	rc;

			/*
			 *	If the memory manager is not ready, we
			 *	cannot make requests.
			 */
			if (!object->pager_ready) {
				vm_object_assert_wait(object,
					VM_OBJECT_EVENT_PAGER_READY,
					interruptible);
				VM_PAGE_FREE(m);
				goto block_and_backoff;
			}

			if (object->internal) {
				/*
				 *	Requests to the default pager
				 *	must reserve a real page in advance,
				 *	because the pager's data-provided
				 *	won't block for pages.
				 */

				if (m->fictitious && !vm_page_convert(m, FALSE)) {
					VM_PAGE_FREE(m);
					vm_fault_cleanup(object, first_m);
					return(VM_FAULT_MEMORY_SHORTAGE);
				}
			} else if (object->absent_count >
						vm_object_absent_max) {
				/*
				 *	If there are too many outstanding page
				 *	requests pending on this object, we
				 *	wait for them to be resolved now.
				 */

				vm_object_absent_assert_wait(object, interruptible);
				VM_PAGE_FREE(m);
				goto block_and_backoff;
			}

			/*
			 *	Indicate that the page is waiting for data
			 *	from the memory manager.
			 */

			m->absent = TRUE;
			object->absent_count++;

			/*
			 *	We have a busy page, so we can
			 *	release the object lock.
			 */
			vm_object_unlock(object);

			/*
			 *	Call the memory manager to retrieve the data.
			 */

			vm_stat.pageins++;
		    	vm_stat_sample(SAMPLED_PC_VM_PAGEIN_FAULTS);

			if ((rc = memory_object_data_request(object->pager,
				object->pager_request,
				m->offset + object->paging_offset,
				PAGE_SIZE, access_required)) != KERN_SUCCESS) {
				if (rc != MACH_SEND_INTERRUPTED)
					printf("%s(0x%p, 0x%p, 0x%x, 0x%x, 0x%x) failed, %x\n",
						"memory_object_data_request",
						object->pager,
						object->pager_request,
						m->offset + object->paging_offset,
						PAGE_SIZE, access_required, rc);
				/*
				 *	Don't want to leave a busy page around,
				 *	but the data request may have blocked,
				 *	so check if it's still there and busy.
				 */
				vm_object_lock(object);
				if (m == vm_page_lookup(object,offset) &&
				    m->absent && m->busy)
					VM_PAGE_FREE(m);
				vm_fault_cleanup(object, first_m);
				return((rc == MACH_SEND_INTERRUPTED) ?
					VM_FAULT_INTERRUPTED :
					VM_FAULT_MEMORY_ERROR);
			}

			/*
			 * Retry with same object/offset, since new data may
			 * be in a different page (i.e., m is meaningless at
			 * this point).
			 */
			vm_object_lock(object);
			continue;
		}

		/*
		 * For the XP system, the only case in which we get here is if
		 * object has no pager (or unwiring).  If the pager doesn't
		 * have the page this is handled in the m->absent case above
		 * (and if you change things here you should look above).
		 */
		if (object == first_object)
			first_m = m;
		else
		{
			assert(m == VM_PAGE_NULL);
		}

		/*
		 *	Move on to the next object.  Lock the next
		 *	object before unlocking the current one.
		 */
		access_required = VM_PROT_READ;

		offset += object->shadow_offset;
		next_object = object->shadow;
		if (next_object == VM_OBJECT_NULL) {
			assert(!must_be_resident);

			/*
			 *	If there's no object left, fill the page
			 *	in the top object with zeros.  But first we
			 *	need to allocate a real page.
			 */

			if (object != first_object) {
				vm_object_paging_end(object);
				vm_object_unlock(object);

				object = first_object;
				offset = first_offset;
				vm_object_lock(object);
			}

			m = first_m;
			assert(m->object == object);
			first_m = VM_PAGE_NULL;

			if (m->fictitious && !vm_page_convert(m, !object->internal)) {
				VM_PAGE_FREE(m);
				vm_fault_cleanup(object, VM_PAGE_NULL);
				return(VM_FAULT_MEMORY_SHORTAGE);
			}

			vm_object_unlock(object);
			vm_page_zero_fill(m);
			vm_stat_sample(SAMPLED_PC_VM_ZFILL_FAULTS);
			vm_stat.zero_fill_count++;
			vm_object_lock(object);
			pmap_clear_modify(m->phys_addr);
			break;
		}
		else {
			vm_object_lock(next_object);
			if ((object != first_object) || must_be_resident)
				vm_object_paging_end(object);
			vm_object_unlock(object);
			object = next_object;
			vm_object_paging_begin(object);
		}
	}

	/*
	 *	PAGE HAS BEEN FOUND.
	 *
	 *	This page (m) is:
	 *		busy, so that we can play with it;
	 *		not absent, so that nobody else will fill it;
	 *		possibly eligible for pageout;
	 *
	 *	The top-level page (first_m) is:
	 *		VM_PAGE_NULL if the page was found in the
	 *		 top-level object;
	 *		busy, not absent, and ineligible for pageout.
	 *
	 *	The current object (object) is locked.  A paging
	 *	reference is held for the current and top-level
	 *	objects.
	 */

#if	EXTRA_ASSERTIONS
	assert(m->busy && !m->absent);
	assert((first_m == VM_PAGE_NULL) ||
		(first_m->busy && !first_m->absent &&
		 !first_m->active && !first_m->inactive));
#endif	/* EXTRA_ASSERTIONS */

	/*
	 *	If the page is being written, but isn't
	 *	already owned by the top-level object,
	 *	we have to copy it into a new page owned
	 *	by the top-level object.
	 */

	if (object != first_object) {
	    	/*
		 *	We only really need to copy if we
		 *	want to write it.
		 */

	    	if (fault_type & VM_PROT_WRITE) {
			vm_page_t copy_m;

			assert(!must_be_resident);

			/*
			 *	If we try to collapse first_object at this
			 *	point, we may deadlock when we try to get
			 *	the lock on an intermediate object (since we
			 *	have the bottom object locked).  We can't
			 *	unlock the bottom object, because the page
			 *	we found may move (by collapse) if we do.
			 *
			 *	Instead, we first copy the page.  Then, when
			 *	we have no more use for the bottom object,
			 *	we unlock it and try to collapse.
			 *
			 *	Note that we copy the page even if we didn't
			 *	need to... that's the breaks.
			 */

			/*
			 *	Allocate a page for the copy
			 */
			copy_m = vm_page_grab(!first_object->internal);
			if (copy_m == VM_PAGE_NULL) {
				RELEASE_PAGE(m);
				vm_fault_cleanup(object, first_m);
				return(VM_FAULT_MEMORY_SHORTAGE);
			}

			vm_object_unlock(object);
			vm_page_copy(m, copy_m);
			vm_object_lock(object);

			/*
			 *	If another map is truly sharing this
			 *	page with us, we have to flush all
			 *	uses of the original page, since we
			 *	can't distinguish those which want the
			 *	original from those which need the
			 *	new copy.
			 *
			 *	XXXO If we know that only one map has
			 *	access to this page, then we could
			 *	avoid the pmap_page_protect() call.
			 */

			vm_page_lock_queues();
			vm_page_deactivate(m);
			pmap_page_protect(m->phys_addr, VM_PROT_NONE);
			vm_page_unlock_queues();

			/*
			 *	We no longer need the old page or object.
			 */

			PAGE_WAKEUP_DONE(m);
			vm_object_paging_end(object);
			vm_object_unlock(object);

			vm_stat.cow_faults++;
			vm_stat_sample(SAMPLED_PC_VM_COW_FAULTS);
			object = first_object;
			offset = first_offset;

			vm_object_lock(object);
			VM_PAGE_FREE(first_m);
			first_m = VM_PAGE_NULL;
			assert(copy_m->busy);
			vm_page_lock_queues();
			vm_page_insert(copy_m, object, offset);
			vm_page_unlock_queues();
			m = copy_m;

			/*
			 *	Now that we've gotten the copy out of the
			 *	way, let's try to collapse the top object.
			 *	But we have to play ugly games with
			 *	paging_in_progress to do that...
			 */

			vm_object_paging_end(object);
			vm_object_collapse(object);
			vm_object_paging_begin(object);
		}
		else {
		    	*protection &= (~VM_PROT_WRITE);
		}
	}

	/*
	 *	Now check whether the page needs to be pushed into the
	 *	copy object.  The use of asymmetric copy on write for
	 *	shared temporary objects means that we may do two copies to
	 *	satisfy the fault; one above to get the page from a
	 *	shadowed object, and one here to push it into the copy.
	 */

	while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
		vm_offset_t	copy_offset;
		vm_page_t	copy_m;

		/*
		 *	If the page is being written, but hasn't been
		 *	copied to the copy-object, we have to copy it there.
		 */

		if ((fault_type & VM_PROT_WRITE) == 0) {
			*protection &= ~VM_PROT_WRITE;
			break;
		}

		/*
		 *	If the page was guaranteed to be resident,
		 *	we must have already performed the copy.
		 */

		if (must_be_resident)
			break;

		/*
		 *	Try to get the lock on the copy_object.
		 */
		if (!vm_object_lock_try(copy_object)) {
			vm_object_unlock(object);

			simple_lock_pause();	/* wait a bit */

			vm_object_lock(object);
			continue;
		}

		/*
		 *	Make another reference to the copy-object,
		 *	to keep it from disappearing during the
		 *	copy.
		 */
		assert(copy_object->ref_count > 0);
		copy_object->ref_count++;

		/*
		 *	Does the page exist in the copy?
		 */
		copy_offset = first_offset - copy_object->shadow_offset;
		copy_m = vm_page_lookup(copy_object, copy_offset);
		if (copy_m != VM_PAGE_NULL) {
			if (copy_m->busy) {
				/*
				 *	If the page is being brought
				 *	in, wait for it and then retry.
				 */
				PAGE_ASSERT_WAIT(copy_m, interruptible);
				RELEASE_PAGE(m);
				copy_object->ref_count--;
				assert(copy_object->ref_count > 0);
				vm_object_unlock(copy_object);
				goto block_and_backoff;
			}
		}
		else {
			/*
			 *	Allocate a page for the copy
			 */
			copy_m = vm_page_alloc(copy_object, copy_offset);
			if (copy_m == VM_PAGE_NULL) {
				RELEASE_PAGE(m);
				copy_object->ref_count--;
				assert(copy_object->ref_count > 0);
				vm_object_unlock(copy_object);
				vm_fault_cleanup(object, first_m);
				return(VM_FAULT_MEMORY_SHORTAGE);
			}

			/*
			 *	Must copy page into copy-object.
			 */

			vm_page_copy(m, copy_m);

			/*
			 *	If the old page was in use by any users
			 *	of the copy-object, it must be removed
			 *	from all pmaps.  (We can't know which
			 *	pmaps use it.)
			 */

			vm_page_lock_queues();
			pmap_page_protect(m->phys_addr, VM_PROT_NONE);
			copy_m->dirty = TRUE;
			vm_page_unlock_queues();

			/*
			 *	If there's a pager, then immediately
			 *	page out this page, using the "initialize"
			 *	option.  Else, we use the copy.
			 */

		 	if (!copy_object->pager_created) {
				vm_page_lock_queues();
				vm_page_activate(copy_m);
				vm_page_unlock_queues();
				PAGE_WAKEUP_DONE(copy_m);
			} else {
				/*
				 *	The page is already ready for pageout:
				 *	not on pageout queues and busy.
				 *	Unlock everything except the
				 *	copy_object itself.
				 */

				vm_object_unlock(object);

				/*
				 *	Write the page to the copy-object,
				 *	flushing it from the kernel.
				 */

				vm_pageout_page(copy_m, TRUE, TRUE);

				/*
				 *	Since the pageout may have
				 *	temporarily dropped the
				 *	copy_object's lock, we
				 *	check whether we'll have
				 *	to deallocate the hard way.
				 */

				if ((copy_object->shadow != object) ||
				    (copy_object->ref_count == 1)) {
					vm_object_unlock(copy_object);
					vm_object_deallocate(copy_object);
					vm_object_lock(object);
					continue;
				}

				/*
				 *	Pick back up the old object's
				 *	lock.  [It is safe to do so,
				 *	since it must be deeper in the
				 *	object tree.]
				 */

				vm_object_lock(object);
			}

			/*
			 *	Because we're pushing a page upward
			 *	in the object tree, we must restart
			 *	any faults that are waiting here.
			 *	[Note that this is an expansion of
			 *	PAGE_WAKEUP that uses the THREAD_RESTART
			 *	wait result].  Can't turn off the page's
			 *	busy bit because we're not done with it.
			 */

			if (m->wanted) {
				m->wanted = FALSE;
				thread_wakeup_with_result((event_t) m,
					THREAD_RESTART);
			}
		}

		/*
		 *	The reference count on copy_object must be
		 *	at least 2: one for our extra reference,
		 *	and at least one from the outside world
		 *	(we checked that when we last locked
		 *	copy_object).
		 */
		copy_object->ref_count--;
		assert(copy_object->ref_count > 0);
		vm_object_unlock(copy_object);

		break;
	}

	*result_page = m;
	*top_page = first_m;

	/*
	 *	If the page can be written, assume that it will be.
	 *	[Earlier, we restrict the permission to allow write
	 *	access only if the fault so required, so we don't
	 *	mark read-only data as dirty.]
	 */

	if (vm_fault_dirty_handling && (*protection & VM_PROT_WRITE))
		m->dirty = TRUE;

	return(VM_FAULT_SUCCESS);

    block_and_backoff:
	vm_fault_cleanup(object, first_m);

	if (continuation != (void (*)()) 0) {
		register vm_fault_state_t *state =
			(vm_fault_state_t *) current_thread()->ith_other;

		/*
		 *	Save variables in case we must restart.
		 */

		state->vmfp_backoff = TRUE;
		state->vmf_prot = *protection;

		counter(c_vm_fault_page_block_backoff_user++);
		thread_block(continuation);
	} else
	{
		counter(c_vm_fault_page_block_backoff_kernel++);
		thread_block((void (*)()) 0);
	}
    after_block_and_backoff:
	if (current_thread()->wait_result == THREAD_AWAKENED)
		return VM_FAULT_RETRY;
	else
		return VM_FAULT_INTERRUPTED;

#undef	RELEASE_PAGE
}

/*
 *	Routine:	vm_fault
 *	Purpose:
 *		Handle page faults, including pseudo-faults
 *		used to change the wiring status of pages.
 *	Returns:
 *		If an explicit (expression) continuation is supplied,
 *		then we call the continuation instead of returning.
 *	Implementation:
 *		Explicit continuations make this a little icky,
 *		because it hasn't been rewritten to embrace CPS.
 *		Instead, we have resume arguments for vm_fault and
 *		vm_fault_page, to let continue the fault computation.
 *
 *		vm_fault and vm_fault_page save mucho state
 *		in the moral equivalent of a closure.  The state
 *		structure is allocated when first entering vm_fault
 *		and deallocated when leaving vm_fault.
 */

void
vm_fault_continue()
{
	register vm_fault_state_t *state =
		(vm_fault_state_t *) current_thread()->ith_other;

	(void) vm_fault(state->vmf_map,
			state->vmf_vaddr,
			state->vmf_fault_type,
			state->vmf_change_wiring,
			TRUE, state->vmf_continuation);
	/*NOTREACHED*/
}

kern_return_t vm_fault(map, vaddr, fault_type, change_wiring,
		       resume, continuation)
	vm_map_t	map;
	vm_offset_t	vaddr;
	vm_prot_t	fault_type;
	boolean_t	change_wiring;
	boolean_t	resume;
	void		(*continuation)();
{
	vm_map_version_t	version;	/* Map version for verificiation */
	boolean_t		wired;		/* Should mapping be wired down? */
	vm_object_t		object;		/* Top-level object */
	vm_offset_t		offset;		/* Top-level offset */
	vm_prot_t		prot;		/* Protection for mapping */
	vm_object_t		old_copy_object; /* Saved copy object */
	vm_page_t		result_page;	/* Result of vm_fault_page */
	vm_page_t		top_page;	/* Placeholder page */
	kern_return_t		kr;

	register
	vm_page_t		m;	/* Fast access to result_page */

	if (resume) {
		register vm_fault_state_t *state =
			(vm_fault_state_t *) current_thread()->ith_other;

		/*
		 *	Retrieve cached variables and
		 *	continue vm_fault_page.
		 */

		object = state->vmf_object;
		if (object == VM_OBJECT_NULL)
			goto RetryFault;
		version = state->vmf_version;
		wired = state->vmf_wired;
		offset = state->vmf_offset;
		prot = state->vmf_prot;

		kr = vm_fault_page(object, offset, fault_type,
				(change_wiring && !wired), !change_wiring,
				&prot, &result_page, &top_page,
				TRUE, vm_fault_continue);
		goto after_vm_fault_page;
	}

	if (continuation != (void (*)()) 0) {
		/*
		 *	We will probably need to save state.
		 */

		char *	state;

		/*
		 * if this assignment stmt is written as
		 * 'active_threads[cpu_number()] = kmem_cache_alloc()',
		 * cpu_number may be evaluated before kmem_cache_alloc;
		 * if kmem_cache_alloc blocks, cpu_number will be wrong
		 */

		state = (char *) kmem_cache_alloc(&vm_fault_state_cache);
		current_thread()->ith_other = state;

	}

    RetryFault: ;

	/*
	 *	Find the backing store object and offset into
	 *	it to begin the search.
	 */

	if ((kr = vm_map_lookup(&map, vaddr, fault_type, &version,
				&object, &offset,
				&prot, &wired)) != KERN_SUCCESS) {
		goto done;
	}

	/*
	 *	If the page is wired, we must fault for the current protection
	 *	value, to avoid further faults.
	 */

	if (wired)
		fault_type = prot;

   	/*
	 *	Make a reference to this object to
	 *	prevent its disposal while we are messing with
	 *	it.  Once we have the reference, the map is free
	 *	to be diddled.  Since objects reference their
	 *	shadows (and copies), they will stay around as well.
	 */

	assert(object->ref_count > 0);
	object->ref_count++;
	vm_object_paging_begin(object);

	if (continuation != (void (*)()) 0) {
		register vm_fault_state_t *state =
			(vm_fault_state_t *) current_thread()->ith_other;

		/*
		 *	Save variables, in case vm_fault_page discards
		 *	our kernel stack and we have to restart.
		 */

		state->vmf_map = map;
		state->vmf_vaddr = vaddr;
		state->vmf_fault_type = fault_type;
		state->vmf_change_wiring = change_wiring;
		state->vmf_continuation = continuation;

		state->vmf_version = version;
		state->vmf_wired = wired;
		state->vmf_object = object;
		state->vmf_offset = offset;
		state->vmf_prot = prot;

		kr = vm_fault_page(object, offset, fault_type,
				   (change_wiring && !wired), !change_wiring,
				   &prot, &result_page, &top_page,
				   FALSE, vm_fault_continue);
	} else
	{
		kr = vm_fault_page(object, offset, fault_type,
				   (change_wiring && !wired), !change_wiring,
				   &prot, &result_page, &top_page,
				   FALSE, (void (*)()) 0);
	}
    after_vm_fault_page:

	/*
	 *	If we didn't succeed, lose the object reference immediately.
	 */

	if (kr != VM_FAULT_SUCCESS)
		vm_object_deallocate(object);

	/*
	 *	See why we failed, and take corrective action.
	 */

	switch (kr) {
		case VM_FAULT_SUCCESS:
			break;
		case VM_FAULT_RETRY:
			goto RetryFault;
		case VM_FAULT_INTERRUPTED:
			kr = KERN_SUCCESS;
			goto done;
		case VM_FAULT_MEMORY_SHORTAGE:
			if (continuation != (void (*)()) 0) {
				register vm_fault_state_t *state =
					(vm_fault_state_t *) current_thread()->ith_other;

				/*
				 *	Save variables in case VM_PAGE_WAIT
				 *	discards our kernel stack.
				 */

				state->vmf_map = map;
				state->vmf_vaddr = vaddr;
				state->vmf_fault_type = fault_type;
				state->vmf_change_wiring = change_wiring;
				state->vmf_continuation = continuation;
				state->vmf_object = VM_OBJECT_NULL;

				VM_PAGE_WAIT(vm_fault_continue);
			} else
				VM_PAGE_WAIT((void (*)()) 0);
			goto RetryFault;
		case VM_FAULT_FICTITIOUS_SHORTAGE:
			vm_page_more_fictitious();
			goto RetryFault;
		case VM_FAULT_MEMORY_ERROR:
			kr = KERN_MEMORY_ERROR;
			goto done;
	}

	m = result_page;

	assert((change_wiring && !wired) ?
	       (top_page == VM_PAGE_NULL) :
	       ((top_page == VM_PAGE_NULL) == (m->object == object)));

	/*
	 *	How to clean up the result of vm_fault_page.  This
	 *	happens whether the mapping is entered or not.
	 */

#define UNLOCK_AND_DEALLOCATE				\
	MACRO_BEGIN					\
	vm_fault_cleanup(m->object, top_page);		\
	vm_object_deallocate(object);			\
	MACRO_END

	/*
	 *	What to do with the resulting page from vm_fault_page
	 *	if it doesn't get entered into the physical map:
	 */

#define RELEASE_PAGE(m)					\
	MACRO_BEGIN					\
	PAGE_WAKEUP_DONE(m);				\
	vm_page_lock_queues();				\
	if (!m->active && !m->inactive)			\
		vm_page_activate(m);			\
	vm_page_unlock_queues();			\
	MACRO_END

	/*
	 *	We must verify that the maps have not changed
	 *	since our last lookup.
	 */

	old_copy_object = m->object->copy;

	vm_object_unlock(m->object);
	while (!vm_map_verify(map, &version)) {
		vm_object_t	retry_object;
		vm_offset_t	retry_offset;
		vm_prot_t	retry_prot;

		/*
		 *	To avoid trying to write_lock the map while another
		 *	thread has it read_locked (in vm_map_pageable), we
		 *	do not try for write permission.  If the page is
		 *	still writable, we will get write permission.  If it
		 *	is not, or has been marked needs_copy, we enter the
		 *	mapping without write permission, and will merely
		 *	take another fault.
		 */
		kr = vm_map_lookup(&map, vaddr,
				   fault_type & ~VM_PROT_WRITE, &version,
				   &retry_object, &retry_offset, &retry_prot,
				   &wired);

		if (kr != KERN_SUCCESS) {
			vm_object_lock(m->object);
			RELEASE_PAGE(m);
			UNLOCK_AND_DEALLOCATE;
			goto done;
		}

		vm_object_unlock(retry_object);
		vm_object_lock(m->object);

		if ((retry_object != object) ||
		    (retry_offset != offset)) {
			RELEASE_PAGE(m);
			UNLOCK_AND_DEALLOCATE;
			goto RetryFault;
		}

		/*
		 *	Check whether the protection has changed or the object
		 *	has been copied while we left the map unlocked.
		 */
		prot &= retry_prot;
		vm_object_unlock(m->object);
	}
	vm_object_lock(m->object);

	/*
	 *	If the copy object changed while the top-level object
	 *	was unlocked, then we must take away write permission.
	 */

	if (m->object->copy != old_copy_object)
		prot &= ~VM_PROT_WRITE;

	/*
	 *	If we want to wire down this page, but no longer have
	 *	adequate permissions, we must start all over.
	 */

	if (wired && (prot != fault_type)) {
		vm_map_verify_done(map, &version);
		RELEASE_PAGE(m);
		UNLOCK_AND_DEALLOCATE;
		goto RetryFault;
	}

	/*
	 *	It's critically important that a wired-down page be faulted
	 *	only once in each map for which it is wired.
	 */

	vm_object_unlock(m->object);

	/*
	 *	Put this page into the physical map.
	 *	We had to do the unlock above because pmap_enter
	 *	may cause other faults.  The page may be on
	 *	the pageout queues.  If the pageout daemon comes
	 *	across the page, it will remove it from the queues.
	 */

	PMAP_ENTER(map->pmap, vaddr, m, prot, wired);

	/*
	 *	If the page is not wired down and isn't already
	 *	on a pageout queue, then put it where the
	 *	pageout daemon can find it.
	 */
	vm_object_lock(m->object);
	vm_page_lock_queues();
	if (change_wiring) {
		if (wired)
			vm_page_wire(m);
		else
			vm_page_unwire(m);
	} else if (software_reference_bits) {
		if (!m->active && !m->inactive)
			vm_page_activate(m);
		m->reference = TRUE;
	} else {
		vm_page_activate(m);
	}
	vm_page_unlock_queues();

	/*
	 *	Unlock everything, and return
	 */

	vm_map_verify_done(map, &version);
	PAGE_WAKEUP_DONE(m);
	kr = KERN_SUCCESS;
	UNLOCK_AND_DEALLOCATE;

#undef	UNLOCK_AND_DEALLOCATE
#undef	RELEASE_PAGE

    done:
	if (continuation != (void (*)()) 0) {
		register vm_fault_state_t *state =
			(vm_fault_state_t *) current_thread()->ith_other;

		kmem_cache_free(&vm_fault_state_cache, (vm_offset_t) state);
		(*continuation)(kr);
		/*NOTREACHED*/
	}

	return(kr);
}

kern_return_t	vm_fault_wire_fast();

/*
 *	vm_fault_wire:
 *
 *	Wire down a range of virtual addresses in a map.
 */
void vm_fault_wire(map, entry)
	vm_map_t	map;
	vm_map_entry_t	entry;
{

	register vm_offset_t	va;
	register pmap_t		pmap;
	register vm_offset_t	end_addr = entry->vme_end;

	pmap = vm_map_pmap(map);

	/*
	 *	Inform the physical mapping system that the
	 *	range of addresses may not fault, so that
	 *	page tables and such can be locked down as well.
	 */

	pmap_pageable(pmap, entry->vme_start, end_addr, FALSE);

	/*
	 *	We simulate a fault to get the page and enter it
	 *	in the physical map.
	 */

	for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
		if (vm_fault_wire_fast(map, va, entry) != KERN_SUCCESS)
			(void) vm_fault(map, va, VM_PROT_NONE, TRUE,
					FALSE, (void (*)()) 0);
	}
}

/*
 *	vm_fault_unwire:
 *
 *	Unwire a range of virtual addresses in a map.
 */
void vm_fault_unwire(map, entry)
	vm_map_t	map;
	vm_map_entry_t	entry;
{
	register vm_offset_t	va;
	register pmap_t		pmap;
	register vm_offset_t	end_addr = entry->vme_end;
	vm_object_t		object;

	pmap = vm_map_pmap(map);

	object = (entry->is_sub_map)
			? VM_OBJECT_NULL : entry->object.vm_object;

	/*
	 *	Since the pages are wired down, we must be able to
	 *	get their mappings from the physical map system.
	 */

	for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
		pmap_change_wiring(pmap, va, FALSE);

		if (object == VM_OBJECT_NULL) {
			vm_map_lock_set_recursive(map);
			(void) vm_fault(map, va, VM_PROT_NONE, TRUE,
					FALSE, (void (*)()) 0);
			vm_map_lock_clear_recursive(map);
		} else {
		 	vm_prot_t	prot;
			vm_page_t	result_page;
			vm_page_t	top_page;
			vm_fault_return_t result;

			do {
				prot = VM_PROT_NONE;

				vm_object_lock(object);
				vm_object_paging_begin(object);
			 	result = vm_fault_page(object,
						entry->offset +
						  (va - entry->vme_start),
						VM_PROT_NONE, TRUE,
						FALSE, &prot,
						&result_page,
						&top_page,
						FALSE, (void (*)()) 0);
			} while (result == VM_FAULT_RETRY);

			if (result != VM_FAULT_SUCCESS)
				panic("vm_fault_unwire: failure");

			vm_page_lock_queues();
			vm_page_unwire(result_page);
			vm_page_unlock_queues();
			PAGE_WAKEUP_DONE(result_page);

			vm_fault_cleanup(result_page->object, top_page);
		}
	}

	/*
	 *	Inform the physical mapping system that the range
	 *	of addresses may fault, so that page tables and
	 *	such may be unwired themselves.
	 */

	pmap_pageable(pmap, entry->vme_start, end_addr, TRUE);
}

/*
 *	vm_fault_wire_fast:
 *
 *	Handle common case of a wire down page fault at the given address.
 *	If successful, the page is inserted into the associated physical map.
 *	The map entry is passed in to avoid the overhead of a map lookup.
 *
 *	NOTE: the given address should be truncated to the
 *	proper page address.
 *
 *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
 *	a standard error specifying why the fault is fatal is returned.
 *
 *	The map in question must be referenced, and remains so.
 *	Caller has a read lock on the map.
 *
 *	This is a stripped version of vm_fault() for wiring pages.  Anything
 *	other than the common case will return KERN_FAILURE, and the caller
 *	is expected to call vm_fault().
 */
kern_return_t vm_fault_wire_fast(map, va, entry)
	vm_map_t	map;
	vm_offset_t	va;
	vm_map_entry_t	entry;
{
	vm_object_t		object;
	vm_offset_t		offset;
	register vm_page_t	m;
	vm_prot_t		prot;

	vm_stat.faults++;		/* needs lock XXX */
/*
 *	Recovery actions
 */

#undef	RELEASE_PAGE
#define RELEASE_PAGE(m)	{				\
	PAGE_WAKEUP_DONE(m);				\
	vm_page_lock_queues();				\
	vm_page_unwire(m);				\
	vm_page_unlock_queues();			\
}


#undef	UNLOCK_THINGS
#define UNLOCK_THINGS	{				\
	object->paging_in_progress--;			\
	vm_object_unlock(object);			\
}

#undef	UNLOCK_AND_DEALLOCATE
#define UNLOCK_AND_DEALLOCATE	{			\
	UNLOCK_THINGS;					\
	vm_object_deallocate(object);			\
}
/*
 *	Give up and have caller do things the hard way.
 */

#define GIVE_UP {					\
	UNLOCK_AND_DEALLOCATE;				\
	return(KERN_FAILURE);				\
}


	/*
	 *	If this entry is not directly to a vm_object, bail out.
	 */
	if (entry->is_sub_map)
		return(KERN_FAILURE);

	/*
	 *	Find the backing store object and offset into it.
	 */

	object = entry->object.vm_object;
	offset = (va - entry->vme_start) + entry->offset;
	prot = entry->protection;

   	/*
	 *	Make a reference to this object to prevent its
	 *	disposal while we are messing with it.
	 */

	vm_object_lock(object);
	assert(object->ref_count > 0);
	object->ref_count++;
	object->paging_in_progress++;

	/*
	 *	INVARIANTS (through entire routine):
	 *
	 *	1)	At all times, we must either have the object
	 *		lock or a busy page in some object to prevent
	 *		some other thread from trying to bring in
	 *		the same page.
	 *
	 *	2)	Once we have a busy page, we must remove it from
	 *		the pageout queues, so that the pageout daemon
	 *		will not grab it away.
	 *
	 */

	/*
	 *	Look for page in top-level object.  If it's not there or
	 *	there's something going on, give up.
	 */
	m = vm_page_lookup(object, offset);
	if ((m == VM_PAGE_NULL) || (m->error) ||
	    (m->busy) || (m->absent) || (prot & m->page_lock)) {
		GIVE_UP;
	}

	/*
	 *	Wire the page down now.  All bail outs beyond this
	 *	point must unwire the page.
	 */

	vm_page_lock_queues();
	vm_page_wire(m);
	vm_page_unlock_queues();

	/*
	 *	Mark page busy for other threads.
	 */
	assert(!m->busy);
	m->busy = TRUE;
	assert(!m->absent);

	/*
	 *	Give up if the page is being written and there's a copy object
	 */
	if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) {
		RELEASE_PAGE(m);
		GIVE_UP;
	}

	/*
	 *	Put this page into the physical map.
	 *	We have to unlock the object because pmap_enter
	 *	may cause other faults.
	 */
	vm_object_unlock(object);

	PMAP_ENTER(map->pmap, va, m, prot, TRUE);

	/*
	 *	Must relock object so that paging_in_progress can be cleared.
	 */
	vm_object_lock(object);

	/*
	 *	Unlock everything, and return
	 */

	PAGE_WAKEUP_DONE(m);
	UNLOCK_AND_DEALLOCATE;

	return(KERN_SUCCESS);

}

/*
 *	Routine:	vm_fault_copy_cleanup
 *	Purpose:
 *		Release a page used by vm_fault_copy.
 */

void	vm_fault_copy_cleanup(page, top_page)
	vm_page_t	page;
	vm_page_t	top_page;
{
	vm_object_t	object = page->object;

	vm_object_lock(object);
	PAGE_WAKEUP_DONE(page);
	vm_page_lock_queues();
	if (!page->active && !page->inactive)
		vm_page_activate(page);
	vm_page_unlock_queues();
	vm_fault_cleanup(object, top_page);
}

/*
 *	Routine:	vm_fault_copy
 *
 *	Purpose:
 *		Copy pages from one virtual memory object to another --
 *		neither the source nor destination pages need be resident.
 *
 *		Before actually copying a page, the version associated with
 *		the destination address map wil be verified.
 *
 *	In/out conditions:
 *		The caller must hold a reference, but not a lock, to
 *		each of the source and destination objects and to the
 *		destination map.
 *
 *	Results:
 *		Returns KERN_SUCCESS if no errors were encountered in
 *		reading or writing the data.  Returns KERN_INTERRUPTED if
 *		the operation was interrupted (only possible if the
 *		"interruptible" argument is asserted).  Other return values
 *		indicate a permanent error in copying the data.
 *
 *		The actual amount of data copied will be returned in the
 *		"copy_size" argument.  In the event that the destination map
 *		verification failed, this amount may be less than the amount
 *		requested.
 */
kern_return_t	vm_fault_copy(
			src_object,
			src_offset,
			src_size,
			dst_object,
			dst_offset,
			dst_map,
			dst_version,
			interruptible
			)
	vm_object_t	src_object;
	vm_offset_t	src_offset;
	vm_size_t	*src_size;		/* INOUT */
	vm_object_t	dst_object;
	vm_offset_t	dst_offset;
	vm_map_t	dst_map;
	vm_map_version_t *dst_version;
	boolean_t	interruptible;
{
	vm_page_t		result_page;
	vm_prot_t		prot;

	vm_page_t		src_page;
	vm_page_t		src_top_page;

	vm_page_t		dst_page;
	vm_page_t		dst_top_page;

	vm_size_t		amount_done;
	vm_object_t		old_copy_object;

#define	RETURN(x)					\
	MACRO_BEGIN					\
	*src_size = amount_done;			\
	MACRO_RETURN(x);				\
	MACRO_END

	amount_done = 0;
	do { /* while (amount_done != *src_size) */

	    RetrySourceFault: ;

		if (src_object == VM_OBJECT_NULL) {
			/*
			 *	No source object.  We will just
			 *	zero-fill the page in dst_object.
			 */

			src_page = VM_PAGE_NULL;
		} else {
			prot = VM_PROT_READ;

			vm_object_lock(src_object);
			vm_object_paging_begin(src_object);

			switch (vm_fault_page(src_object, src_offset,
					VM_PROT_READ, FALSE, interruptible,
					&prot, &result_page, &src_top_page,
					FALSE, (void (*)()) 0)) {

				case VM_FAULT_SUCCESS:
					break;
				case VM_FAULT_RETRY:
					goto RetrySourceFault;
				case VM_FAULT_INTERRUPTED:
					RETURN(MACH_SEND_INTERRUPTED);
				case VM_FAULT_MEMORY_SHORTAGE:
					VM_PAGE_WAIT((void (*)()) 0);
					goto RetrySourceFault;
				case VM_FAULT_FICTITIOUS_SHORTAGE:
					vm_page_more_fictitious();
					goto RetrySourceFault;
				case VM_FAULT_MEMORY_ERROR:
					return(KERN_MEMORY_ERROR);
			}

			src_page = result_page;

			assert((src_top_page == VM_PAGE_NULL) ==
					(src_page->object == src_object));

			assert ((prot & VM_PROT_READ) != VM_PROT_NONE);

			vm_object_unlock(src_page->object);
		}

	    RetryDestinationFault: ;

		prot = VM_PROT_WRITE;

		vm_object_lock(dst_object);
		vm_object_paging_begin(dst_object);

		switch (vm_fault_page(dst_object, dst_offset, VM_PROT_WRITE,
				FALSE, FALSE /* interruptible */,
				&prot, &result_page, &dst_top_page,
				FALSE, (void (*)()) 0)) {

			case VM_FAULT_SUCCESS:
				break;
			case VM_FAULT_RETRY:
				goto RetryDestinationFault;
			case VM_FAULT_INTERRUPTED:
				if (src_page != VM_PAGE_NULL)
					vm_fault_copy_cleanup(src_page,
							      src_top_page);
				RETURN(MACH_SEND_INTERRUPTED);
			case VM_FAULT_MEMORY_SHORTAGE:
				VM_PAGE_WAIT((void (*)()) 0);
				goto RetryDestinationFault;
			case VM_FAULT_FICTITIOUS_SHORTAGE:
				vm_page_more_fictitious();
				goto RetryDestinationFault;
			case VM_FAULT_MEMORY_ERROR:
				if (src_page != VM_PAGE_NULL)
					vm_fault_copy_cleanup(src_page,
							      src_top_page);
				return(KERN_MEMORY_ERROR);
		}
		assert ((prot & VM_PROT_WRITE) != VM_PROT_NONE);

		dst_page = result_page;

		old_copy_object = dst_page->object->copy;

		vm_object_unlock(dst_page->object);

		if (!vm_map_verify(dst_map, dst_version)) {

		 BailOut: ;

			if (src_page != VM_PAGE_NULL)
				vm_fault_copy_cleanup(src_page, src_top_page);
			vm_fault_copy_cleanup(dst_page, dst_top_page);
			break;
		}


		vm_object_lock(dst_page->object);
		if (dst_page->object->copy != old_copy_object) {
			vm_object_unlock(dst_page->object);
			vm_map_verify_done(dst_map, dst_version);
			goto BailOut;
		}
		vm_object_unlock(dst_page->object);

		/*
		 *	Copy the page, and note that it is dirty
		 *	immediately.
		 */

		if (src_page == VM_PAGE_NULL)
			vm_page_zero_fill(dst_page);
		else
			vm_page_copy(src_page, dst_page);
		dst_page->dirty = TRUE;

		/*
		 *	Unlock everything, and return
		 */

		vm_map_verify_done(dst_map, dst_version);

		if (src_page != VM_PAGE_NULL)
			vm_fault_copy_cleanup(src_page, src_top_page);
		vm_fault_copy_cleanup(dst_page, dst_top_page);

		amount_done += PAGE_SIZE;
		src_offset += PAGE_SIZE;
		dst_offset += PAGE_SIZE;

	} while (amount_done != *src_size);

	RETURN(KERN_SUCCESS);
#undef	RETURN

	/*NOTREACHED*/
}





#ifdef	notdef

/*
 *	Routine:	vm_fault_page_overwrite
 *
 *	Description:
 *		A form of vm_fault_page that assumes that the
 *		resulting page will be overwritten in its entirety,
 *		making it unnecessary to obtain the correct *contents*
 *		of the page.
 *
 *	Implementation:
 *		XXX Untested.  Also unused.  Eventually, this technology
 *		could be used in vm_fault_copy() to advantage.
 */
vm_fault_return_t vm_fault_page_overwrite(dst_object, dst_offset, result_page)
	register
	vm_object_t	dst_object;
	vm_offset_t	dst_offset;
	vm_page_t	*result_page;	/* OUT */
{
	register
	vm_page_t	dst_page;

#define	interruptible	FALSE	/* XXX */

	while (TRUE) {
		/*
		 *	Look for a page at this offset
		 */

		while ((dst_page = vm_page_lookup(dst_object, dst_offset))
				 == VM_PAGE_NULL) {
			/*
			 *	No page, no problem... just allocate one.
			 */

			dst_page = vm_page_alloc(dst_object, dst_offset);
			if (dst_page == VM_PAGE_NULL) {
				vm_object_unlock(dst_object);
				VM_PAGE_WAIT((void (*)()) 0);
				vm_object_lock(dst_object);
				continue;
			}

			/*
			 *	Pretend that the memory manager
			 *	write-protected the page.
			 *
			 *	Note that we will be asking for write
			 *	permission without asking for the data
			 *	first.
			 */

			dst_page->overwriting = TRUE;
			dst_page->page_lock = VM_PROT_WRITE;
			dst_page->absent = TRUE;
			dst_object->absent_count++;

			break;

			/*
			 *	When we bail out, we might have to throw
			 *	away the page created here.
			 */

#define	DISCARD_PAGE						\
	MACRO_BEGIN						\
	vm_object_lock(dst_object);				\
	dst_page = vm_page_lookup(dst_object, dst_offset);	\
	if ((dst_page != VM_PAGE_NULL) && dst_page->overwriting) \
	   	VM_PAGE_FREE(dst_page);				\
	vm_object_unlock(dst_object);				\
	MACRO_END
		}

		/*
		 *	If the page is write-protected...
		 */

		if (dst_page->page_lock & VM_PROT_WRITE) {
			/*
			 *	... and an unlock request hasn't been sent
			 */

			if ( ! (dst_page->unlock_request & VM_PROT_WRITE)) {
				vm_prot_t	u;
				kern_return_t	rc;

				/*
				 *	... then send one now.
				 */

				if (!dst_object->pager_ready) {
					vm_object_assert_wait(dst_object,
						VM_OBJECT_EVENT_PAGER_READY,
						interruptible);
					vm_object_unlock(dst_object);
					thread_block((void (*)()) 0);
					if (current_thread()->wait_result !=
					    THREAD_AWAKENED) {
						DISCARD_PAGE;
						return(VM_FAULT_INTERRUPTED);
					}
					continue;
				}

				u = dst_page->unlock_request |= VM_PROT_WRITE;
				vm_object_unlock(dst_object);

				if ((rc = memory_object_data_unlock(
						dst_object->pager,
						dst_object->pager_request,
						dst_offset + dst_object->paging_offset,
						PAGE_SIZE,
						u)) != KERN_SUCCESS) {
				     	printf("vm_object_overwrite: memory_object_data_unlock failed\n");
					DISCARD_PAGE;
					return((rc == MACH_SEND_INTERRUPTED) ?
						VM_FAULT_INTERRUPTED :
						VM_FAULT_MEMORY_ERROR);
				}
				vm_object_lock(dst_object);
				continue;
			}

			/* ... fall through to wait below */
		} else {
			/*
			 *	If the page isn't being used for other
			 *	purposes, then we're done.
			 */
			if ( ! (dst_page->busy || dst_page->absent || dst_page->error) )
				break;
		}

		PAGE_ASSERT_WAIT(dst_page, interruptible);
		vm_object_unlock(dst_object);
		thread_block((void (*)()) 0);
		if (current_thread()->wait_result != THREAD_AWAKENED) {
			DISCARD_PAGE;
			return(VM_FAULT_INTERRUPTED);
		}
	}

	*result_page = dst_page;
	return(VM_FAULT_SUCCESS);

#undef	interruptible
#undef	DISCARD_PAGE
}

#endif	/* notdef */