1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
/*
* Mach Operating System
* Copyright (c) 1991,1990 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* File: rz_cpu.c
* Author: Alessandro Forin, Carnegie Mellon University
* Date: 7/91
*
* Top layer of the SCSI driver: interface with the MI.
* This file contains operations specific to CPU-like devices.
*
* We handle here the case of simple devices which do not use any
* sophisticated host-to-host communication protocol, they look
* very much like degenerative cases of TAPE devices.
*
* For documentation and debugging, we also provide code to act like one.
*/
#include <mach/std_types.h>
#include <scsi/compat_30.h>
#include <scsi/scsi.h>
#include <scsi/scsi_defs.h>
#include <scsi/rz.h>
#if (NSCSI > 0)
void sccpu_act_as_target(); /* forwards */
void sccpu_start();
/*
* This function decides which 'protocol' we well speak
* to a cpu target. For now the decision is left to a
* global var. XXXXXXX
*/
extern scsi_devsw_t scsi_host;
scsi_devsw_t *scsi_cpu_protocol = /* later &scsi_host*/
&scsi_devsw[SCSI_CPU];
void sccpu_new_initiator(self, initiator)
target_info_t *self, *initiator;
{
initiator->dev_ops = scsi_cpu_protocol;
if (initiator == self) {
self->flags = TGT_DID_SYNCH|TGT_FULLY_PROBED|TGT_ONLINE|
TGT_ALIVE|TGT_US;
self->dev_info.cpu.req_pending = FALSE;
} else {
initiator->flags = TGT_ONLINE|TGT_ALIVE;
initiator->dev_info.cpu.req_pending = TRUE;
}
}
void sccpu_strategy(ior)
register io_req_t ior;
{
void sccpu_start();
rz_simpleq_strategy(ior, sccpu_start);
}
void sccpu_start(tgt, done)
target_info_t *tgt;
boolean_t done;
{
io_req_t head, ior;
scsi_ret_t ret;
/* this is to the doc & debug code mentioned in the beginning */
if (!done && tgt->dev_info.cpu.req_pending) {
panic("sccpu_act_as_target called");
#if 0
sccpu_act_as_target( tgt);
#endif
return;
}
ior = tgt->ior;
if (ior == 0)
return;
if (done) {
/* see if we must retry */
if ((tgt->done == SCSI_RET_RETRY) &&
((ior->io_op & IO_INTERNAL) == 0)) {
delay(1000000);/*XXX*/
goto start;
} else
/* got a bus reset ? shouldn't matter */
if ((tgt->done == (SCSI_RET_ABORTED|SCSI_RET_RETRY)) &&
((ior->io_op & IO_INTERNAL) == 0)) {
goto start;
} else
/* check completion status */
if (tgt->cur_cmd == SCSI_CMD_REQUEST_SENSE) {
scsi_sense_data_t *sns;
ior->io_op = ior->io_temporary;
ior->io_error = D_IO_ERROR;
ior->io_op |= IO_ERROR;
sns = (scsi_sense_data_t *)tgt->cmd_ptr;
if (scsi_debug)
scsi_print_sense_data(sns);
if (scsi_check_sense_data(tgt, sns)) {
if (sns->u.xtended.ili) {
if (ior->io_op & IO_READ) {
int residue;
residue = sns->u.xtended.info0 << 24 |
sns->u.xtended.info1 << 16 |
sns->u.xtended.info2 << 8 |
sns->u.xtended.info3;
if (scsi_debug)
printf("Cpu Short Read (%d)\n", residue);
/*
* NOTE: residue == requested - actual
* We only care if > 0
*/
if (residue < 0) residue = 0;/* sanity */
ior->io_residual += residue;
ior->io_error = 0;
ior->io_op &= ~IO_ERROR;
/* goto ok */
}
}
}
}
else if (tgt->done != SCSI_RET_SUCCESS) {
if (tgt->done == SCSI_RET_NEED_SENSE) {
ior->io_temporary = ior->io_op;
ior->io_op = IO_INTERNAL;
if (scsi_debug)
printf("[NeedSns x%x x%x]", ior->io_residual, ior->io_count);
scsi_request_sense(tgt, ior, 0);
return;
} else if (tgt->done == SCSI_RET_RETRY) {
/* only retry here READs and WRITEs */
if ((ior->io_op & IO_INTERNAL) == 0) {
ior->io_residual = 0;
goto start;
} else{
ior->io_error = D_WOULD_BLOCK;
ior->io_op |= IO_ERROR;
}
} else {
ior->io_error = D_IO_ERROR;
ior->io_op |= IO_ERROR;
}
}
if (scsi_debug)
printf("[Resid x%x]", ior->io_residual);
/* dequeue next one */
head = ior;
simple_lock(&tgt->target_lock);
ior = head->io_next;
tgt->ior = ior;
if (ior)
ior->io_prev = head->io_prev;
simple_unlock(&tgt->target_lock);
iodone(head);
if (ior == 0)
return;
}
ior->io_residual = 0;
start:
if (ior->io_op & IO_READ) {
ret = scsi_receive( tgt, ior );
} else if ((ior->io_op & IO_INTERNAL) == 0) {
ret = scsi_send( tgt, ior );
}
}
#if 0
/* XX turned off this code because it's impossible
to reference 'end' and other such magic symbols
from boot modules. */
/*
* This is a simple code to make us act as a dumb
* processor type. Use for debugging only.
*/
static struct io_req sccpu_ior;
vm_offset_t sccpu_buffer; /* set this with debugger */
void sccpu_act_as_target(self)
target_info_t *self;
{
static char inq_data[] = "\3\0\1\0\040\0\0\0Mach3.0 Processor Link v0.1";
static char sns_data[] = "\160\0\0\0\0\0\0\0\0";
self->dev_info.cpu.req_pending = FALSE;
sccpu_ior.io_next = 0;
#define MAXSIZE 1024*64
sccpu_ior.io_count = (MAXSIZE < self->dev_info.cpu.req_len) ?
MAXSIZE : self->dev_info.cpu.req_len;
switch (self->dev_info.cpu.req_cmd) {
case SCSI_CMD_INQUIRY:
sccpu_ior.io_data = inq_data; break;
case SCSI_CMD_REQUEST_SENSE:
sccpu_ior.io_data = sns_data; break;
default:
if (sccpu_buffer == 0) {
/* ( read my lips :-) */
/* extern char end[]; */
sccpu_buffer = trunc_page(kalloc(MAXSIZE));
}
sccpu_ior.io_data = (char*)sccpu_buffer; break;
}
if (self->dev_info.cpu.req_cmd == SCSI_CMD_SEND) {
self->cur_cmd = SCSI_CMD_READ;
sccpu_ior.io_op = IO_READ;
} else {
self->cur_cmd = SCSI_CMD_WRITE;
sccpu_ior.io_op = IO_WRITE;
}
self->ior = &sccpu_ior;
}
#endif
/*#define PERF*/
#ifdef PERF
int test_read_size = 512;
int test_read_nreads = 1000;
int test_read_bdev = 0;
int test_read_or_write = 1;
#include <sys/time.h>
#include <machine/machspl.h> /* spl */
test_read(max)
{
int i, ssk, usecs;
struct timeval start, stop;
spl_t s;
if (max != 0)
test_read_nreads = max;
s = spl0();
start = time;
if (test_read_or_write) read_test(); else write_test();
stop = time;
splx(s);
usecs = stop.tv_usec - start.tv_usec;
if (usecs < 0) {
stop.tv_sec -= 1;
usecs += 1000000;
}
printf("Size %d count %d time %3d sec %d us\n",
test_read_size, test_read_nreads,
stop.tv_sec - start.tv_sec, usecs);
}
read_test()
{
struct io_req io, io1;
register int i;
bzero(&io, sizeof(io));
io.io_unit = test_read_bdev;
io.io_op = IO_READ;
io.io_count = test_read_size;
io.io_data = (char*)sccpu_buffer;
io1 = io;
sccpu_strategy(&io);
for (i = 1; i < test_read_nreads; i += 2) {
io1.io_op = IO_READ;
sccpu_strategy(&io1);
iowait(&io);
io.io_op = IO_READ;
sccpu_strategy(&io);
iowait(&io1);
}
iowait(&io);
}
write_test()
{
struct io_req io, io1;
register int i;
bzero(&io, sizeof(io));
io.io_unit = test_read_bdev;
io.io_op = IO_WRITE;
io.io_count = test_read_size;
io.io_data = (char*)sccpu_buffer;
io1 = io;
sccpu_strategy(&io);
for (i = 1; i < test_read_nreads; i += 2) {
io1.io_op = IO_WRITE;
sccpu_strategy(&io1);
iowait(&io);
io.io_op = IO_WRITE;
sccpu_strategy(&io);
iowait(&io1);
}
iowait(&io);
}
tur_test()
{
struct io_req io;
register int i;
char *a;
struct timeval start, stop;
spl_t s;
target_info_t *tgt;
bzero(&io, sizeof(io));
io.io_unit = test_read_bdev;
io.io_data = (char*)&io;/*unused but kernel space*/
rz_check(io.io_unit, &a, &tgt);
s = spl0();
start = time;
for (i = 0; i < test_read_nreads; i++) {
io.io_op = IO_INTERNAL;
scsi_test_unit_ready(tgt,&io);
}
stop = time;
splx(s);
i = stop.tv_usec - start.tv_usec;
if (i < 0) {
stop.tv_sec -= 1;
i += 1000000;
}
printf("%d test-unit-ready took %3d sec %d us\n",
test_read_nreads,
stop.tv_sec - start.tv_sec, i);
}
/*#define MEM_PERF*/
#ifdef MEM_PERF
int mem_read_size = 1024; /* ints! */
int mem_read_nreads = 1000;
volatile int *mem_read_address = (volatile int*)0xb0080000;
volatile int *mem_write_address = (volatile int*)0xb0081000;
mem_test(max, which)
{
int i, ssk, usecs;
struct timeval start, stop;
int (*fun)(), mwrite_test(), mread_test(), mcopy_test();
spl_t s;
if (max == 0)
max = mem_read_nreads;
switch (which) {
case 1: fun = mwrite_test; break;
case 2: fun = mcopy_test; break;
default:fun = mread_test; break;
}
s = spl0();
start = time;
for (i = 0; i < max; i++)
(*fun)(mem_read_size);
stop = time;
splx(s);
usecs = stop.tv_usec - start.tv_usec;
if (usecs < 0) {
stop.tv_sec -= 1;
usecs += 1000000;
}
printf("Size %d count %d time %3d sec %d us\n",
mem_read_size*4, max,
stop.tv_sec - start.tv_sec, usecs);
}
mread_test(max)
register int max;
{
register int i;
register volatile int *addr = mem_read_address;
for (i = 0; i < max; i++) {
register int j = *addr++;
}
}
mwrite_test(max)
register int max;
{
register int i;
register volatile int *addr = mem_read_address;
for (i = 0; i < max; i++) {
*addr++ = i;
}
}
mcopy_test(max)
register int max;
{
register volatile int *from = mem_read_address;
register volatile int *to = mem_write_address;
register volatile int *endaddr;
endaddr = to + max;
while (to < endaddr)
*to++ = *from++;
}
#endif /*MEM_PERF*/
#endif /*PERF*/
#endif /* NSCSI > 0 */
|