1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
|
/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP83810 series. */
/*
Written/copyright 1999-2003 by Donald Becker.
This software may be used and distributed according to the terms of
the GNU General Public License (GPL), incorporated herein by reference.
Drivers based on or derived from this code fall under the GPL and must
retain the authorship, copyright and license notice. This file is not
a complete program and may only be used when the entire operating
system is licensed under the GPL. License for under other terms may be
available. Contact the original author for details.
The original author may be reached as becker@scyld.com, or at
Scyld Computing Corporation
914 Bay Ridge Road, Suite 220
Annapolis MD 21403
Support information and updates available at
http://www.scyld.com/network/natsemi.html
The information and support mailing lists are based at
http://www.scyld.com/mailman/listinfo/
*/
/* These identify the driver base version and may not be removed. */
static const char version1[] =
"natsemi.c:v1.17a 8/09/2003 Written by Donald Becker <becker@scyld.com>\n";
static const char version2[] =
" http://www.scyld.com/network/natsemi.html\n";
/* Updated to recommendations in pci-skeleton v2.11. */
/* Automatically extracted configuration info:
probe-func: natsemi_probe
config-in: tristate 'National Semiconductor DP8381x series PCI Ethernet support' CONFIG_NATSEMI
c-help-name: National Semiconductor DP8381x series PCI Ethernet support
c-help-symbol: CONFIG_NATSEMI
c-help: This driver is for the National Semiconductor DP83810 series,
c-help: including the 83815 chip.
c-help: Usage information and updates are available from
c-help: http://www.scyld.com/network/natsemi.html
*/
/* The user-configurable values.
These may be modified when a driver module is loaded.*/
/* Message enable level: 0..31 = no..all messages. See NETIF_MSG docs. */
static int debug = 2;
/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
static int max_interrupt_work = 20;
/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
This chip uses a 512 element hash table based on the Ethernet CRC.
Some chip versions are reported to have unreliable multicast filter
circuitry. To work around an observed problem set this value to '0',
which will immediately switch to Rx-all-multicast.
*/
static int multicast_filter_limit = 100;
/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
Setting to > 1518 effectively disables this feature.
This chip can only receive into aligned buffers, so architectures such
as the Alpha AXP might benefit from a copy-align.
*/
static int rx_copybreak = 0;
/* Used to pass the media type, etc.
Both 'options[]' and 'full_duplex[]' should exist for driver
interoperability, however setting full_duplex[] is deprecated.
The media type is usually passed in 'options[]'.
The default is autonegotation for speed and duplex.
This should rarely be overridden.
Use option values 0x10/0x20 for 10Mbps, 0x100,0x200 for 100Mbps.
Use option values 0x10 and 0x100 for forcing half duplex fixed speed.
Use option values 0x20 and 0x200 for forcing full duplex operation.
*/
#define MAX_UNITS 8 /* More are supported, limit only on options */
static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
/* Operational parameters that are set at compile time. */
/* Keep the ring sizes a power of two for compile efficiency.
Understand the implications before changing these settings!
The compiler will convert <unsigned>'%'<2^N> into a bit mask.
Making the Tx ring too large decreases the effectiveness of channel
bonding and packet priority.
Too-large receive rings waste memory and confound network buffer limits. */
#define TX_RING_SIZE 16
#define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */
#define RX_RING_SIZE 32
/* Operational parameters that usually are not changed. */
/* Time in jiffies before concluding the transmitter is hung.
Re-autonegotiation may take up to 3 seconds.
*/
#define TX_TIMEOUT (6*HZ)
/* Allocation size of Rx buffers with normal sized Ethernet frames.
Do not change this value without good reason. This is not a limit,
but a way to keep a consistent allocation size among drivers.
*/
#define PKT_BUF_SZ 1536
#ifndef __KERNEL__
#define __KERNEL__
#endif
#if !defined(__OPTIMIZE__)
#warning You must compile this file with the correct options!
#warning See the last lines of the source file.
#error You must compile this driver with "-O".
#endif
/* Include files, designed to support most kernel versions 2.0.0 and later. */
#include <linux/config.h>
#if defined(CONFIG_SMP) && ! defined(__SMP__)
#define __SMP__
#endif
#if defined(MODULE) && defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS)
#define MODVERSIONS
#endif
#include <linux/version.h>
#if defined(MODVERSIONS)
#include <linux/modversions.h>
#endif
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#if LINUX_VERSION_CODE >= 0x20400
#include <linux/slab.h>
#else
#include <linux/malloc.h>
#endif
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <asm/processor.h> /* Processor type for cache alignment. */
#include <asm/bitops.h>
#include <asm/io.h>
#ifdef INLINE_PCISCAN
#include "k_compat.h"
#else
#include "pci-scan.h"
#include "kern_compat.h"
#endif
/* Condensed operations for readability. */
#define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr))
#define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr))
#if (LINUX_VERSION_CODE >= 0x20100) && defined(MODULE)
char kernel_version[] = UTS_RELEASE;
#endif
MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
MODULE_DESCRIPTION("National Semiconductor DP83810 series PCI Ethernet driver");
MODULE_LICENSE("GPL");
MODULE_PARM(debug, "i");
MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(rx_copybreak, "i");
MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i");
MODULE_PARM(multicast_filter_limit, "i");
MODULE_PARM(max_interrupt_work, "i");
MODULE_PARM_DESC(debug, "Driver message level (0-31)");
MODULE_PARM_DESC(options, "Force transceiver type or fixed speed+duplex");
MODULE_PARM_DESC(max_interrupt_work,
"Driver maximum events handled per interrupt");
MODULE_PARM_DESC(full_duplex,
"Non-zero to force full duplex, non-negotiated link "
"(deprecated).");
MODULE_PARM_DESC(rx_copybreak,
"Breakpoint in bytes for copy-only-tiny-frames");
MODULE_PARM_DESC(multicast_filter_limit,
"Multicast addresses before switching to Rx-all-multicast");
/*
Theory of Operation
I. Board Compatibility
This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
It also works with other chips in in the DP83810 series.
The most common board is the Netgear FA311 using the 83815.
II. Board-specific settings
This driver requires the PCI interrupt line to be valid.
It honors the EEPROM-set values.
III. Driver operation
IIIa. Ring buffers
This driver uses two statically allocated fixed-size descriptor lists
formed into rings by a branch from the final descriptor to the beginning of
the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
The NatSemi design uses a 'next descriptor' pointer that the driver forms
into a list, thus rings can be arbitrarily sized. Before changing the
ring sizes you should understand the flow and cache effects of the
full/available/empty hysteresis.
IIIb/c. Transmit/Receive Structure
This driver uses a zero-copy receive and transmit scheme.
The driver allocates full frame size skbuffs for the Rx ring buffers at
open() time and passes the skb->data field to the chip as receive data
buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
a fresh skbuff is allocated and the frame is copied to the new skbuff.
When the incoming frame is larger, the skbuff is passed directly up the
protocol stack. Buffers consumed this way are replaced by newly allocated
skbuffs in a later phase of receives.
The RX_COPYBREAK value is chosen to trade-off the memory wasted by
using a full-sized skbuff for small frames vs. the copying costs of larger
frames. New boards are typically used in generously configured machines
and the underfilled buffers have negligible impact compared to the benefit of
a single allocation size, so the default value of zero results in never
copying packets. When copying is done, the cost is usually mitigated by using
a combined copy/checksum routine. Copying also preloads the cache, which is
most useful with small frames.
A subtle aspect of the operation is that unaligned buffers are not permitted
by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't
longword aligned for further processing. On copies frames are put into the
skbuff at an offset of "+2", 16-byte aligning the IP header.
IIId. Synchronization
The driver runs as two independent, single-threaded flows of control. One
is the send-packet routine, which enforces single-threaded use by the
dev->tbusy flag. The other thread is the interrupt handler, which is single
threaded by the hardware and interrupt handling software.
The send packet thread has partial control over the Tx ring and 'dev->tbusy'
flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
queue slot is empty, it clears the tbusy flag when finished otherwise it sets
the 'lp->tx_full' flag.
The interrupt handler has exclusive control over the Rx ring and records stats
from the Tx ring. After reaping the stats, it marks the Tx queue entry as
empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it
clears both the tx_full and tbusy flags.
IV. Notes
The older dp83810 chips are so uncommon that support is not relevant.
No NatSemi datasheet was publically available at the initial release date,
but the dp83815 has now been published.
IVb. References
http://www.scyld.com/expert/100mbps.html
http://www.scyld.com/expert/NWay.html
IVc. Errata
Qustionable multicast filter implementation.
The EEPROM format is obviously the result of a chip bug.
*/
static void *natsemi_probe1(struct pci_dev *pdev, void *init_dev,
long ioaddr, int irq, int chip_idx, int find_cnt);
static int power_event(void *dev_instance, int event);
#ifdef USE_IO_OPS
#define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_IO | PCI_ADDR0)
#else
#define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1)
#endif
static struct pci_id_info pci_id_tbl[] = {
{"Netgear FA311 (NatSemi DP83815)",
{ 0x0020100B, 0xffffffff, 0xf3111385, 0xffffffff, },
PCI_IOTYPE, 256, 0},
{"NatSemi DP83815", { 0x0020100B, 0xffffffff },
PCI_IOTYPE, 256, 0},
{0,}, /* 0 terminated list. */
};
struct drv_id_info natsemi_drv_id = {
"natsemi", PCI_HOTSWAP, PCI_CLASS_NETWORK_ETHERNET<<8, pci_id_tbl,
natsemi_probe1, power_event };
/* Offsets to the device registers.
Unlike software-only systems, device drivers interact with complex hardware.
It's not useful to define symbolic names for every register bit in the
device. Please do not change these names without good reason.
*/
enum register_offsets {
ChipCmd=0x00, ChipConfig=0x04, EECtrl=0x08, PCIBusCfg=0x0C,
IntrStatus=0x10, IntrMask=0x14, IntrEnable=0x18,
TxRingPtr=0x20, TxConfig=0x24,
RxRingPtr=0x30, RxConfig=0x34, ClkRunCtrl=0x3C,
WOLCmd=0x40, PauseCmd=0x44, RxFilterAddr=0x48, RxFilterData=0x4C,
BootRomAddr=0x50, BootRomData=0x54, ChipRevReg=0x58,
StatsCtrl=0x5C, StatsData=0x60,
RxPktErrs=0x60, RxMissed=0x68, RxCRCErrs=0x64,
NS_Xcvr_Mgmt = 0x80, NS_MII_BMCR=0x80, NS_MII_BMSR=0x84,
NS_MII_Advert=0x90, NS_MIILinkPartner=0x94,
};
/* Bits in ChipCmd. */
enum ChipCmdBits {
ChipReset=0x100, SoftIntr=0x80, RxReset=0x20, TxReset=0x10,
RxOff=0x08, RxOn=0x04, TxOff=0x02, TxOn=0x01,
};
/* Bits in ChipConfig. */
enum ChipConfigBits {
CfgLinkGood=0x80000000, CfgFDX=0x20000000,
};
/* Bits in the interrupt status/mask registers. */
enum intr_status_bits {
IntrRxDone=0x0001, IntrRxIntr=0x0002, IntrRxErr=0x0004, IntrRxEarly=0x0008,
IntrRxIdle=0x0010, IntrRxOverrun=0x0020,
IntrTxDone=0x0040, IntrTxIntr=0x0080, IntrTxErr=0x0100,
IntrTxIdle=0x0200, IntrTxUnderrun=0x0400,
StatsMax=0x0800, IntrDrv=0x1000, WOLPkt=0x2000, LinkChange=0x4000,
RxStatusOverrun=0x10000,
RxResetDone=0x1000000, TxResetDone=0x2000000,
IntrPCIErr=0x00f00000,
IntrNormalSummary=0x0251, IntrAbnormalSummary=0xED20,
};
/* Bits in the RxMode register. */
enum rx_mode_bits {
AcceptErr=0x20, AcceptRunt=0x10,
AcceptBroadcast=0xC0000000,
AcceptMulticast=0x00200000, AcceptAllMulticast=0x20000000,
AcceptAllPhys=0x10000000, AcceptMyPhys=0x08000000,
};
/* The Rx and Tx buffer descriptors. */
/* Note that using only 32 bit fields simplifies conversion to big-endian
architectures. */
struct netdev_desc {
u32 next_desc;
s32 cmd_status;
u32 buf_addr;
u32 software_use;
};
/* Bits in network_desc.status */
enum desc_status_bits {
DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
DescNoCRC=0x10000000,
DescPktOK=0x08000000, RxTooLong=0x00400000,
};
#define PRIV_ALIGN 15 /* Required alignment mask */
struct netdev_private {
/* Descriptor rings first for alignment. */
struct netdev_desc rx_ring[RX_RING_SIZE];
struct netdev_desc tx_ring[TX_RING_SIZE];
struct net_device *next_module; /* Link for devices of this type. */
void *priv_addr; /* Unaligned address for kfree */
const char *product_name;
/* The addresses of receive-in-place skbuffs. */
struct sk_buff* rx_skbuff[RX_RING_SIZE];
/* The saved address of a sent-in-place packet/buffer, for later free(). */
struct sk_buff* tx_skbuff[TX_RING_SIZE];
struct net_device_stats stats;
struct timer_list timer; /* Media monitoring timer. */
/* Frequently used values: keep some adjacent for cache effect. */
int msg_level;
int chip_id, drv_flags;
struct pci_dev *pci_dev;
long in_interrupt; /* Word-long for SMP locks. */
int max_interrupt_work;
int intr_enable;
unsigned int restore_intr_enable:1; /* Set if temporarily masked. */
unsigned int rx_q_empty:1; /* Set out-of-skbuffs. */
struct netdev_desc *rx_head_desc;
unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
unsigned int rx_buf_sz; /* Based on MTU+slack. */
int rx_copybreak;
unsigned int cur_tx, dirty_tx;
unsigned int tx_full:1; /* The Tx queue is full. */
/* These values keep track of the transceiver/media in use. */
unsigned int full_duplex:1; /* Full-duplex operation requested. */
unsigned int duplex_lock:1;
unsigned int medialock:1; /* Do not sense media. */
unsigned int default_port; /* Last dev->if_port value. */
/* Rx filter. */
u32 cur_rx_mode;
u16 rx_filter[32];
int multicast_filter_limit;
/* FIFO and PCI burst thresholds. */
int tx_config, rx_config;
/* MII transceiver section. */
u16 advertising; /* NWay media advertisement */
};
static int eeprom_read(long ioaddr, int location);
static int mdio_read(struct net_device *dev, int phy_id, int location);
static void mdio_write(struct net_device *dev, int phy_id, int location,
int value);
static int netdev_open(struct net_device *dev);
static void check_duplex(struct net_device *dev);
static void netdev_timer(unsigned long data);
static void tx_timeout(struct net_device *dev);
static int rx_ring_fill(struct net_device *dev);
static void init_ring(struct net_device *dev);
static int start_tx(struct sk_buff *skb, struct net_device *dev);
static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs);
static void netdev_error(struct net_device *dev, int intr_status);
static int netdev_rx(struct net_device *dev);
static void netdev_error(struct net_device *dev, int intr_status);
static void set_rx_mode(struct net_device *dev);
static struct net_device_stats *get_stats(struct net_device *dev);
static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
static int netdev_close(struct net_device *dev);
/* A list of our installed devices, for removing the driver module. */
static struct net_device *root_net_dev = NULL;
#ifndef MODULE
int natsemi_probe(struct net_device *dev)
{
if (pci_drv_register(&natsemi_drv_id, dev) < 0)
return -ENODEV;
printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2);
return 0;
}
#endif
static void *natsemi_probe1(struct pci_dev *pdev, void *init_dev,
long ioaddr, int irq, int chip_idx, int card_idx)
{
struct net_device *dev;
struct netdev_private *np;
void *priv_mem;
int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0;
int prev_eedata;
dev = init_etherdev(init_dev, 0);
if (!dev)
return NULL;
/* Perhaps NETIF_MSG_PROBE */
printk(KERN_INFO "%s: %s at 0x%lx, ",
dev->name, pci_id_tbl[chip_idx].name, ioaddr);
/* Work around the dropped serial bit. */
prev_eedata = eeprom_read(ioaddr, 6);
for (i = 0; i < 3; i++) {
int eedata = eeprom_read(ioaddr, i + 7);
dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
dev->dev_addr[i*2+1] = eedata >> 7;
prev_eedata = eedata;
}
for (i = 0; i < 5; i++)
printk("%2.2x:", dev->dev_addr[i]);
printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq);
/* Reset the chip to erase previous misconfiguration. */
writel(ChipReset, ioaddr + ChipCmd);
/* Make certain elements e.g. descriptor lists are aligned. */
priv_mem = kmalloc(sizeof(*np) + PRIV_ALIGN, GFP_KERNEL);
/* Check for the very unlikely case of no memory. */
if (priv_mem == NULL)
return NULL;
dev->base_addr = ioaddr;
dev->irq = irq;
dev->priv = np = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN);
memset(np, 0, sizeof(*np));
np->priv_addr = priv_mem;
np->next_module = root_net_dev;
root_net_dev = dev;
np->pci_dev = pdev;
np->chip_id = chip_idx;
np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
np->msg_level = (1 << debug) - 1;
np->rx_copybreak = rx_copybreak;
np->max_interrupt_work = max_interrupt_work;
np->multicast_filter_limit = multicast_filter_limit;
if (dev->mem_start)
option = dev->mem_start;
/* 0x10/0x20/0x100/0x200 set forced speed&duplex modes. */
if (option > 0) {
if (option & 0x220)
np->full_duplex = 1;
np->default_port = option & 0x3ff;
if (np->default_port & 0x330) {
np->medialock = 1;
if (np->msg_level & NETIF_MSG_PROBE)
printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n",
(option & 0x300 ? 100 : 10),
(np->full_duplex ? "full" : "half"));
writew(((option & 0x300) ? 0x2000 : 0) | /* 100mbps? */
(np->full_duplex ? 0x0100 : 0), /* Full duplex? */
ioaddr + NS_MII_BMCR);
}
}
if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
np->full_duplex = 1;
if (np->full_duplex) {
if (np->msg_level & NETIF_MSG_PROBE)
printk(KERN_INFO "%s: Set to forced full duplex, autonegotiation"
" disabled.\n", dev->name);
np->duplex_lock = 1;
}
/* The chip-specific entries in the device structure. */
dev->open = &netdev_open;
dev->hard_start_xmit = &start_tx;
dev->stop = &netdev_close;
dev->get_stats = &get_stats;
dev->set_multicast_list = &set_rx_mode;
dev->do_ioctl = &mii_ioctl;
/* Override the PME enable from the EEPROM. */
writel(0x8000, ioaddr + ClkRunCtrl);
if ((readl(ioaddr + ChipConfig) & 0xe000) != 0xe000) {
u32 chip_config = readl(ioaddr + ChipConfig);
if (np->msg_level & NETIF_MSG_PROBE)
printk(KERN_INFO "%s: Transceiver default autonegotiation %s "
"10%s %s duplex.\n",
dev->name, chip_config & 0x2000 ? "enabled, advertise"
: "disabled, force", chip_config & 0x4000 ? "0" : "",
chip_config & 0x8000 ? "full" : "half");
}
if (np->msg_level & NETIF_MSG_PROBE)
printk(KERN_INFO "%s: Transceiver status 0x%4.4x partner %4.4x.\n",
dev->name, (int)readl(ioaddr + NS_MII_BMSR),
(int)readl(ioaddr + NS_MIILinkPartner));
return dev;
}
/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses.
Update to the code in other drivers for 8/10 bit addresses.
*/
/* Delay between EEPROM clock transitions.
This "delay" forces out buffered PCI writes, which is sufficient to meet
the timing requirements of most EEPROMs.
*/
#define eeprom_delay(ee_addr) readl(ee_addr)
enum EEPROM_Ctrl_Bits {
EE_ShiftClk=0x04, EE_DataIn=0x01, EE_ChipSelect=0x08, EE_DataOut=0x02,
};
#define EE_Write0 (EE_ChipSelect)
#define EE_Write1 (EE_ChipSelect | EE_DataIn)
/* The EEPROM commands include the preamble. */
enum EEPROM_Cmds {
EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
};
static int eeprom_read(long addr, int location)
{
int i;
int retval = 0;
long ee_addr = addr + EECtrl;
int read_cmd = location | EE_ReadCmd;
writel(EE_Write0, ee_addr);
/* Shift the read command bits out. */
for (i = 10; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
writel(dataval, ee_addr);
eeprom_delay(ee_addr);
writel(dataval | EE_ShiftClk, ee_addr);
eeprom_delay(ee_addr);
}
writel(EE_ChipSelect, ee_addr);
eeprom_delay(ee_addr);
for (i = 0; i < 16; i++) {
writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
eeprom_delay(ee_addr);
retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
writel(EE_ChipSelect, ee_addr);
eeprom_delay(ee_addr);
}
/* Terminate the EEPROM access. */
writel(EE_Write0, ee_addr);
writel(0, ee_addr);
return retval;
}
/* MII transceiver control section.
The 83815 series has an internal, directly accessable transceiver.
We present the management registers as if they were MII connected. */
static int mdio_read(struct net_device *dev, int phy_id, int location)
{
if (phy_id == 1 && location < 32)
return readw(dev->base_addr + NS_Xcvr_Mgmt + (location<<2));
else
return 0xffff;
}
static void mdio_write(struct net_device *dev, int phy_id, int location,
int value)
{
if (phy_id == 1 && location < 32)
writew(value, dev->base_addr + NS_Xcvr_Mgmt + (location<<2));
}
static int netdev_open(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
int i;
/* We do not need to reset the '815 chip. */
MOD_INC_USE_COUNT;
if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev)) {
MOD_DEC_USE_COUNT;
return -EAGAIN;
}
if (np->msg_level & NETIF_MSG_IFUP)
printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
dev->name, dev->irq);
init_ring(dev);
writel(virt_to_bus(np->rx_ring), ioaddr + RxRingPtr);
writel(virt_to_bus(np->tx_ring), ioaddr + TxRingPtr);
for (i = 0; i < 6; i += 2) {
writel(i, ioaddr + RxFilterAddr);
writel(dev->dev_addr[i] + (dev->dev_addr[i+1] << 8),
ioaddr + RxFilterData);
}
/* Initialize other registers. */
/* See the datasheet for this correction. */
if (readl(ioaddr + ChipRevReg) == 0x0203) {
writew(0x0001, ioaddr + 0xCC);
writew(0x18C9, ioaddr + 0xE4);
writew(0x0000, ioaddr + 0xFC);
writew(0x5040, ioaddr + 0xF4);
writew(0x008C, ioaddr + 0xF8);
}
/* Configure the PCI bus bursts and FIFO thresholds. */
/* Configure for standard, in-spec Ethernet. */
if (readl(ioaddr + ChipConfig) & CfgFDX) { /* Full duplex */
np->tx_config = 0xD0801002;
np->rx_config = 0x10000020;
} else {
np->tx_config = 0x10801002;
np->rx_config = 0x0020;
}
if (dev->mtu > 1500)
np->rx_config |= 0x08000000;
writel(np->tx_config, ioaddr + TxConfig);
writel(np->rx_config, ioaddr + RxConfig);
if (dev->if_port == 0)
dev->if_port = np->default_port;
np->in_interrupt = 0;
check_duplex(dev);
set_rx_mode(dev);
netif_start_tx_queue(dev);
/* Enable interrupts by setting the interrupt mask. */
np->intr_enable = IntrNormalSummary | IntrAbnormalSummary | 0x1f;
writel(np->intr_enable, ioaddr + IntrMask);
writel(1, ioaddr + IntrEnable);
writel(RxOn | TxOn, ioaddr + ChipCmd);
writel(4, ioaddr + StatsCtrl); /* Clear Stats */
if (np->msg_level & NETIF_MSG_IFUP)
printk(KERN_DEBUG "%s: Done netdev_open(), status: %x.\n",
dev->name, (int)readl(ioaddr + ChipCmd));
/* Set the timer to check for link beat. */
init_timer(&np->timer);
np->timer.expires = jiffies + 3*HZ;
np->timer.data = (unsigned long)dev;
np->timer.function = &netdev_timer; /* timer handler */
add_timer(&np->timer);
return 0;
}
static void check_duplex(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
int duplex;
if (np->duplex_lock)
return;
duplex = readl(ioaddr + ChipConfig) & 0x20000000 ? 1 : 0;
if (np->full_duplex != duplex) {
np->full_duplex = duplex;
if (np->msg_level & NETIF_MSG_LINK)
printk(KERN_INFO "%s: Setting %s-duplex based on negotiated link"
" capability.\n", dev->name,
duplex ? "full" : "half");
if (duplex) {
np->rx_config |= 0x10000000;
np->tx_config |= 0xC0000000;
} else {
np->rx_config &= ~0x10000000;
np->tx_config &= ~0xC0000000;
}
writel(np->tx_config, ioaddr + TxConfig);
writel(np->rx_config, ioaddr + RxConfig);
}
}
static void netdev_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
int next_tick = 10*HZ;
if (np->msg_level & NETIF_MSG_TIMER)
printk(KERN_DEBUG "%s: Driver monitor timer tick, status %8.8x.\n",
dev->name, (int)readl(ioaddr + IntrStatus));
if (np->rx_q_empty) {
/* Trigger an interrupt to refill. */
writel(SoftIntr, ioaddr + ChipCmd);
}
/* This will either have a small false-trigger window or will not catch
tbusy incorrectly set when the queue is empty. */
if (netif_queue_paused(dev) &&
np->cur_tx - np->dirty_tx > 1 &&
(jiffies - dev->trans_start) > TX_TIMEOUT) {
tx_timeout(dev);
}
check_duplex(dev);
np->timer.expires = jiffies + next_tick;
add_timer(&np->timer);
}
static void tx_timeout(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
printk(KERN_WARNING "%s: Transmit timed out, status %8.8x,"
" resetting...\n", dev->name, (int)readl(ioaddr + TxRingPtr));
if (np->msg_level & NETIF_MSG_TX_ERR) {
int i;
printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring);
for (i = 0; i < RX_RING_SIZE; i++)
printk(" %8.8x", (unsigned int)np->rx_ring[i].cmd_status);
printk("\n"KERN_DEBUG" Tx ring %p: ", np->tx_ring);
for (i = 0; i < TX_RING_SIZE; i++)
printk(" %4.4x", np->tx_ring[i].cmd_status);
printk("\n");
}
/* Reinitialize the hardware here. */
/* Stop and restart the chip's Tx processes . */
/* Trigger an immediate transmit demand. */
dev->trans_start = jiffies;
np->stats.tx_errors++;
return;
}
/* Refill the Rx ring buffers, returning non-zero if not full. */
static int rx_ring_fill(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
unsigned int entry;
for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
entry = np->dirty_rx % RX_RING_SIZE;
if (np->rx_skbuff[entry] == NULL) {
struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz);
np->rx_skbuff[entry] = skb;
if (skb == NULL)
return 1; /* Better luck next time. */
skb->dev = dev; /* Mark as being used by this device. */
np->rx_ring[entry].buf_addr = virt_to_le32desc(skb->tail);
}
np->rx_ring[entry].cmd_status = cpu_to_le32(DescIntr | np->rx_buf_sz);
}
return 0;
}
/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
static void init_ring(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
int i;
np->tx_full = 0;
np->cur_rx = np->cur_tx = 0;
np->dirty_rx = np->dirty_tx = 0;
/* MAX(PKT_BUF_SZ, dev->mtu + 8); */
/* I know you _want_ to change this without understanding it. Don't. */
np->rx_buf_sz = (dev->mtu <= 1532 ? PKT_BUF_SZ : dev->mtu + 8);
np->rx_head_desc = &np->rx_ring[0];
/* Initialize all Rx descriptors. */
for (i = 0; i < RX_RING_SIZE; i++) {
np->rx_ring[i].next_desc = virt_to_le32desc(&np->rx_ring[i+1]);
np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
np->rx_skbuff[i] = 0;
}
/* Mark the last entry as wrapping the ring. */
np->rx_ring[i-1].next_desc = virt_to_le32desc(&np->rx_ring[0]);
for (i = 0; i < TX_RING_SIZE; i++) {
np->tx_skbuff[i] = 0;
np->tx_ring[i].next_desc = virt_to_le32desc(&np->tx_ring[i+1]);
np->tx_ring[i].cmd_status = 0;
}
np->tx_ring[i-1].next_desc = virt_to_le32desc(&np->tx_ring[0]);
/* Fill in the Rx buffers.
Allocation failure just leaves a "negative" np->dirty_rx. */
np->dirty_rx = (unsigned int)(0 - RX_RING_SIZE);
rx_ring_fill(dev);
return;
}
static int start_tx(struct sk_buff *skb, struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
unsigned int entry;
/* Block a timer-based transmit from overlapping. This happens when
packets are presumed lost, and we use this check the Tx status. */
if (netif_pause_tx_queue(dev) != 0) {
/* This watchdog code is redundant with the media monitor timer. */
if (jiffies - dev->trans_start > TX_TIMEOUT)
tx_timeout(dev);
return 1;
}
/* Note: Ordering is important here, set the field with the
"ownership" bit last, and only then increment cur_tx.
No spinlock is needed for either Tx or Rx.
*/
/* Calculate the next Tx descriptor entry. */
entry = np->cur_tx % TX_RING_SIZE;
np->tx_skbuff[entry] = skb;
np->tx_ring[entry].buf_addr = virt_to_le32desc(skb->data);
np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn|DescIntr | skb->len);
np->cur_tx++;
/* For some architectures explicitly flushing np->tx_ring,sizeof(tx_ring)
and skb->data,skb->len improves performance. */
if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
np->tx_full = 1;
/* Check for a just-cleared queue. */
if (np->cur_tx - (volatile unsigned int)np->dirty_tx
< TX_QUEUE_LEN - 4) {
np->tx_full = 0;
netif_unpause_tx_queue(dev);
} else
netif_stop_tx_queue(dev);
} else
netif_unpause_tx_queue(dev); /* Typical path */
/* Wake the potentially-idle transmit channel. */
writel(TxOn, dev->base_addr + ChipCmd);
dev->trans_start = jiffies;
if (np->msg_level & NETIF_MSG_TX_QUEUED) {
printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
dev->name, np->cur_tx, entry);
}
return 0;
}
/* The interrupt handler does all of the Rx thread work and cleans up
after the Tx thread. */
static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs)
{
struct net_device *dev = (struct net_device *)dev_instance;
struct netdev_private *np;
long ioaddr;
int boguscnt;
#ifndef final_version /* Can never occur. */
if (dev == NULL) {
printk (KERN_ERR "Netdev interrupt handler(): IRQ %d for unknown "
"device.\n", irq);
return;
}
#endif
ioaddr = dev->base_addr;
np = (struct netdev_private *)dev->priv;
boguscnt = np->max_interrupt_work;
do {
u32 intr_status = readl(ioaddr + IntrStatus);
if (intr_status == 0 || intr_status == 0xffffffff)
break;
/* Acknowledge all of the current interrupt sources ASAP.
Nominally the read above accomplishes this, but... */
writel(intr_status & 0x001ffff, ioaddr + IntrStatus);
if (np->msg_level & NETIF_MSG_INTR)
printk(KERN_DEBUG "%s: Interrupt, status %8.8x.\n",
dev->name, intr_status);
if (intr_status & (IntrRxDone | IntrRxIntr)) {
netdev_rx(dev);
np->rx_q_empty = rx_ring_fill(dev);
}
if (intr_status & (IntrRxIdle | IntrDrv)) {
unsigned int old_dirty_rx = np->dirty_rx;
if (rx_ring_fill(dev) == 0)
np->rx_q_empty = 0;
/* Restart Rx engine iff we did add a buffer. */
if (np->dirty_rx != old_dirty_rx)
writel(RxOn, dev->base_addr + ChipCmd);
}
for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
int entry = np->dirty_tx % TX_RING_SIZE;
int tx_status = le32_to_cpu(np->tx_ring[entry].cmd_status);
if (tx_status & DescOwn)
break;
if (np->msg_level & NETIF_MSG_TX_DONE)
printk(KERN_DEBUG "%s: Transmit done, Tx status %8.8x.\n",
dev->name, tx_status);
if (tx_status & 0x08000000) {
np->stats.tx_packets++;
#if LINUX_VERSION_CODE > 0x20127
np->stats.tx_bytes += np->tx_skbuff[entry]->len;
#endif
} else { /* Various Tx errors */
if (np->msg_level & NETIF_MSG_TX_ERR)
printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
dev->name, tx_status);
if (tx_status & 0x04010000) np->stats.tx_aborted_errors++;
if (tx_status & 0x02000000) np->stats.tx_fifo_errors++;
if (tx_status & 0x01000000) np->stats.tx_carrier_errors++;
if (tx_status & 0x00200000) np->stats.tx_window_errors++;
np->stats.tx_errors++;
}
/* Free the original skb. */
dev_free_skb_irq(np->tx_skbuff[entry]);
np->tx_skbuff[entry] = 0;
}
/* Note the 4 slot hysteresis to mark the queue non-full. */
if (np->tx_full
&& np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
/* The ring is no longer full, allow new TX entries. */
np->tx_full = 0;
netif_resume_tx_queue(dev);
}
/* Abnormal error summary/uncommon events handlers. */
if (intr_status & IntrAbnormalSummary)
netdev_error(dev, intr_status);
if (--boguscnt < 0) {
printk(KERN_WARNING "%s: Too much work at interrupt, "
"status=0x%4.4x.\n",
dev->name, intr_status);
np->restore_intr_enable = 1;
break;
}
} while (1);
if (np->msg_level & NETIF_MSG_INTR)
printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
dev->name, (int)readl(ioaddr + IntrStatus));
return;
}
/* This routine is logically part of the interrupt handler, but separated
for clarity and better register allocation. */
static int netdev_rx(struct net_device *dev)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
int entry = np->cur_rx % RX_RING_SIZE;
int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
/* If the driver owns the next entry it's a new packet. Send it up. */
while (desc_status < 0) { /* e.g. & DescOwn */
if (np->msg_level & NETIF_MSG_RX_STATUS)
printk(KERN_DEBUG " In netdev_rx() entry %d status was %8.8x.\n",
entry, desc_status);
if (--boguscnt < 0)
break;
if ((desc_status & (DescMore|DescPktOK|RxTooLong)) != DescPktOK) {
if (desc_status & DescMore) {
printk(KERN_WARNING "%s: Oversized(?) Ethernet frame spanned "
"multiple buffers, entry %#x status %x.\n",
dev->name, np->cur_rx, desc_status);
np->stats.rx_length_errors++;
} else {
/* There was a error. */
if (np->msg_level & NETIF_MSG_RX_ERR)
printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n",
desc_status);
np->stats.rx_errors++;
if (desc_status & 0x06000000) np->stats.rx_over_errors++;
if (desc_status & 0x00600000) np->stats.rx_length_errors++;
if (desc_status & 0x00140000) np->stats.rx_frame_errors++;
if (desc_status & 0x00080000) np->stats.rx_crc_errors++;
}
} else {
struct sk_buff *skb;
int pkt_len = (desc_status & 0x0fff) - 4; /* Omit CRC size. */
/* Check if the packet is long enough to accept without copying
to a minimally-sized skbuff. */
if (pkt_len < np->rx_copybreak
&& (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
skb->dev = dev;
skb_reserve(skb, 2); /* 16 byte align the IP header */
#if defined(HAS_IP_COPYSUM) || (LINUX_VERSION_CODE >= 0x20100)
eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0);
skb_put(skb, pkt_len);
#else
memcpy(skb_put(skb, pkt_len), np->rx_skbuff[entry]->tail,
pkt_len);
#endif
} else {
skb_put(skb = np->rx_skbuff[entry], pkt_len);
np->rx_skbuff[entry] = NULL;
}
skb->protocol = eth_type_trans(skb, dev);
/* W/ hardware checksum: skb->ip_summed = CHECKSUM_UNNECESSARY; */
netif_rx(skb);
dev->last_rx = jiffies;
np->stats.rx_packets++;
#if LINUX_VERSION_CODE > 0x20127
np->stats.rx_bytes += pkt_len;
#endif
}
entry = (++np->cur_rx) % RX_RING_SIZE;
np->rx_head_desc = &np->rx_ring[entry];
desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
}
/* Refill is now done in the main interrupt loop. */
return 0;
}
static void netdev_error(struct net_device *dev, int intr_status)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
if (intr_status & LinkChange) {
int chip_config = readl(ioaddr + ChipConfig);
if (np->msg_level & NETIF_MSG_LINK)
printk(KERN_NOTICE "%s: Link changed: Autonegotiation advertising"
" %4.4x partner %4.4x.\n", dev->name,
(int)readw(ioaddr + NS_MII_Advert),
(int)readw(ioaddr + NS_MIILinkPartner));
if (chip_config & CfgLinkGood)
netif_link_up(dev);
else
netif_link_down(dev);
check_duplex(dev);
}
if (intr_status & StatsMax) {
get_stats(dev);
}
if (intr_status & IntrTxUnderrun) {
/* Increase the Tx threshold, 32 byte units. */
if ((np->tx_config & 0x3f) < 62)
np->tx_config += 2; /* +64 bytes */
writel(np->tx_config, ioaddr + TxConfig);
}
if (intr_status & WOLPkt) {
int wol_status = readl(ioaddr + WOLCmd);
printk(KERN_NOTICE "%s: Link wake-up event %8.8x",
dev->name, wol_status);
}
if (intr_status & (RxStatusOverrun | IntrRxOverrun)) {
if (np->msg_level & NETIF_MSG_DRV)
printk(KERN_ERR "%s: Rx overflow! ns815 %8.8x.\n",
dev->name, intr_status);
np->stats.rx_fifo_errors++;
}
if (intr_status & ~(LinkChange|StatsMax|RxResetDone|TxResetDone|
RxStatusOverrun|0xA7ff)) {
if (np->msg_level & NETIF_MSG_DRV)
printk(KERN_ERR "%s: Something Wicked happened! natsemi %8.8x.\n",
dev->name, intr_status);
}
/* Hmmmmm, it's not clear how to recover from PCI faults. */
if (intr_status & IntrPCIErr) {
np->stats.tx_fifo_errors++;
np->stats.rx_fifo_errors++;
}
}
static struct net_device_stats *get_stats(struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = (struct netdev_private *)dev->priv;
int crc_errs = readl(ioaddr + RxCRCErrs);
if (crc_errs != 0xffffffff) {
/* We need not lock this segment of code for SMP.
There is no atomic-add vulnerability for most CPUs,
and statistics are non-critical. */
/* The chip only need report frame silently dropped. */
np->stats.rx_crc_errors += crc_errs;
np->stats.rx_missed_errors += readl(ioaddr + RxMissed);
}
return &np->stats;
}
/* The big-endian AUTODIN II ethernet CRC calculations.
See ns820.c for how to fill the table on new chips.
*/
static unsigned const ethernet_polynomial = 0x04c11db7U;
static inline u32 ether_crc(int length, unsigned char *data)
{
int crc = -1;
while(--length >= 0) {
unsigned char current_octet = *data++;
int bit;
for (bit = 0; bit < 8; bit++, current_octet >>= 1)
crc = (crc << 1) ^
((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0);
}
return crc;
}
static void set_rx_mode(struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = (struct netdev_private *)dev->priv;
u8 mc_filter[64]; /* Multicast hash filter */
u32 rx_mode;
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
/* Unconditionally log net taps. */
printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name);
rx_mode = AcceptBroadcast | AcceptAllMulticast | AcceptAllPhys
| AcceptMyPhys;
} else if ((dev->mc_count > np->multicast_filter_limit)
|| (dev->flags & IFF_ALLMULTI)) {
rx_mode = AcceptBroadcast | AcceptAllMulticast | AcceptMyPhys;
} else {
struct dev_mc_list *mclist;
int i;
memset(mc_filter, 0, sizeof(mc_filter));
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next) {
int filterbit = ether_crc(ETH_ALEN, mclist->dmi_addr);
set_bit(filterbit & 0x1ff, mc_filter);
if (np->msg_level & NETIF_MSG_RXFILTER)
printk(KERN_INFO "%s: Added filter for %2.2x:%2.2x:%2.2x:"
"%2.2x:%2.2x:%2.2x crc %8.8x bit %d.\n", dev->name,
mclist->dmi_addr[0], mclist->dmi_addr[1],
mclist->dmi_addr[2], mclist->dmi_addr[3],
mclist->dmi_addr[4], mclist->dmi_addr[5],
filterbit, filterbit & 0x1ff);
}
rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
for (i = 0; i < 64; i += 2) {
u16 filterword = (mc_filter[i+1]<<8) + mc_filter[i];
if (filterword != np->rx_filter[i>>2]) {
writel(0x200 + i, ioaddr + RxFilterAddr);
writel(filterword, ioaddr + RxFilterData);
np->rx_filter[i>>2] = filterword;
}
}
}
writel(rx_mode, ioaddr + RxFilterAddr);
np->cur_rx_mode = rx_mode;
}
static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct netdev_private *np = (struct netdev_private *)dev->priv;
u16 *data = (u16 *)&rq->ifr_data;
u32 *data32 = (void *)&rq->ifr_data;
switch(cmd) {
case 0x8947: case 0x89F0:
/* SIOCGMIIPHY: Get the address of the PHY in use. */
data[0] = 1;
/* Fall Through */
case 0x8948: case 0x89F1:
/* SIOCGMIIREG: Read the specified MII register. */
data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f);
return 0;
case 0x8949: case 0x89F2:
/* SIOCSMIIREG: Write the specified MII register */
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (data[0] == 1) {
u16 miireg = data[1] & 0x1f;
u16 value = data[2];
mdio_write(dev, 1, miireg, value);
switch (miireg) {
case 0:
/* Check for autonegotiation on or reset. */
np->duplex_lock = (value & 0x9000) ? 0 : 1;
if (np->duplex_lock)
np->full_duplex = (value & 0x0100) ? 1 : 0;
break;
case 4: np->advertising = value; break;
}
}
return 0;
case SIOCGPARAMS:
data32[0] = np->msg_level;
data32[1] = np->multicast_filter_limit;
data32[2] = np->max_interrupt_work;
data32[3] = np->rx_copybreak;
return 0;
case SIOCSPARAMS:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
np->msg_level = data32[0];
np->multicast_filter_limit = data32[1];
np->max_interrupt_work = data32[2];
np->rx_copybreak = data32[3];
return 0;
default:
return -EOPNOTSUPP;
}
}
static int netdev_close(struct net_device *dev)
{
long ioaddr = dev->base_addr;
struct netdev_private *np = (struct netdev_private *)dev->priv;
int i;
netif_stop_tx_queue(dev);
if (np->msg_level & NETIF_MSG_IFDOWN) {
printk(KERN_DEBUG "%s: Shutting down ethercard, status was %4.4x "
"Int %2.2x.\n",
dev->name, (int)readl(ioaddr + ChipCmd),
(int)readl(ioaddr + IntrStatus));
printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx);
}
/* We don't want the timer to re-start anything. */
del_timer(&np->timer);
/* Disable interrupts using the mask. */
writel(0, ioaddr + IntrMask);
writel(0, ioaddr + IntrEnable);
writel(2, ioaddr + StatsCtrl); /* Freeze Stats */
/* Stop the chip's Tx and Rx processes. */
writel(RxOff | TxOff, ioaddr + ChipCmd);
get_stats(dev);
#ifdef __i386__
if (np->msg_level & NETIF_MSG_IFDOWN) {
printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n",
(int)virt_to_bus(np->tx_ring));
for (i = 0; i < TX_RING_SIZE; i++)
printk(" #%d desc. %8.8x %8.8x.\n",
i, np->tx_ring[i].cmd_status, (u32)np->tx_ring[i].buf_addr);
printk("\n"KERN_DEBUG " Rx ring %8.8x:\n",
(int)virt_to_bus(np->rx_ring));
for (i = 0; i < RX_RING_SIZE; i++) {
printk(KERN_DEBUG " #%d desc. %8.8x %8.8x\n",
i, np->rx_ring[i].cmd_status, (u32)np->rx_ring[i].buf_addr);
}
}
#endif /* __i386__ debugging only */
free_irq(dev->irq, dev);
/* Free all the skbuffs in the Rx queue. */
for (i = 0; i < RX_RING_SIZE; i++) {
np->rx_ring[i].cmd_status = 0;
np->rx_ring[i].buf_addr = 0xBADF00D0; /* An invalid address. */
if (np->rx_skbuff[i]) {
#if LINUX_VERSION_CODE < 0x20100
np->rx_skbuff[i]->free = 1;
#endif
dev_free_skb(np->rx_skbuff[i]);
}
np->rx_skbuff[i] = 0;
}
for (i = 0; i < TX_RING_SIZE; i++) {
if (np->tx_skbuff[i])
dev_free_skb(np->tx_skbuff[i]);
np->tx_skbuff[i] = 0;
}
#if 0
writel(0x0200, ioaddr + ChipConfig); /* Power down Xcvr. */
#endif
MOD_DEC_USE_COUNT;
return 0;
}
static int power_event(void *dev_instance, int event)
{
struct net_device *dev = dev_instance;
struct netdev_private *np = (struct netdev_private *)dev->priv;
long ioaddr = dev->base_addr;
if (np->msg_level & NETIF_MSG_LINK)
printk(KERN_DEBUG "%s: Handling power event %d.\n", dev->name, event);
switch(event) {
case DRV_ATTACH:
MOD_INC_USE_COUNT;
break;
case DRV_SUSPEND:
/* Disable interrupts, freeze stats, stop Tx and Rx. */
writel(0, ioaddr + IntrEnable);
writel(2, ioaddr + StatsCtrl);
writel(RxOff | TxOff, ioaddr + ChipCmd);
break;
case DRV_RESUME:
/* This is incomplete: the open() actions should be repeated. */
set_rx_mode(dev);
writel(np->intr_enable, ioaddr + IntrEnable);
writel(1, ioaddr + IntrEnable);
writel(RxOn | TxOn, ioaddr + ChipCmd);
break;
case DRV_DETACH: {
struct net_device **devp, **next;
if (dev->flags & IFF_UP) {
/* Some, but not all, kernel versions close automatically. */
dev_close(dev);
dev->flags &= ~(IFF_UP|IFF_RUNNING);
}
unregister_netdev(dev);
release_region(dev->base_addr, pci_id_tbl[np->chip_id].io_size);
for (devp = &root_net_dev; *devp; devp = next) {
next = &((struct netdev_private *)(*devp)->priv)->next_module;
if (*devp == dev) {
*devp = *next;
break;
}
}
if (np->priv_addr)
kfree(np->priv_addr);
kfree(dev);
MOD_DEC_USE_COUNT;
break;
}
}
return 0;
}
#ifdef MODULE
int init_module(void)
{
if (debug >= NETIF_MSG_DRV) /* Emit version even if no cards detected. */
printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2);
#ifdef CARDBUS
register_driver(ðerdev_ops);
return 0;
#else
return pci_drv_register(&natsemi_drv_id, NULL);
#endif
}
void cleanup_module(void)
{
struct net_device *next_dev;
#ifdef CARDBUS
unregister_driver(ðerdev_ops);
#else
pci_drv_unregister(&natsemi_drv_id);
#endif
/* No need to check MOD_IN_USE, as sys_delete_module() checks. */
while (root_net_dev) {
struct netdev_private *np = (void *)(root_net_dev->priv);
unregister_netdev(root_net_dev);
iounmap((char *)root_net_dev->base_addr);
next_dev = np->next_module;
if (np->priv_addr)
kfree(np->priv_addr);
kfree(root_net_dev);
root_net_dev = next_dev;
}
}
#endif /* MODULE */
/*
* Local variables:
* compile-command: "make KERNVER=`uname -r` natsemi.o"
* compile-cmd: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c natsemi.c"
* simple-compile-command: "gcc -DMODULE -O6 -c natsemi.c"
* c-indent-level: 4
* c-basic-offset: 4
* tab-width: 4
* End:
*/
|