summaryrefslogtreecommitdiff
path: root/kern/task.c
blob: 7b0e0e66a22770e756d9594cd7af8af722db3a61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
/*
 * Mach Operating System
 * Copyright (c) 1993-1988 Carnegie Mellon University
 * All Rights Reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 *	File:	kern/task.c
 *	Author:	Avadis Tevanian, Jr., Michael Wayne Young, David Golub,
 *		David Black
 *
 *	Task management primitives implementation.
 */

#include <mach_host.h>
#include <mach_pcsample.h>
#include <norma_task.h>
#include <fast_tas.h>
#include <net_atm.h>

#include <mach/machine/vm_types.h>
#include <mach/vm_param.h>
#include <mach/task_info.h>
#include <mach/task_special_ports.h>
#include <ipc/ipc_space.h>
#include <ipc/ipc_types.h>
#include <kern/mach_param.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/zalloc.h>
#include <kern/kalloc.h>
#include <kern/processor.h>
#include <kern/sched_prim.h>	/* for thread_wakeup */
#include <kern/ipc_tt.h>
#include <vm/vm_kern.h>		/* for kernel_map, ipc_kernel_map */
#include <machine/machspl.h>	/* for splsched */

#if	NET_ATM
#include <chips/nw_mk.h>
#endif

#if	NORMA_TASK
#define	task_create	task_create_local
#endif	/* NORMA_TASK */

task_t	kernel_task = TASK_NULL;
zone_t	task_zone;

extern void eml_init(void);
extern void eml_task_reference(task_t, task_t);
extern void eml_task_deallocate(task_t);

void task_init(void)
{
	task_zone = zinit(
			sizeof(struct task),
			TASK_MAX * sizeof(struct task),
			TASK_CHUNK * sizeof(struct task),
			0, "tasks");

	eml_init();

	/*
	 * Create the kernel task as the first task.
	 * Task_create must assign to kernel_task as a side effect,
	 * for other initialization. (:-()
	 */
	(void) task_create(TASK_NULL, FALSE, &kernel_task);
}

/*
 * Create a task running in the kernel address space.  It may
 * have its own map of size mem_size (if 0, it uses the kernel map),
 * and may have ipc privileges.
 */
task_t	kernel_task_create(
	task_t		parent_task,
	vm_size_t	map_size)
{
	task_t		new_task;
	vm_offset_t	min, max;

	/*
	 * Create the task.
	 */
	(void) task_create(parent_task, FALSE, &new_task);

	/*
	 * Task_create creates the task with a user-space map.
	 * Remove the map and replace it with the kernel map
	 * or a submap of the kernel map.
	 */
	vm_map_deallocate(new_task->map);
	if (map_size == 0)
	    new_task->map = kernel_map;
	else
	    new_task->map = kmem_suballoc(kernel_map, &min, &max,
					  map_size, FALSE);

	return new_task;
}

kern_return_t task_create(
	task_t		parent_task,
	boolean_t	inherit_memory,
	task_t		*child_task)		/* OUT */
{
	register task_t	new_task;
	register processor_set_t	pset;
	int i;

	new_task = (task_t) zalloc(task_zone);
	if (new_task == TASK_NULL) {
		panic("task_create: no memory for task structure");
	}

	/* one ref for just being alive; one for our caller */
	new_task->ref_count = 2;

	if (child_task == &kernel_task)  {
		new_task->map = kernel_map;
	} else if (inherit_memory) {
		new_task->map = vm_map_fork(parent_task->map);
	} else {
		new_task->map = vm_map_create(pmap_create(0),
					round_page(VM_MIN_ADDRESS),
					trunc_page(VM_MAX_ADDRESS), TRUE);
	}

	simple_lock_init(&new_task->lock);
	queue_init(&new_task->thread_list);
	new_task->suspend_count = 0;
	new_task->active = TRUE;
	new_task->user_stop_count = 0;
	new_task->thread_count = 0;

	eml_task_reference(new_task, parent_task);

	ipc_task_init(new_task, parent_task);

#if	NET_ATM
	new_task->nw_ep_owned = 0;
#endif

	new_task->total_user_time.seconds = 0;
	new_task->total_user_time.microseconds = 0;
	new_task->total_system_time.seconds = 0;
	new_task->total_system_time.microseconds = 0;

	record_time_stamp (&new_task->creation_time);

	if (parent_task != TASK_NULL) {
		task_lock(parent_task);
		pset = parent_task->processor_set;
		if (!pset->active)
			pset = &default_pset;
		pset_reference(pset);
		new_task->priority = parent_task->priority;
		task_unlock(parent_task);
	}
	else {
		pset = &default_pset;
		pset_reference(pset);
		new_task->priority = BASEPRI_USER;
	}
	pset_lock(pset);
	pset_add_task(pset, new_task);
	pset_unlock(pset);

	new_task->may_assign = TRUE;
	new_task->assign_active = FALSE;

#if	MACH_PCSAMPLE
	new_task->pc_sample.buffer = 0;
	new_task->pc_sample.seqno = 0;
	new_task->pc_sample.sampletypes = 0;
#endif	/* MACH_PCSAMPLE */

#if	FAST_TAS
	for (i = 0; i < TASK_FAST_TAS_NRAS; i++)  {
	    if (inherit_memory) {
		new_task->fast_tas_base[i] = parent_task->fast_tas_base[i];
 		new_task->fast_tas_end[i]  = parent_task->fast_tas_end[i];
	    } else {
 		new_task->fast_tas_base[i] = (vm_offset_t)0;
 		new_task->fast_tas_end[i]  = (vm_offset_t)0;
	    }
	}
#endif	/* FAST_TAS */

	ipc_task_enable(new_task);

#if	NORMA_TASK
	new_task->child_node = -1;
#endif	/* NORMA_TASK */

	*child_task = new_task;
	return KERN_SUCCESS;
}

/*
 *	task_deallocate:
 *
 *	Give up a reference to the specified task and destroy it if there
 *	are no other references left.  It is assumed that the current thread
 *	is never in this task.
 */
void task_deallocate(
	register task_t	task)
{
	register int c;
	register processor_set_t pset;

	if (task == TASK_NULL)
		return;

	task_lock(task);
	c = --(task->ref_count);
	task_unlock(task);
	if (c != 0)
		return;

#if	NORMA_TASK
	if (task->map == VM_MAP_NULL) {
		/* norma placeholder task */
		zfree(task_zone, (vm_offset_t) task);
		return;
	}
#endif	/* NORMA_TASK */

	eml_task_deallocate(task);

	pset = task->processor_set;
	pset_lock(pset);
	pset_remove_task(pset,task);
	pset_unlock(pset);
	pset_deallocate(pset);
	vm_map_deallocate(task->map);
	is_release(task->itk_space);
	zfree(task_zone, (vm_offset_t) task);
}

void task_reference(
	register task_t	task)
{
	if (task == TASK_NULL)
		return;

	task_lock(task);
	task->ref_count++;
	task_unlock(task);
}

/*
 *	task_terminate:
 *
 *	Terminate the specified task.  See comments on thread_terminate
 *	(kern/thread.c) about problems with terminating the "current task."
 */
kern_return_t task_terminate(
	register task_t	task)
{
	register thread_t	thread, cur_thread;
	register queue_head_t	*list;
	register task_t		cur_task;
	spl_t			s;

	if (task == TASK_NULL)
		return KERN_INVALID_ARGUMENT;

	list = &task->thread_list;
	cur_task = current_task();
	cur_thread = current_thread();

#if	NET_ATM
	/*
	 *      Shut down networking.
         */
	mk_endpoint_collect(task);
#endif

	/*
	 *	Deactivate task so that it can't be terminated again,
	 *	and so lengthy operations in progress will abort.
	 *
	 *	If the current thread is in this task, remove it from
	 *	the task's thread list to keep the thread-termination
	 *	loop simple.
	 */
	if (task == cur_task) {
		task_lock(task);
		if (!task->active) {
			/*
			 *	Task is already being terminated.
			 */
			task_unlock(task);
			return KERN_FAILURE;
		}
		/*
		 *	Make sure current thread is not being terminated.
		 */
		s = splsched();
		thread_lock(cur_thread);
		if (!cur_thread->active) {
			thread_unlock(cur_thread);
			(void) splx(s);
			task_unlock(task);
			thread_terminate(cur_thread);
			return KERN_FAILURE;
		}
		task->active = FALSE;
		queue_remove(list, cur_thread, thread_t, thread_list);
		thread_unlock(cur_thread);
		(void) splx(s);
		task_unlock(task);

		/*
		 *	Shut down this thread's ipc now because it must
		 *	be left alone to terminate the task.
		 */
		ipc_thread_disable(cur_thread);
		ipc_thread_terminate(cur_thread);
	}
	else {
		/*
		 *	Lock both current and victim task to check for
		 *	potential deadlock.
		 */
		if ((vm_offset_t)task < (vm_offset_t)cur_task) {
			task_lock(task);
			task_lock(cur_task);
		}
		else {
			task_lock(cur_task);
			task_lock(task);
		}
		/*
		 *	Check if current thread or task is being terminated.
		 */
		s = splsched();
		thread_lock(cur_thread);
		if ((!cur_task->active) ||(!cur_thread->active)) {
			/*
			 * Current task or thread is being terminated.
			 */
			thread_unlock(cur_thread);
			(void) splx(s);
			task_unlock(task);
			task_unlock(cur_task);
			thread_terminate(cur_thread);
			return KERN_FAILURE;
		}
		thread_unlock(cur_thread);
		(void) splx(s);
		task_unlock(cur_task);

		if (!task->active) {
			/*
			 *	Task is already being terminated.
			 */
			task_unlock(task);
			return KERN_FAILURE;
		}
		task->active = FALSE;
		task_unlock(task);
	}

	/*
	 *	Prevent further execution of the task.  ipc_task_disable
	 *	prevents further task operations via the task port.
	 *	If this is the current task, the current thread will
	 *	be left running.
	 */
	ipc_task_disable(task);
	(void) task_hold(task);
	(void) task_dowait(task,TRUE);			/* may block */

	/*
	 *	Terminate each thread in the task.
	 *
         *      The task_port is closed down, so no more thread_create
         *      operations can be done.  Thread_force_terminate closes the
         *      thread port for each thread; when that is done, the
         *      thread will eventually disappear.  Thus the loop will
         *      terminate.  Call thread_force_terminate instead of
         *      thread_terminate to avoid deadlock checks.  Need
         *      to call thread_block() inside loop because some other
         *      thread (e.g., the reaper) may have to run to get rid
         *      of all references to the thread; it won't vanish from
         *      the task's thread list until the last one is gone.
         */
        task_lock(task);
        while (!queue_empty(list)) {
                thread = (thread_t) queue_first(list);
                thread_reference(thread);
                task_unlock(task);
                thread_force_terminate(thread);
                thread_deallocate(thread);
                thread_block((void (*)()) 0);
                task_lock(task);
        }
        task_unlock(task);

	/*
	 *	Shut down IPC.
	 */
	ipc_task_terminate(task);


	/*
	 *	Deallocate the task's reference to itself.
	 */
	task_deallocate(task);

	/*
	 *	If the current thread is in this task, it has not yet
	 *	been terminated (since it was removed from the task's
	 *	thread-list).  Put it back in the thread list (for
	 *	completeness), and terminate it.  Since it holds the
	 *	last reference to the task, terminating it will deallocate
	 *	the task.
	 */
	if (cur_thread->task == task) {
		task_lock(task);
		s = splsched();
		queue_enter(list, cur_thread, thread_t, thread_list);
		(void) splx(s);
		task_unlock(task);
		(void) thread_terminate(cur_thread);
	}

	return KERN_SUCCESS;
}

/*
 *	task_hold:
 *
 *	Suspend execution of the specified task.
 *	This is a recursive-style suspension of the task, a count of
 *	suspends is maintained.
 */
kern_return_t task_hold(
	register task_t	task)
{
	register queue_head_t	*list;
	register thread_t	thread, cur_thread;

	cur_thread = current_thread();

	task_lock(task);
	if (!task->active) {
		task_unlock(task);
		return KERN_FAILURE;
	}

	task->suspend_count++;

	/*
	 *	Iterate through all the threads and hold them.
	 *	Do not hold the current thread if it is within the
	 *	task.
	 */
	list = &task->thread_list;
	queue_iterate(list, thread, thread_t, thread_list) {
		if (thread != cur_thread)
			thread_hold(thread);
	}
	task_unlock(task);
	return KERN_SUCCESS;
}

/*
 *	task_dowait:
 *
 *	Wait until the task has really been suspended (all of the threads
 *	are stopped).  Skip the current thread if it is within the task.
 *
 *	If task is deactivated while waiting, return a failure code unless
 *	must_wait is true.
 */
kern_return_t task_dowait(
	register task_t	task,
	boolean_t must_wait)
{
	register queue_head_t	*list;
	register thread_t	thread, cur_thread, prev_thread;
	register kern_return_t	ret = KERN_SUCCESS;

	/*
	 *	Iterate through all the threads.
	 *	While waiting for each thread, we gain a reference to it
	 *	to prevent it from going away on us.  This guarantees
	 *	that the "next" thread in the list will be a valid thread.
	 *
	 *	We depend on the fact that if threads are created while
	 *	we are looping through the threads, they will be held
	 *	automatically.  We don't care about threads that get
	 *	deallocated along the way (the reference prevents it
	 *	from happening to the thread we are working with).
	 *
	 *	If the current thread is in the affected task, it is skipped.
	 *
	 *	If the task is deactivated before we're done, and we don't
	 *	have to wait for it (must_wait is FALSE), just bail out.
	 */
	cur_thread = current_thread();

	list = &task->thread_list;
	prev_thread = THREAD_NULL;
	task_lock(task);
	queue_iterate(list, thread, thread_t, thread_list) {
		if (!(task->active) && !(must_wait)) {
			ret = KERN_FAILURE;
			break;
		}
		if (thread != cur_thread) {
			thread_reference(thread);
			task_unlock(task);
			if (prev_thread != THREAD_NULL)
				thread_deallocate(prev_thread);
							/* may block */
			(void) thread_dowait(thread, TRUE);  /* may block */
			prev_thread = thread;
			task_lock(task);
		}
	}
	task_unlock(task);
	if (prev_thread != THREAD_NULL)
		thread_deallocate(prev_thread);		/* may block */
	return ret;
}

kern_return_t task_release(
	register task_t	task)
{
	register queue_head_t	*list;
	register thread_t	thread, next;

	task_lock(task);
	if (!task->active) {
		task_unlock(task);
		return KERN_FAILURE;
	}

	task->suspend_count--;

	/*
	 *	Iterate through all the threads and release them
	 */
	list = &task->thread_list;
	thread = (thread_t) queue_first(list);
	while (!queue_end(list, (queue_entry_t) thread)) {
		next = (thread_t) queue_next(&thread->thread_list);
		thread_release(thread);
		thread = next;
	}
	task_unlock(task);
	return KERN_SUCCESS;
}

kern_return_t task_threads(
	task_t		task,
	thread_array_t	*thread_list,
	natural_t	*count)
{
	unsigned int actual;	/* this many threads */
	thread_t thread;
	thread_t *threads;
	int i;

	vm_size_t size, size_needed;
	vm_offset_t addr;

	if (task == TASK_NULL)
		return KERN_INVALID_ARGUMENT;

	size = 0; addr = 0;

	for (;;) {
		task_lock(task);
		if (!task->active) {
			task_unlock(task);
			return KERN_FAILURE;
		}

		actual = task->thread_count;

		/* do we have the memory we need? */

		size_needed = actual * sizeof(mach_port_t);
		if (size_needed <= size)
			break;

		/* unlock the task and allocate more memory */
		task_unlock(task);

		if (size != 0)
			kfree(addr, size);

		assert(size_needed > 0);
		size = size_needed;

		addr = kalloc(size);
		if (addr == 0)
			return KERN_RESOURCE_SHORTAGE;
	}

	/* OK, have memory and the task is locked & active */

	threads = (thread_t *) addr;

	for (i = 0, thread = (thread_t) queue_first(&task->thread_list);
	     i < actual;
	     i++, thread = (thread_t) queue_next(&thread->thread_list)) {
		/* take ref for convert_thread_to_port */
		thread_reference(thread);
		threads[i] = thread;
	}
	assert(queue_end(&task->thread_list, (queue_entry_t) thread));

	/* can unlock task now that we've got the thread refs */
	task_unlock(task);

	if (actual == 0) {
		/* no threads, so return null pointer and deallocate memory */

		*thread_list = 0;
		*count = 0;

		if (size != 0)
			kfree(addr, size);
	} else {
		/* if we allocated too much, must copy */

		if (size_needed < size) {
			vm_offset_t newaddr;

			newaddr = kalloc(size_needed);
			if (newaddr == 0) {
				for (i = 0; i < actual; i++)
					thread_deallocate(threads[i]);
				kfree(addr, size);
				return KERN_RESOURCE_SHORTAGE;
			}

			bcopy((char *) addr, (char *) newaddr, size_needed);
			kfree(addr, size);
			threads = (thread_t *) newaddr;
		}

		*thread_list = (mach_port_t *) threads;
		*count = actual;

		/* do the conversion that Mig should handle */

		for (i = 0; i < actual; i++)
			((ipc_port_t *) threads)[i] =
				convert_thread_to_port(threads[i]);
	}

	return KERN_SUCCESS;
}

kern_return_t task_suspend(
	register task_t	task)
{
	register boolean_t	hold;

	if (task == TASK_NULL)
		return KERN_INVALID_ARGUMENT;

	hold = FALSE;
	task_lock(task);
	if ((task->user_stop_count)++ == 0)
		hold = TRUE;
	task_unlock(task);

	/*
	 *	If the stop count was positive, the task is
	 *	already stopped and we can exit.
	 */
	if (!hold) {
		return KERN_SUCCESS;
	}

	/*
	 *	Hold all of the threads in the task, and wait for
	 *	them to stop.  If the current thread is within
	 *	this task, hold it separately so that all of the
	 *	other threads can stop first.
	 */

	if (task_hold(task) != KERN_SUCCESS)
		return KERN_FAILURE;

	if (task_dowait(task, FALSE) != KERN_SUCCESS)
		return KERN_FAILURE;

	if (current_task() == task) {
		spl_t s;

		thread_hold(current_thread());
		/*
		 *	We want to call thread_block on our way out,
		 *	to stop running.
		 */
		s = splsched();
		ast_on(cpu_number(), AST_BLOCK);
		(void) splx(s);
	}

	return KERN_SUCCESS;
}

kern_return_t task_resume(
	register task_t	task)
{
	register boolean_t	release;

	if (task == TASK_NULL)
		return KERN_INVALID_ARGUMENT;

	release = FALSE;
	task_lock(task);
	if (task->user_stop_count > 0) {
		if (--(task->user_stop_count) == 0)
	    		release = TRUE;
	}
	else {
		task_unlock(task);
		return KERN_FAILURE;
	}
	task_unlock(task);

	/*
	 *	Release the task if necessary.
	 */
	if (release)
		return task_release(task);

	return KERN_SUCCESS;
}

kern_return_t task_info(
	task_t			task,
	int			flavor,
	task_info_t		task_info_out,	/* pointer to OUT array */
	natural_t		*task_info_count)	/* IN/OUT */
{
	vm_map_t		map;

	if (task == TASK_NULL)
		return KERN_INVALID_ARGUMENT;

	switch (flavor) {
	    case TASK_BASIC_INFO:
	    {
		register task_basic_info_t	basic_info;

		/* Allow *task_info_count to be two words smaller than
		   the usual amount, because creation_time is a new member
		   that some callers might not know about. */

		if (*task_info_count < TASK_BASIC_INFO_COUNT - 2) {
		    return KERN_INVALID_ARGUMENT;
		}

		basic_info = (task_basic_info_t) task_info_out;

		map = (task == kernel_task) ? kernel_map : task->map;

		basic_info->virtual_size  = map->size;
		basic_info->resident_size = pmap_resident_count(map->pmap)
						   * PAGE_SIZE;

		task_lock(task);
		basic_info->base_priority = task->priority;
		basic_info->suspend_count = task->user_stop_count;
		basic_info->user_time.seconds
				= task->total_user_time.seconds;
		basic_info->user_time.microseconds
				= task->total_user_time.microseconds;
		basic_info->system_time.seconds
				= task->total_system_time.seconds;
		basic_info->system_time.microseconds
				= task->total_system_time.microseconds;
		basic_info->creation_time = task->creation_time;
		task_unlock(task);

		if (*task_info_count > TASK_BASIC_INFO_COUNT)
		  *task_info_count = TASK_BASIC_INFO_COUNT;
		break;
	    }

	    case TASK_THREAD_TIMES_INFO:
	    {
		register task_thread_times_info_t times_info;
		register thread_t	thread;

		if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) {
		    return KERN_INVALID_ARGUMENT;
		}

		times_info = (task_thread_times_info_t) task_info_out;
		times_info->user_time.seconds = 0;
		times_info->user_time.microseconds = 0;
		times_info->system_time.seconds = 0;
		times_info->system_time.microseconds = 0;

		task_lock(task);
		queue_iterate(&task->thread_list, thread,
			      thread_t, thread_list)
		{
		    time_value_t user_time, system_time;
		    spl_t		 s;

		    s = splsched();
		    thread_lock(thread);

		    thread_read_times(thread, &user_time, &system_time);

		    thread_unlock(thread);
		    splx(s);

		    time_value_add(&times_info->user_time, &user_time);
		    time_value_add(&times_info->system_time, &system_time);
		}
		task_unlock(task);

		*task_info_count = TASK_THREAD_TIMES_INFO_COUNT;
		break;
	    }

	    default:
		return KERN_INVALID_ARGUMENT;
	}

	return KERN_SUCCESS;
}

#if	MACH_HOST
/*
 *	task_assign:
 *
 *	Change the assigned processor set for the task
 */
kern_return_t
task_assign(
	task_t		task,
	processor_set_t	new_pset,
	boolean_t	assign_threads)
{
	kern_return_t		ret = KERN_SUCCESS;
	register thread_t	thread, prev_thread;
	register queue_head_t	*list;
	register processor_set_t	pset;

	if (task == TASK_NULL || new_pset == PROCESSOR_SET_NULL) {
		return KERN_INVALID_ARGUMENT;
	}

	/*
	 *	Freeze task`s assignment.  Prelude to assigning
	 *	task.  Only one freeze may be held per task.
	 */

	task_lock(task);
	while (task->may_assign == FALSE) {
		task->assign_active = TRUE;
		assert_wait((event_t)&task->assign_active, TRUE);
		task_unlock(task);
		thread_block((void (*)()) 0);
		task_lock(task);
	}

	/*
	 *	Avoid work if task already in this processor set.
	 */
	if (task->processor_set == new_pset)  {
		/*
		 *	No need for task->assign_active wakeup:
		 *	task->may_assign is still TRUE.
		 */
		task_unlock(task);
		return KERN_SUCCESS;
	}

	task->may_assign = FALSE;
	task_unlock(task);

	/*
	 *	Safe to get the task`s pset: it cannot change while
	 *	task is frozen.
	 */
	pset = task->processor_set;

	/*
	 *	Lock both psets now.  Use ordering to avoid deadlock.
	 */
    Restart:
	if ((vm_offset_t) pset < (vm_offset_t) new_pset) {
	    pset_lock(pset);
	    pset_lock(new_pset);
	}
	else {
	    pset_lock(new_pset);
	    pset_lock(pset);
	}

	/*
	 *	Check if new_pset is ok to assign to.  If not,
	 *	reassign to default_pset.
	 */
	if (!new_pset->active) {
	    pset_unlock(pset);
	    pset_unlock(new_pset);
	    new_pset = &default_pset;
	    goto Restart;
	}

	pset_reference(new_pset);

	/*
	 *	Now grab the task lock and move the task.
	 */

	task_lock(task);
	pset_remove_task(pset, task);
	pset_add_task(new_pset, task);

	pset_unlock(pset);
	pset_unlock(new_pset);

	if (assign_threads == FALSE) {
		/*
		 *	We leave existing threads at their
		 *	old assignments.  Unfreeze task`s
		 *	assignment.
		 */
		task->may_assign = TRUE;
		if (task->assign_active) {
			task->assign_active = FALSE;
			thread_wakeup((event_t) &task->assign_active);
		}
		task_unlock(task);
		pset_deallocate(pset);
		return KERN_SUCCESS;
	}

	/*
	 *	If current thread is in task, freeze its assignment.
	 */
	if (current_thread()->task == task) {
		task_unlock(task);
		thread_freeze(current_thread());
		task_lock(task);
	}

	/*
	 *	Iterate down the thread list reassigning all the threads.
	 *	New threads pick up task's new processor set automatically.
	 *	Do current thread last because new pset may be empty.
	 */
	list = &task->thread_list;
	prev_thread = THREAD_NULL;
	queue_iterate(list, thread, thread_t, thread_list) {
		if (!(task->active)) {
			ret = KERN_FAILURE;
			break;
		}
		if (thread != current_thread()) {
			thread_reference(thread);
			task_unlock(task);
			if (prev_thread != THREAD_NULL)
			    thread_deallocate(prev_thread); /* may block */
			thread_assign(thread,new_pset);	    /* may block */
			prev_thread = thread;
			task_lock(task);
		}
	}

	/*
	 *	Done, wakeup anyone waiting for us.
	 */
	task->may_assign = TRUE;
	if (task->assign_active) {
		task->assign_active = FALSE;
		thread_wakeup((event_t)&task->assign_active);
	}
	task_unlock(task);
	if (prev_thread != THREAD_NULL)
		thread_deallocate(prev_thread);		/* may block */

	/*
	 *	Finish assignment of current thread.
	 */
	if (current_thread()->task == task)
		thread_doassign(current_thread(), new_pset, TRUE);

	pset_deallocate(pset);

	return ret;
}
#else	/* MACH_HOST */
/*
 *	task_assign:
 *
 *	Change the assigned processor set for the task
 */
kern_return_t
task_assign(
	task_t		task,
	processor_set_t	new_pset,
	boolean_t	assign_threads)
{
	return KERN_FAILURE;
}
#endif	/* MACH_HOST */


/*
 *	task_assign_default:
 *
 *	Version of task_assign to assign to default processor set.
 */
kern_return_t
task_assign_default(
	task_t		task,
	boolean_t	assign_threads)
{
	return task_assign(task, &default_pset, assign_threads);
}

/*
 *	task_get_assignment
 *
 *	Return name of processor set that task is assigned to.
 */
kern_return_t task_get_assignment(
	task_t		task,
	processor_set_t	*pset)
{
	if (!task->active)
		return KERN_FAILURE;

	*pset = task->processor_set;
	pset_reference(*pset);
	return KERN_SUCCESS;
}

/*
 *	task_priority
 *
 *	Set priority of task; used only for newly created threads.
 *	Optionally change priorities of threads.
 */
kern_return_t
task_priority(
	task_t		task,
	int		priority,
	boolean_t	change_threads)
{
	kern_return_t	ret = KERN_SUCCESS;

	if (task == TASK_NULL || invalid_pri(priority))
		return KERN_INVALID_ARGUMENT;

	task_lock(task);
	task->priority = priority;

	if (change_threads) {
		register thread_t	thread;
		register queue_head_t	*list;

		list = &task->thread_list;
		queue_iterate(list, thread, thread_t, thread_list) {
			if (thread_priority(thread, priority, FALSE)
				!= KERN_SUCCESS)
					ret = KERN_FAILURE;
		}
	}

	task_unlock(task);
	return ret;
}

/*
 *	task_collect_scan:
 *
 *	Attempt to free resources owned by tasks.
 */

void task_collect_scan(void)
{
	register task_t		task, prev_task;
	processor_set_t		pset, prev_pset;

	prev_task = TASK_NULL;
	prev_pset = PROCESSOR_SET_NULL;

	simple_lock(&all_psets_lock);
	queue_iterate(&all_psets, pset, processor_set_t, all_psets) {
		pset_lock(pset);
		queue_iterate(&pset->tasks, task, task_t, pset_tasks) {
			task_reference(task);
			pset_reference(pset);
			pset_unlock(pset);
			simple_unlock(&all_psets_lock);

			pmap_collect(task->map->pmap);

			if (prev_task != TASK_NULL)
				task_deallocate(prev_task);
			prev_task = task;

			if (prev_pset != PROCESSOR_SET_NULL)
				pset_deallocate(prev_pset);
			prev_pset = pset;

			simple_lock(&all_psets_lock);
			pset_lock(pset);
		}
		pset_unlock(pset);
	}
	simple_unlock(&all_psets_lock);

	if (prev_task != TASK_NULL)
		task_deallocate(prev_task);
	if (prev_pset != PROCESSOR_SET_NULL)
		pset_deallocate(prev_pset);
}

boolean_t task_collect_allowed = TRUE;
unsigned task_collect_last_tick = 0;
unsigned task_collect_max_rate = 0;		/* in ticks */

/*
 *	consider_task_collect:
 *
 *	Called by the pageout daemon when the system needs more free pages.
 */

void consider_task_collect(void)
{
	/*
	 *	By default, don't attempt task collection more frequently
	 *	than once a second.
	 */

	if (task_collect_max_rate == 0)
		task_collect_max_rate = hz;

	if (task_collect_allowed &&
	    (sched_tick > (task_collect_last_tick + task_collect_max_rate))) {
		task_collect_last_tick = sched_tick;
		task_collect_scan();
	}
}

kern_return_t
task_ras_control(
 	task_t task,
 	vm_offset_t pc,
 	vm_offset_t endpc,
	int flavor)
{
    kern_return_t ret = KERN_FAILURE;

#if	FAST_TAS
    int i;

    ret = KERN_SUCCESS;
    task_lock(task);
    switch (flavor)  {
    case TASK_RAS_CONTROL_PURGE_ALL:  /* remove all RAS */
	for (i = 0; i < TASK_FAST_TAS_NRAS; i++) {
	    task->fast_tas_base[i] = task->fast_tas_end[i] = 0;
	}
	break;
    case TASK_RAS_CONTROL_PURGE_ONE:  /* remove this RAS, collapse remaining */
	for (i = 0; i < TASK_FAST_TAS_NRAS; i++)  {
	    if ( (task->fast_tas_base[i] == pc)
		&& (task->fast_tas_end[i] == endpc))  {
			while (i < TASK_FAST_TAS_NRAS-1)  {
	    		  task->fast_tas_base[i] = task->fast_tas_base[i+1];
	    		  task->fast_tas_end[i] = task->fast_tas_end[i+1];
			  i++;
			 }
	    		task->fast_tas_base[TASK_FAST_TAS_NRAS-1] = 0;
	    		task->fast_tas_end[TASK_FAST_TAS_NRAS-1] = 0;
			break;
	     }
	}
	if (i == TASK_FAST_TAS_NRAS) {
	    ret = KERN_INVALID_ADDRESS;
	}
	break;
    case TASK_RAS_CONTROL_PURGE_ALL_AND_INSTALL_ONE:
	/* remove all RAS an install this RAS */
	for (i = 0; i < TASK_FAST_TAS_NRAS; i++) {
	    task->fast_tas_base[i] = task->fast_tas_end[i] = 0;
	}
	/* FALL THROUGH */
    case TASK_RAS_CONTROL_INSTALL_ONE: /* install this RAS */
	for (i = 0; i < TASK_FAST_TAS_NRAS; i++)  {
	    if ( (task->fast_tas_base[i] == pc)
	    && (task->fast_tas_end[i] == endpc))   {
		/* already installed */
		break;
	    }
	    if ((task->fast_tas_base[i] == 0) && (task->fast_tas_end[i] == 0)){
		task->fast_tas_base[i] = pc;
		task->fast_tas_end[i] = endpc;
		break;
	    }
	}
	if (i == TASK_FAST_TAS_NRAS)  {
	    ret = KERN_RESOURCE_SHORTAGE;
	}
	break;
    default: ret = KERN_INVALID_VALUE;
	break;
    }
    task_unlock(task);
#endif
    return ret;
}