1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach/kern_return.h>
#include <mach/port.h>
#include <kern/queue.h>
#include <kern/thread.h>
#include <mach/time_value.h>
#include <kern/timer.h>
#include <kern/cpu_number.h>
#include <kern/assert.h>
#include <kern/macro_help.h>
timer_t current_timer[NCPUS];
timer_data_t kernel_timer[NCPUS];
/*
* init_timers initializes all non-thread timers and puts the
* service routine on the callout queue. All timers must be
* serviced by the callout routine once an hour.
*/
void init_timers()
{
int i;
timer_t this_timer;
/*
* Initialize all the kernel timers and start the one
* for this cpu (master) slaves start theirs later.
*/
this_timer = &kernel_timer[0];
for ( i=0 ; i<NCPUS ; i++, this_timer++) {
timer_init(this_timer);
current_timer[i] = (timer_t) 0;
}
start_timer(&kernel_timer[cpu_number()]);
}
/*
* timer_init initializes a single timer.
*/
void timer_init(this_timer)
timer_t this_timer;
{
this_timer->low_bits = 0;
this_timer->high_bits = 0;
this_timer->tstamp = 0;
this_timer->high_bits_check = 0;
}
#if STAT_TIME
#else /* STAT_TIME */
#ifdef MACHINE_TIMER_ROUTINES
/*
* Machine-dependent code implements the timer routines.
*/
#else /* MACHINE_TIMER_ROUTINES */
/*
* start_timer starts the given timer for this cpu. It is called
* exactly once for each cpu during the boot sequence.
*/
void
start_timer(timer)
timer_t timer;
{
timer->tstamp = get_timestamp();
current_timer[cpu_number()] = timer;
}
/*
* time_trap_uentry does trap entry timing. Caller must lock out
* interrupts and take a timestamp. ts is a timestamp taken after
* interrupts were locked out. Must only be called if trap was
* from user mode.
*/
void
time_trap_uentry(ts)
unsigned ts;
{
int elapsed;
int mycpu;
timer_t mytimer;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
if (mytimer->low_bits & TIMER_LOW_FULL) {
timer_normalize(mytimer);
}
/*
* Record new timer.
*/
mytimer = &(active_threads[mycpu]->system_timer);
current_timer[mycpu] = mytimer;
mytimer->tstamp = ts;
}
/*
* time_trap_uexit does trap exit timing. Caller must lock out
* interrupts and take a timestamp. ts is a timestamp taken after
* interrupts were locked out. Must only be called if returning to
* user mode.
*/
void
time_trap_uexit(ts)
{
int elapsed;
int mycpu;
timer_t mytimer;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
if (mytimer->low_bits & TIMER_LOW_FULL) {
timer_normalize(mytimer); /* SYSTEMMODE */
}
mytimer = &(active_threads[mycpu]->user_timer);
/*
* Record new timer.
*/
current_timer[mycpu] = mytimer;
mytimer->tstamp = ts;
}
/*
* time_int_entry does interrupt entry timing. Caller must lock out
* interrupts and take a timestamp. ts is a timestamp taken after
* interrupts were locked out. new_timer is the new timer to
* switch to. This routine returns the currently running timer,
* which MUST be pushed onto the stack by the caller, or otherwise
* saved for time_int_exit.
*/
timer_t
time_int_entry(ts,new_timer)
unsigned ts;
timer_t new_timer;
{
int elapsed;
int mycpu;
timer_t mytimer;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
/*
* Switch to new timer, and save old one on stack.
*/
new_timer->tstamp = ts;
current_timer[mycpu] = new_timer;
return(mytimer);
}
/*
* time_int_exit does interrupt exit timing. Caller must lock out
* interrupts and take a timestamp. ts is a timestamp taken after
* interrupts were locked out. old_timer is the timer value pushed
* onto the stack or otherwise saved after time_int_entry returned
* it.
*/
void
time_int_exit(ts, old_timer)
unsigned ts;
timer_t old_timer;
{
int elapsed;
int mycpu;
timer_t mytimer;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
/*
* If normalization requested, do it.
*/
if (mytimer->low_bits & TIMER_LOW_FULL) {
timer_normalize(mytimer);
}
if (old_timer->low_bits & TIMER_LOW_FULL) {
timer_normalize(old_timer);
}
/*
* Start timer that was running before interrupt.
*/
old_timer->tstamp = ts;
current_timer[mycpu] = old_timer;
}
/*
* timer_switch switches to a new timer. The machine
* dependent routine/macro get_timestamp must return a timestamp.
* Caller must lock out interrupts.
*/
void
timer_switch(new_timer)
timer_t new_timer;
{
int elapsed;
int mycpu;
timer_t mytimer;
unsigned ts;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
ts = get_timestamp();
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
/*
* Normalization check
*/
if (mytimer->low_bits & TIMER_LOW_FULL) {
timer_normalize(mytimer);
}
/*
* Record new timer.
*/
current_timer[mycpu] = new_timer;
new_timer->tstamp = ts;
}
#endif /* MACHINE_TIMER_ROUTINES */
#endif /* STAT_TIME */
/*
* timer_normalize normalizes the value of a timer. It is
* called only rarely, to make sure low_bits never overflows.
*/
void timer_normalize(timer)
timer_t timer;
{
unsigned int high_increment;
/*
* Calculate high_increment, then write high check field first
* followed by low and high. timer_grab() reads these fields in
* reverse order so if high and high check match, we know
* that the values read are ok.
*/
high_increment = timer->low_bits/TIMER_HIGH_UNIT;
timer->high_bits_check += high_increment;
timer->low_bits %= TIMER_HIGH_UNIT;
timer->high_bits += high_increment;
}
/*
* timer_grab() retrieves the value of a timer.
*
* Critical scheduling code uses TIMER_DELTA macro in timer.h
* (called from thread_timer_delta in sched.h).
*
* Keep coherent with db_time_grab below.
*/
static void timer_grab(timer, save)
timer_t timer;
timer_save_t save;
{
#if MACH_ASSERT
unsigned int passes=0;
#endif
do {
(save)->high = (timer)->high_bits;
(save)->low = (timer)->low_bits;
/*
* If the timer was normalized while we were doing this,
* the high_bits value read above and the high_bits check
* value will not match because high_bits_check is the first
* field touched by the normalization procedure, and
* high_bits is the last.
*
* Additions to timer only touch low bits and
* are therefore atomic with respect to this.
*/
#if MACH_ASSERT
passes++;
assert((passes < 10000) ? (1) : ((timer->high_bits_check = save->high), 0));
#endif
} while ( (save)->high != (timer)->high_bits_check);
}
/*
*
* Db_timer_grab(): used by db_thread_read_times. An nonblocking
* version of db_thread_get_times. Keep coherent with timer_grab
* above.
*
*/
void db_timer_grab(timer, save)
timer_t timer;
timer_save_t save;
{
/* Don't worry about coherency */
(save)->high = (timer)->high_bits;
(save)->low = (timer)->low_bits;
}
/*
* timer_read reads the value of a timer into a time_value_t. If the
* timer was modified during the read, retry. The value returned
* is accurate to the last update; time accumulated by a running
* timer since its last timestamp is not included.
*/
void
timer_read(timer, tv)
timer_t timer;
time_value_t *tv;
{
timer_save_data_t temp;
timer_grab(timer,&temp);
/*
* Normalize the result
*/
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
tv->seconds = temp.high + temp.low/1000000;
tv->microseconds = temp.low%1000000;
}
/*
* thread_read_times reads the user and system times from a thread.
* Time accumulated since last timestamp is not included. Should
* be called at splsched() to avoid having user and system times
* be out of step. Doesn't care if caller locked thread.
*
* Needs to be kept coherent with thread_read_times ahead.
*/
void thread_read_times(thread, user_time_p, system_time_p)
thread_t thread;
time_value_t *user_time_p;
time_value_t *system_time_p;
{
timer_save_data_t temp;
timer_t timer;
timer = &thread->user_timer;
timer_grab(timer, &temp);
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
user_time_p->seconds = temp.high + temp.low/1000000;
user_time_p->microseconds = temp.low % 1000000;
timer = &thread->system_timer;
timer_grab(timer, &temp);
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
system_time_p->seconds = temp.high + temp.low/1000000;
system_time_p->microseconds = temp.low % 1000000;
}
/*
* Db_thread_read_times: A version of thread_read_times that
* can be called by the debugger. This version does not call
* timer_grab, which can block. Please keep it up to date with
* thread_read_times above.
*
*/
void db_thread_read_times(thread, user_time_p, system_time_p)
thread_t thread;
time_value_t *user_time_p;
time_value_t *system_time_p;
{
timer_save_data_t temp;
timer_t timer;
timer = &thread->user_timer;
db_timer_grab(timer, &temp);
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
user_time_p->seconds = temp.high + temp.low/1000000;
user_time_p->microseconds = temp.low % 1000000;
timer = &thread->system_timer;
timer_grab(timer, &temp);
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
system_time_p->seconds = temp.high + temp.low/1000000;
system_time_p->microseconds = temp.low % 1000000;
}
/*
* timer_delta takes the difference of a saved timer value
* and the current one, and updates the saved value to current.
* The difference is returned as a function value. See
* TIMER_DELTA macro (timer.h) for optimization to this.
*/
unsigned
timer_delta(timer, save)
timer_t timer;
timer_save_t save;
{
timer_save_data_t new_save;
unsigned result;
timer_grab(timer,&new_save);
result = (new_save.high - save->high) * TIMER_HIGH_UNIT +
new_save.low - save->low;
save->high = new_save.high;
save->low = new_save.low;
return(result);
}
|