1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
|
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University.
* Copyright (c) 1993,1994 The University of Utah and
* the Computer Systems Laboratory (CSL).
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
* THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
* OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
* THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* File: clock_prim.c
* Author: Avadis Tevanian, Jr.
* Date: 1986
*
* Clock primitives.
*/
#include <mach/boolean.h>
#include <mach/kern_return.h>
#include <mach/machine.h>
#include <kern/host.h>
#include <kern/mach_clock.h>
#include <kern/sched.h>
#include <kern/sched_prim.h>
#include <kern/thread.h>
#include <kern/processor.h>
#include <kern/timer.h>
#include <kern/time_stamp.h>
#include <machine/machspl.h>
/*
* USAGE_THRESHOLD is the amount by which usage must change to
* cause a priority shift that moves a thread between run queues.
*/
#ifdef PRI_SHIFT_2
#if PRI_SHIFT_2 > 0
#define USAGE_THRESHOLD (((1 << PRI_SHIFT) + (1 << PRI_SHIFT_2)) << (2 + SCHED_SHIFT))
#else /* PRI_SHIFT_2 > 0 */
#define USAGE_THRESHOLD (((1 << PRI_SHIFT) - (1 << -(PRI_SHIFT_2))) << (2 + SCHED_SHIFT))
#endif /* PRI_SHIFT_2 > 0 */
#else /* PRI_SHIFT_2 */
#define USAGE_THRESHOLD (1 << (PRI_SHIFT + 2 + SCHED_SHIFT))
#endif /* PRI_SHIFT_2 */
/*
* thread_quantum_update:
*
* Recalculate the quantum and priority for a thread.
* The number of ticks that has elapsed since we were last called
* is passed as "nticks."
*
* Called only from clock_interrupt().
*/
void thread_quantum_update(mycpu, thread, nticks, state)
register int mycpu;
register thread_t thread;
int nticks;
int state;
{
register int quantum;
register processor_t myprocessor;
#if NCPUS > 1
register processor_set_t pset;
#endif
spl_t s;
myprocessor = cpu_to_processor(mycpu);
#if NCPUS > 1
pset = myprocessor->processor_set;
if (pset == 0) {
/*
* Processor is being reassigned.
* Should rewrite processor assignment code to
* block clock interrupts.
*/
return;
}
#endif /* NCPUS > 1 */
/*
* Account for thread's utilization of these ticks.
* This assumes that there is *always* a current thread.
* When the processor is idle, it should be the idle thread.
*/
/*
* Update set_quantum and calculate the current quantum.
*/
#if NCPUS > 1
pset->set_quantum = pset->machine_quantum[
((pset->runq.count > pset->processor_count) ?
pset->processor_count : pset->runq.count)];
if (myprocessor->runq.count != 0)
quantum = min_quantum;
else
quantum = pset->set_quantum;
#else /* NCPUS > 1 */
quantum = min_quantum;
default_pset.set_quantum = quantum;
#endif /* NCPUS > 1 */
/*
* Now recompute the priority of the thread if appropriate.
*/
if (state != CPU_STATE_IDLE) {
myprocessor->quantum -= nticks;
#if NCPUS > 1
/*
* Runtime quantum adjustment. Use quantum_adj_index
* to avoid synchronizing quantum expirations.
*/
if ((quantum != myprocessor->last_quantum) &&
(pset->processor_count > 1)) {
myprocessor->last_quantum = quantum;
simple_lock(&pset->quantum_adj_lock);
quantum = min_quantum + (pset->quantum_adj_index *
(quantum - min_quantum)) /
(pset->processor_count - 1);
if (++(pset->quantum_adj_index) >=
pset->processor_count)
pset->quantum_adj_index = 0;
simple_unlock(&pset->quantum_adj_lock);
}
#endif /* NCPUS > 1 */
if (myprocessor->quantum <= 0) {
s = splsched();
thread_lock(thread);
if (thread->sched_stamp != sched_tick) {
update_priority(thread);
}
else {
if (
#if MACH_FIXPRI
(thread->policy == POLICY_TIMESHARE) &&
#endif /* MACH_FIXPRI */
(thread->depress_priority < 0)) {
thread_timer_delta(thread);
thread->sched_usage +=
thread->sched_delta;
thread->sched_delta = 0;
compute_my_priority(thread);
}
}
thread_unlock(thread);
(void) splx(s);
/*
* This quantum is up, give this thread another.
*/
myprocessor->first_quantum = FALSE;
#if MACH_FIXPRI
if (thread->policy == POLICY_TIMESHARE) {
#endif /* MACH_FIXPRI */
myprocessor->quantum += quantum;
#if MACH_FIXPRI
}
else {
/*
* Fixed priority has per-thread quantum.
*
*/
myprocessor->quantum += thread->sched_data;
}
#endif /* MACH_FIXPRI */
}
/*
* Recompute priority if appropriate.
*/
else {
s = splsched();
thread_lock(thread);
if (thread->sched_stamp != sched_tick) {
update_priority(thread);
}
else {
if (
#if MACH_FIXPRI
(thread->policy == POLICY_TIMESHARE) &&
#endif /* MACH_FIXPRI */
(thread->depress_priority < 0)) {
thread_timer_delta(thread);
if (thread->sched_delta >= USAGE_THRESHOLD) {
thread->sched_usage +=
thread->sched_delta;
thread->sched_delta = 0;
compute_my_priority(thread);
}
}
}
thread_unlock(thread);
(void) splx(s);
}
/*
* Check for and schedule ast if needed.
*/
ast_check();
}
}
|