1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
|
#ifndef _I386_BITOPS_H
#define _I386_BITOPS_H
/*
* Copyright 1992, Linus Torvalds.
*/
/*
* These have to be done with inline assembly: that way the bit-setting
* is guaranteed to be atomic. All bit operations return 0 if the bit
* was cleared before the operation and != 0 if it was not.
*
* bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
*/
#ifdef __SMP__
#define LOCK_PREFIX "lock ; "
#define SMPVOL volatile
#else
#define LOCK_PREFIX ""
#define SMPVOL
#endif
/*
* Some hacks to defeat gcc over-optimizations..
*/
struct __dummy { unsigned long a[100]; };
#define ADDR (*(struct __dummy *) addr)
#define CONST_ADDR (*(const struct __dummy *) addr)
extern __inline__ int set_bit(int nr, SMPVOL void * addr)
{
int oldbit;
__asm__ __volatile__(LOCK_PREFIX
"btsl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"ir" (nr));
return oldbit;
}
extern __inline__ int clear_bit(int nr, SMPVOL void * addr)
{
int oldbit;
__asm__ __volatile__(LOCK_PREFIX
"btrl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"ir" (nr));
return oldbit;
}
extern __inline__ int change_bit(int nr, SMPVOL void * addr)
{
int oldbit;
__asm__ __volatile__(LOCK_PREFIX
"btcl %2,%1\n\tsbbl %0,%0"
:"=r" (oldbit),"=m" (ADDR)
:"ir" (nr));
return oldbit;
}
/*
* This routine doesn't need to be atomic.
*/
extern __inline__ int test_bit(int nr, const SMPVOL void * addr)
{
return ((1UL << (nr & 31)) & (((const unsigned int *) addr)[nr >> 5])) != 0;
}
/*
* Find-bit routines..
*/
extern __inline__ int find_first_zero_bit(void * addr, unsigned size)
{
int res;
if (!size)
return 0;
__asm__("cld\n\t"
"movl $-1,%%eax\n\t"
"xorl %%edx,%%edx\n\t"
"repe; scasl\n\t"
"je 1f\n\t"
"xorl -4(%%edi),%%eax\n\t"
"subl $4,%%edi\n\t"
"bsfl %%eax,%%edx\n"
"1:\tsubl %%ebx,%%edi\n\t"
"shll $3,%%edi\n\t"
"addl %%edi,%%edx"
:"=d" (res)
:"c" ((size + 31) >> 5), "D" (addr), "b" (addr)
:"ax", "cx", "di");
return res;
}
extern __inline__ int find_next_zero_bit (void * addr, int size, int offset)
{
unsigned long * p = ((unsigned long *) addr) + (offset >> 5);
int set = 0, bit = offset & 31, res;
if (bit) {
/*
* Look for zero in first byte
*/
__asm__("bsfl %1,%0\n\t"
"jne 1f\n\t"
"movl $32, %0\n"
"1:"
: "=r" (set)
: "r" (~(*p >> bit)));
if (set < (32 - bit))
return set + offset;
set = 32 - bit;
p++;
}
/*
* No zero yet, search remaining full bytes for a zero
*/
res = find_first_zero_bit (p, size - 32 * (p - (unsigned long *) addr));
return (offset + set + res);
}
/*
* ffz = Find First Zero in word. Undefined if no zero exists,
* so code should check against ~0UL first..
*/
extern __inline__ unsigned long ffz(unsigned long word)
{
__asm__("bsfl %1,%0"
:"=r" (word)
:"r" (~word));
return word;
}
#endif /* _I386_BITOPS_H */
|