1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
|
/*
* Mach Operating System
* Copyright (c) 1993-1987 Carnegie Mellon University.
* Copyright (c) 1993,1994 The University of Utah and
* the Computer Systems Laboratory (CSL).
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
* THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
* OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
* THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* File: kern/zalloc.c
* Author: Avadis Tevanian, Jr.
*
* Zone-based memory allocator. A zone is a collection of fixed size
* data blocks for which quick allocation/deallocation is possible.
*/
#include <kern/macro_help.h>
#include <kern/sched.h>
#include <kern/time_out.h>
#include <kern/zalloc.h>
#include <mach/vm_param.h>
#include <vm/vm_kern.h>
#include <machine/machspl.h>
#include <mach_debug.h>
#if MACH_DEBUG
#include <mach/kern_return.h>
#include <mach/machine/vm_types.h>
#include <mach_debug/zone_info.h>
#include <kern/host.h>
#include <vm/vm_map.h>
#include <vm/vm_user.h>
#include <vm/vm_kern.h>
#endif
#define ADD_TO_ZONE(zone, element) \
MACRO_BEGIN \
*((vm_offset_t *)(element)) = (zone)->free_elements; \
(zone)->free_elements = (vm_offset_t) (element); \
zone_count_down(zone); \
MACRO_END
#define REMOVE_FROM_ZONE(zone, ret, type) \
MACRO_BEGIN \
(ret) = (type) (zone)->free_elements; \
if ((ret) != (type) 0) { \
zone_count_up(zone); \
(zone)->free_elements = *((vm_offset_t *)(ret)); \
} \
MACRO_END
/*
* Support for garbage collection of unused zone pages:
*/
struct zone_page_table_entry {
struct zone_page_table_entry *next;
short in_free_list;
short alloc_count;
};
extern struct zone_page_table_entry * zone_page_table;
extern vm_offset_t zone_map_min_address;
#define lock_zone_page_table() simple_lock(&zone_page_table_lock)
#define unlock_zone_page_table() simple_unlock(&zone_page_table_lock)
#define zone_page(addr) \
(&(zone_page_table[(atop(((vm_offset_t)addr) - zone_map_min_address))]))
extern void zone_page_alloc();
extern void zone_page_dealloc();
extern void zone_page_in_use();
extern void zone_page_free();
zone_t zone_zone; /* this is the zone containing other zones */
boolean_t zone_ignore_overflow = TRUE;
vm_map_t zone_map = VM_MAP_NULL;
vm_size_t zone_map_size = 12 * 1024 * 1024;
/*
* The VM system gives us an initial chunk of memory.
* It has to be big enough to allocate the zone_zone
* and some initial kernel data structures, like kernel maps.
* It is advantageous to make it bigger than really necessary,
* because this memory is more efficient than normal kernel
* virtual memory. (It doesn't have vm_page structures backing it
* and it may have other machine-dependent advantages.)
* So for best performance, zdata_size should approximate
* the amount of memory you expect the zone system to consume.
*/
vm_offset_t zdata;
vm_size_t zdata_size = 420 * 1024;
#define zone_lock(zone) \
MACRO_BEGIN \
if (zone->type & ZONE_PAGEABLE) { \
lock_write(&zone->complex_lock); \
} else { \
simple_lock(&zone->lock); \
} \
MACRO_END
#define zone_unlock(zone) \
MACRO_BEGIN \
if (zone->type & ZONE_PAGEABLE) { \
lock_done(&zone->complex_lock); \
} else { \
simple_unlock(&zone->lock); \
} \
MACRO_END
#define zone_lock_init(zone) \
MACRO_BEGIN \
if (zone->type & ZONE_PAGEABLE) { \
lock_init(&zone->complex_lock, TRUE); \
} else { \
simple_lock_init(&zone->lock); \
} \
MACRO_END
static vm_offset_t zget_space();
decl_simple_lock_data(,zget_space_lock)
vm_offset_t zalloc_next_space;
vm_offset_t zalloc_end_of_space;
vm_size_t zalloc_wasted_space;
/*
* Garbage collection map information
*/
decl_simple_lock_data(,zone_page_table_lock)
struct zone_page_table_entry * zone_page_table;
vm_offset_t zone_map_min_address;
vm_offset_t zone_map_max_address;
int zone_pages;
extern void zone_page_init();
#define ZONE_PAGE_USED 0
#define ZONE_PAGE_UNUSED -1
/*
* Protects first_zone, last_zone, num_zones,
* and the next_zone field of zones.
*/
decl_simple_lock_data(,all_zones_lock)
zone_t first_zone;
zone_t *last_zone;
int num_zones;
/*
* zinit initializes a new zone. The zone data structures themselves
* are stored in a zone, which is initially a static structure that
* is initialized by zone_init.
*/
zone_t zinit(size, max, alloc, memtype, name)
vm_size_t size; /* the size of an element */
vm_size_t max; /* maximum memory to use */
vm_size_t alloc; /* allocation size */
unsigned int memtype; /* flags specifying type of memory */
char *name; /* a name for the zone */
{
register zone_t z;
if (zone_zone == ZONE_NULL)
z = (zone_t) zget_space(sizeof(struct zone));
else
z = (zone_t) zalloc(zone_zone);
if (z == ZONE_NULL)
panic("zinit");
if (alloc == 0)
alloc = PAGE_SIZE;
if (size == 0)
size = sizeof(z->free_elements);
/*
* Round off all the parameters appropriately.
*/
if ((max = round_page(max)) < (alloc = round_page(alloc)))
max = alloc;
z->free_elements = 0;
z->cur_size = 0;
z->max_size = max;
z->elem_size = ((size-1) + sizeof(z->free_elements)) -
((size-1) % sizeof(z->free_elements));
z->alloc_size = alloc;
z->type = memtype;
z->zone_name = name;
#ifdef ZONE_COUNT
z->count = 0;
#endif
z->doing_alloc = FALSE;
zone_lock_init(z);
/*
* Add the zone to the all-zones list.
*/
z->next_zone = ZONE_NULL;
simple_lock(&all_zones_lock);
*last_zone = z;
last_zone = &z->next_zone;
num_zones++;
simple_unlock(&all_zones_lock);
return(z);
}
/*
* Cram the given memory into the specified zone.
*/
void zcram(zone_t zone, vm_offset_t newmem, vm_size_t size)
{
register vm_size_t elem_size;
if (newmem == (vm_offset_t) 0) {
panic("zcram - memory at zero");
}
elem_size = zone->elem_size;
zone_lock(zone);
while (size >= elem_size) {
ADD_TO_ZONE(zone, newmem);
zone_page_alloc(newmem, elem_size);
zone_count_up(zone); /* compensate for ADD_TO_ZONE */
size -= elem_size;
newmem += elem_size;
zone->cur_size += elem_size;
}
zone_unlock(zone);
}
/*
* Contiguous space allocator for non-paged zones. Allocates "size" amount
* of memory from zone_map.
*/
static vm_offset_t zget_space(vm_offset_t size)
{
vm_offset_t new_space = 0;
vm_offset_t result;
vm_size_t space_to_add = 0; /*'=0' to quiet gcc warnings */
simple_lock(&zget_space_lock);
while ((zalloc_next_space + size) > zalloc_end_of_space) {
/*
* Add at least one page to allocation area.
*/
space_to_add = round_page(size);
if (new_space == 0) {
/*
* Memory cannot be wired down while holding
* any locks that the pageout daemon might
* need to free up pages. [Making the zget_space
* lock a complex lock does not help in this
* regard.]
*
* Unlock and allocate memory. Because several
* threads might try to do this at once, don't
* use the memory before checking for available
* space again.
*/
simple_unlock(&zget_space_lock);
if (kmem_alloc_wired(zone_map,
&new_space, space_to_add)
!= KERN_SUCCESS)
return(0);
zone_page_init(new_space, space_to_add,
ZONE_PAGE_USED);
simple_lock(&zget_space_lock);
continue;
}
/*
* Memory was allocated in a previous iteration.
*
* Check whether the new region is contiguous
* with the old one.
*/
if (new_space != zalloc_end_of_space) {
/*
* Throw away the remainder of the
* old space, and start a new one.
*/
zalloc_wasted_space +=
zalloc_end_of_space - zalloc_next_space;
zalloc_next_space = new_space;
}
zalloc_end_of_space = new_space + space_to_add;
new_space = 0;
}
result = zalloc_next_space;
zalloc_next_space += size;
simple_unlock(&zget_space_lock);
if (new_space != 0)
kmem_free(zone_map, new_space, space_to_add);
return(result);
}
/*
* Initialize the "zone of zones" which uses fixed memory allocated
* earlier in memory initialization. zone_bootstrap is called
* before zone_init.
*/
void zone_bootstrap()
{
simple_lock_init(&all_zones_lock);
first_zone = ZONE_NULL;
last_zone = &first_zone;
num_zones = 0;
simple_lock_init(&zget_space_lock);
zalloc_next_space = zdata;
zalloc_end_of_space = zdata + zdata_size;
zalloc_wasted_space = 0;
zone_zone = ZONE_NULL;
zone_zone = zinit(sizeof(struct zone), 128 * sizeof(struct zone),
sizeof(struct zone), 0, "zones");
}
void zone_init()
{
vm_offset_t zone_min;
vm_offset_t zone_max;
vm_size_t zone_table_size;
zone_map = kmem_suballoc(kernel_map, &zone_min, &zone_max,
zone_map_size, FALSE);
/*
* Setup garbage collection information:
*/
zone_table_size = atop(zone_max - zone_min) *
sizeof(struct zone_page_table_entry);
if (kmem_alloc_wired(zone_map, (vm_offset_t *) &zone_page_table,
zone_table_size) != KERN_SUCCESS)
panic("zone_init");
zone_min = (vm_offset_t)zone_page_table + round_page(zone_table_size);
zone_pages = atop(zone_max - zone_min);
zone_map_min_address = zone_min;
zone_map_max_address = zone_max;
simple_lock_init(&zone_page_table_lock);
zone_page_init(zone_min, zone_max - zone_min, ZONE_PAGE_UNUSED);
}
/*
* zalloc returns an element from the specified zone.
*/
vm_offset_t zalloc(zone_t zone)
{
vm_offset_t addr;
if (zone == ZONE_NULL)
panic ("zalloc: null zone");
check_simple_locks();
zone_lock(zone);
REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
while (addr == 0) {
/*
* If nothing was there, try to get more
*/
if (zone->doing_alloc) {
/*
* Someone is allocating memory for this zone.
* Wait for it to show up, then try again.
*/
assert_wait((event_t)&zone->doing_alloc, TRUE);
/* XXX say wakeup needed */
zone_unlock(zone);
thread_block((void (*)()) 0);
zone_lock(zone);
}
else {
if ((zone->cur_size + (zone->type & ZONE_PAGEABLE ?
zone->alloc_size : zone->elem_size)) >
zone->max_size) {
if (zone->type & ZONE_EXHAUSTIBLE)
break;
/*
* Printf calls logwakeup, which calls
* select_wakeup which will do a zfree
* (which tries to take the select_zone
* lock... Hang. Release the lock now
* so it can be taken again later.
* NOTE: this used to be specific to
* the select_zone, but for
* cleanliness, we just unlock all
* zones before this.
*/
if (!(zone->type & ZONE_FIXED)) {
/*
* We're willing to overflow certain
* zones, but not without complaining.
*
* This is best used in conjunction
* with the collecatable flag. What we
* want is an assurance we can get the
* memory back, assuming there's no
* leak.
*/
zone->max_size += (zone->max_size >> 1);
} else if (!zone_ignore_overflow) {
zone_unlock(zone);
printf("zone \"%s\" empty.\n",
zone->zone_name);
panic("zalloc");
}
}
if (zone->type & ZONE_PAGEABLE)
zone->doing_alloc = TRUE;
zone_unlock(zone);
if (zone->type & ZONE_PAGEABLE) {
if (kmem_alloc_pageable(zone_map, &addr,
zone->alloc_size)
!= KERN_SUCCESS)
panic("zalloc");
zcram(zone, addr, zone->alloc_size);
zone_lock(zone);
zone->doing_alloc = FALSE;
/* XXX check before doing this */
thread_wakeup((event_t)&zone->doing_alloc);
REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
} else if (zone->type & ZONE_COLLECTABLE) {
if (kmem_alloc_wired(zone_map,
&addr, zone->alloc_size)
!= KERN_SUCCESS)
panic("zalloc");
zone_page_init(addr, zone->alloc_size,
ZONE_PAGE_USED);
zcram(zone, addr, zone->alloc_size);
zone_lock(zone);
REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
} else {
addr = zget_space(zone->elem_size);
if (addr == 0)
panic("zalloc");
zone_lock(zone);
zone_count_up(zone);
zone->cur_size += zone->elem_size;
zone_unlock(zone);
zone_page_alloc(addr, zone->elem_size);
return(addr);
}
}
}
zone_unlock(zone);
return(addr);
}
/*
* zget returns an element from the specified zone
* and immediately returns nothing if there is nothing there.
*
* This form should be used when you can not block (like when
* processing an interrupt).
*/
vm_offset_t zget(zone_t zone)
{
register vm_offset_t addr;
if (zone == ZONE_NULL)
panic ("zalloc: null zone");
zone_lock(zone);
REMOVE_FROM_ZONE(zone, addr, vm_offset_t);
zone_unlock(zone);
return(addr);
}
boolean_t zone_check = FALSE;
void zfree(zone_t zone, vm_offset_t elem)
{
zone_lock(zone);
if (zone_check) {
vm_offset_t this;
/* check the zone's consistency */
for (this = zone->free_elements;
this != 0;
this = * (vm_offset_t *) this)
if (this == elem)
panic("zfree");
}
ADD_TO_ZONE(zone, elem);
zone_unlock(zone);
}
/*
* Zone garbage collection subroutines
*
* These routines have in common the modification of entries in the
* zone_page_table. The latter contains one entry for every page
* in the zone_map.
*
* For each page table entry in the given range:
*
* zone_page_in_use - decrements in_free_list
* zone_page_free - increments in_free_list
* zone_page_init - initializes in_free_list and alloc_count
* zone_page_alloc - increments alloc_count
* zone_page_dealloc - decrements alloc_count
* zone_add_free_page_list - adds the page to the free list
*
* Two counts are maintained for each page, the in_free_list count and
* alloc_count. The alloc_count is how many zone elements have been
* allocated from a page. (Note that the page could contain elements
* that span page boundaries. The count includes these elements so
* one element may be counted in two pages.) In_free_list is a count
* of how many zone elements are currently free. If in_free_list is
* equal to alloc_count then the page is eligible for garbage
* collection.
*
* Alloc_count and in_free_list are initialized to the correct values
* for a particular zone when a page is zcram'ed into a zone. Subsequent
* gets and frees of zone elements will call zone_page_in_use and
* zone_page_free which modify the in_free_list count. When the zones
* garbage collector runs it will walk through a zones free element list,
* remove the elements that reside on collectable pages, and use
* zone_add_free_page_list to create a list of pages to be collected.
*/
void zone_page_in_use(addr, size)
vm_offset_t addr;
vm_size_t size;
{
int i, j;
if ((addr < zone_map_min_address) ||
(addr+size > zone_map_max_address)) return;
i = atop(addr-zone_map_min_address);
j = atop((addr+size-1) - zone_map_min_address);
lock_zone_page_table();
for (; i <= j; i++) {
zone_page_table[i].in_free_list--;
}
unlock_zone_page_table();
}
void zone_page_free(addr, size)
vm_offset_t addr;
vm_size_t size;
{
int i, j;
if ((addr < zone_map_min_address) ||
(addr+size > zone_map_max_address)) return;
i = atop(addr-zone_map_min_address);
j = atop((addr+size-1) - zone_map_min_address);
lock_zone_page_table();
for (; i <= j; i++) {
/* Set in_free_list to (ZONE_PAGE_USED + 1) if
* it was previously set to ZONE_PAGE_UNUSED.
*/
if (zone_page_table[i].in_free_list == ZONE_PAGE_UNUSED) {
zone_page_table[i].in_free_list = 1;
} else {
zone_page_table[i].in_free_list++;
}
}
unlock_zone_page_table();
}
void zone_page_init(addr, size, value)
vm_offset_t addr;
vm_size_t size;
int value;
{
int i, j;
if ((addr < zone_map_min_address) ||
(addr+size > zone_map_max_address)) return;
i = atop(addr-zone_map_min_address);
j = atop((addr+size-1) - zone_map_min_address);
lock_zone_page_table();
for (; i <= j; i++) {
zone_page_table[i].alloc_count = value;
zone_page_table[i].in_free_list = 0;
}
unlock_zone_page_table();
}
void zone_page_alloc(addr, size)
vm_offset_t addr;
vm_size_t size;
{
int i, j;
if ((addr < zone_map_min_address) ||
(addr+size > zone_map_max_address)) return;
i = atop(addr-zone_map_min_address);
j = atop((addr+size-1) - zone_map_min_address);
lock_zone_page_table();
for (; i <= j; i++) {
/* Set alloc_count to (ZONE_PAGE_USED + 1) if
* it was previously set to ZONE_PAGE_UNUSED.
*/
if (zone_page_table[i].alloc_count == ZONE_PAGE_UNUSED) {
zone_page_table[i].alloc_count = 1;
} else {
zone_page_table[i].alloc_count++;
}
}
unlock_zone_page_table();
}
void zone_page_dealloc(addr, size)
vm_offset_t addr;
vm_size_t size;
{
int i, j;
if ((addr < zone_map_min_address) ||
(addr+size > zone_map_max_address)) return;
i = atop(addr-zone_map_min_address);
j = atop((addr+size-1) - zone_map_min_address);
lock_zone_page_table();
for (; i <= j; i++) {
zone_page_table[i].alloc_count--;
}
unlock_zone_page_table();
}
void
zone_add_free_page_list(free_list, addr, size)
struct zone_page_table_entry **free_list;
vm_offset_t addr;
vm_size_t size;
{
int i, j;
if ((addr < zone_map_min_address) ||
(addr+size > zone_map_max_address)) return;
i = atop(addr-zone_map_min_address);
j = atop((addr+size-1) - zone_map_min_address);
lock_zone_page_table();
for (; i <= j; i++) {
if (zone_page_table[i].alloc_count == 0) {
zone_page_table[i].next = *free_list;
*free_list = &zone_page_table[i];
zone_page_table[i].alloc_count = ZONE_PAGE_UNUSED;
zone_page_table[i].in_free_list = 0;
}
}
unlock_zone_page_table();
}
/* This is used for walking through a zone's free element list.
*/
struct zone_free_entry {
struct zone_free_entry * next;
};
/* Zone garbage collection
*
* zone_gc will walk through all the free elements in all the
* zones that are marked collectable looking for reclaimable
* pages. zone_gc is called by consider_zone_gc when the system
* begins to run out of memory.
*/
static void zone_gc()
{
int max_zones;
zone_t z;
int i;
register spl_t s;
struct zone_page_table_entry *freep;
struct zone_page_table_entry *zone_free_page_list;
simple_lock(&all_zones_lock);
max_zones = num_zones;
z = first_zone;
simple_unlock(&all_zones_lock);
zone_free_page_list = (struct zone_page_table_entry *) 0;
for (i = 0; i < max_zones; i++) {
struct zone_free_entry * last;
struct zone_free_entry * elt;
assert(z != ZONE_NULL);
/* run this at splhigh so that interupt routines that use zones
can not interupt while their zone is locked */
s=splhigh();
zone_lock(z);
if ((z->type & (ZONE_PAGEABLE|ZONE_COLLECTABLE)) == ZONE_COLLECTABLE) {
/* Count the free elements in each page. This loop
* requires that all in_free_list entries are zero.
*/
elt = (struct zone_free_entry *)(z->free_elements);
while ((elt != (struct zone_free_entry *)0)) {
zone_page_free((vm_offset_t)elt, z->elem_size);
elt = elt->next;
}
/* Now determine which elements should be removed
* from the free list and, after all the elements
* on a page have been removed, add the element's
* page to a list of pages to be freed.
*/
elt = (struct zone_free_entry *)(z->free_elements);
last = elt;
while ((elt != (struct zone_free_entry *)0)) {
if (((vm_offset_t)elt>=zone_map_min_address)&&
((vm_offset_t)elt<=zone_map_max_address)&&
(zone_page(elt)->in_free_list ==
zone_page(elt)->alloc_count)) {
z->cur_size -= z->elem_size;
zone_page_in_use((vm_offset_t)elt, z->elem_size);
zone_page_dealloc((vm_offset_t)elt, z->elem_size);
if (zone_page(elt)->alloc_count == 0 ||
zone_page(elt+(z->elem_size-1))->alloc_count==0) {
zone_add_free_page_list(
&zone_free_page_list,
(vm_offset_t)elt, z->elem_size);
}
if (elt == last) {
elt = elt->next;
z->free_elements =(vm_offset_t)elt;
last = elt;
} else {
last->next = elt->next;
elt = elt->next;
}
} else {
/* This element is not eligible for collection
* so clear in_free_list in preparation for a
* subsequent garbage collection pass.
*/
if (((vm_offset_t)elt>=zone_map_min_address)&&
((vm_offset_t)elt<=zone_map_max_address)) {
zone_page(elt)->in_free_list = 0;
}
last = elt;
elt = elt->next;
}
}
}
zone_unlock(z);
splx(s);
simple_lock(&all_zones_lock);
z = z->next_zone;
simple_unlock(&all_zones_lock);
}
for (freep = zone_free_page_list; freep != 0; freep = freep->next) {
vm_offset_t free_addr;
free_addr = zone_map_min_address +
PAGE_SIZE * (freep - zone_page_table);
kmem_free(zone_map, free_addr, PAGE_SIZE);
}
}
boolean_t zone_gc_allowed = TRUE;
unsigned zone_gc_last_tick = 0;
unsigned zone_gc_max_rate = 0; /* in ticks */
/*
* consider_zone_gc:
*
* Called by the pageout daemon when the system needs more free pages.
*/
void
consider_zone_gc()
{
/*
* By default, don't attempt zone GC more frequently
* than once a second.
*/
if (zone_gc_max_rate == 0)
zone_gc_max_rate = hz;
if (zone_gc_allowed &&
(sched_tick > (zone_gc_last_tick + zone_gc_max_rate))) {
zone_gc_last_tick = sched_tick;
zone_gc();
}
}
#if MACH_DEBUG
kern_return_t host_zone_info(host, namesp, namesCntp, infop, infoCntp)
host_t host;
zone_name_array_t *namesp;
unsigned int *namesCntp;
zone_info_array_t *infop;
unsigned int *infoCntp;
{
zone_name_t *names;
vm_offset_t names_addr;
vm_size_t names_size = 0; /*'=0' to quiet gcc warnings */
zone_info_t *info;
vm_offset_t info_addr;
vm_size_t info_size = 0; /*'=0' to quiet gcc warnings */
unsigned int max_zones, i;
zone_t z;
kern_return_t kr;
if (host == HOST_NULL)
return KERN_INVALID_HOST;
/*
* We assume that zones aren't freed once allocated.
* We won't pick up any zones that are allocated later.
*/
simple_lock(&all_zones_lock);
max_zones = num_zones;
z = first_zone;
simple_unlock(&all_zones_lock);
if (max_zones <= *namesCntp) {
/* use in-line memory */
names = *namesp;
} else {
names_size = round_page(max_zones * sizeof *names);
kr = kmem_alloc_pageable(ipc_kernel_map,
&names_addr, names_size);
if (kr != KERN_SUCCESS)
return kr;
names = (zone_name_t *) names_addr;
}
if (max_zones <= *infoCntp) {
/* use in-line memory */
info = *infop;
} else {
info_size = round_page(max_zones * sizeof *info);
kr = kmem_alloc_pageable(ipc_kernel_map,
&info_addr, info_size);
if (kr != KERN_SUCCESS) {
if (names != *namesp)
kmem_free(ipc_kernel_map,
names_addr, names_size);
return kr;
}
info = (zone_info_t *) info_addr;
}
for (i = 0; i < max_zones; i++) {
zone_name_t *zn = &names[i];
zone_info_t *zi = &info[i];
struct zone zcopy;
assert(z != ZONE_NULL);
zone_lock(z);
zcopy = *z;
zone_unlock(z);
simple_lock(&all_zones_lock);
z = z->next_zone;
simple_unlock(&all_zones_lock);
/* assuming here the name data is static */
(void) strncpy(zn->zn_name, zcopy.zone_name,
sizeof zn->zn_name);
#ifdef ZONE_COUNT
zi->zi_count = zcopy.count;
#else
zi->zi_count = 0;
#endif
zi->zi_cur_size = zcopy.cur_size;
zi->zi_max_size = zcopy.max_size;
zi->zi_elem_size = zcopy.elem_size;
zi->zi_alloc_size = zcopy.alloc_size;
zi->zi_pageable = (zcopy.type & ZONE_PAGEABLE) != 0;
zi->zi_exhaustible = (zcopy.type & ZONE_EXHAUSTIBLE) != 0;
zi->zi_collectable = (zcopy.type & ZONE_COLLECTABLE) != 0;
}
if (names != *namesp) {
vm_size_t used;
vm_map_copy_t copy;
used = max_zones * sizeof *names;
if (used != names_size)
bzero((char *) (names_addr + used), names_size - used);
kr = vm_map_copyin(ipc_kernel_map, names_addr, names_size,
TRUE, ©);
assert(kr == KERN_SUCCESS);
*namesp = (zone_name_t *) copy;
}
*namesCntp = max_zones;
if (info != *infop) {
vm_size_t used;
vm_map_copy_t copy;
used = max_zones * sizeof *info;
if (used != info_size)
bzero((char *) (info_addr + used), info_size - used);
kr = vm_map_copyin(ipc_kernel_map, info_addr, info_size,
TRUE, ©);
assert(kr == KERN_SUCCESS);
*infop = (zone_info_t *) copy;
}
*infoCntp = max_zones;
return KERN_SUCCESS;
}
#endif MACH_DEBUG
|