summaryrefslogtreecommitdiff
path: root/kern/mach_clock.c
blob: 9076ef438ec52132b628e136224b8aa6d4d8399f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
/*
 * Mach Operating System
 * Copyright (c) 1994-1988 Carnegie Mellon University.
 * Copyright (c) 1993,1994 The University of Utah and
 * the Computer Systems Laboratory (CSL).
 * All rights reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
 * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
 * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
 * THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 *	File:	clock_prim.c
 *	Author:	Avadis Tevanian, Jr.
 *	Date:	1986
 *
 *	Clock primitives.
 */
#include <cpus.h>
#include <mach_pcsample.h>
#include <stat_time.h>

#include <mach/boolean.h>
#include <mach/machine.h>
#include <mach/time_value.h>
#include <mach/vm_param.h>
#include <mach/vm_prot.h>
#include <kern/counters.h>
#include "cpu_number.h"
#include <kern/host.h>
#include <kern/lock.h>
#include <kern/mach_param.h>
#include <kern/processor.h>
#include <kern/sched.h>
#include <kern/sched_prim.h>
#include <kern/thread.h>
#include <kern/time_out.h>
#include <kern/time_stamp.h>
#include <vm/vm_kern.h>
#include <sys/time.h>
#include <machine/mach_param.h>	/* HZ */
#include <machine/machspl.h>

#if MACH_PCSAMPLE
#include <kern/pc_sample.h>
#endif


void softclock();		/* forward */

int		hz = HZ;		/* number of ticks per second */
int		tick = (1000000 / HZ);	/* number of usec per tick */
time_value_t	time = { 0, 0 };	/* time since bootup (uncorrected) */
unsigned long	elapsed_ticks = 0;	/* ticks elapsed since bootup */

int		timedelta = 0;
int		tickdelta = 0;

#if	HZ > 500
int		tickadj = 1;		/* can adjust HZ usecs per second */
#else
int		tickadj = 500 / HZ;	/* can adjust 100 usecs per second */
#endif
int		bigadj = 1000000;	/* adjust 10*tickadj if adjustment
					   > bigadj */

/*
 *	This update protocol, with a check value, allows
 *		do {
 *			secs = mtime->seconds;
 *			usecs = mtime->microseconds;
 *		} while (secs != mtime->check_seconds);
 *	to read the time correctly.  (On a multiprocessor this assumes
 *	that processors see each other's writes in the correct order.
 *	We may have to insert fence operations.)
 */

mapped_time_value_t *mtime = 0;

#define update_mapped_time(time)				\
MACRO_BEGIN							\
	if (mtime != 0) {					\
		mtime->check_seconds = (time)->seconds;		\
		mtime->microseconds = (time)->microseconds;	\
		mtime->seconds = (time)->seconds;		\
	}							\
MACRO_END

decl_simple_lock_data(,	timer_lock)	/* lock for ... */
timer_elt_data_t	timer_head;	/* ordered list of timeouts */
					/* (doubles as end-of-list) */

/*
 *	Handle clock interrupts.
 *
 *	The clock interrupt is assumed to be called at a (more or less)
 *	constant rate.  The rate must be identical on all CPUS (XXX - fix).
 *
 *	Usec is the number of microseconds that have elapsed since the
 *	last clock tick.  It may be constant or computed, depending on
 *	the accuracy of the hardware clock.
 *
 */
void clock_interrupt(usec, usermode, basepri)
	register int	usec;		/* microseconds per tick */
	boolean_t	usermode;	/* executing user code */
	boolean_t	basepri;	/* at base priority */
{
	register int		my_cpu = cpu_number();
	register thread_t	thread = current_thread();

	counter(c_clock_ticks++);
	counter(c_threads_total += c_threads_current);
	counter(c_stacks_total += c_stacks_current);

#if	STAT_TIME
	/*
	 *	Increment the thread time, if using
	 *	statistical timing.
	 */
	if (usermode) {
	    timer_bump(&thread->user_timer, usec);
	}
	else {
	    timer_bump(&thread->system_timer, usec);
	}
#endif	STAT_TIME

	/*
	 *	Increment the CPU time statistics.
	 */
	{
	    extern void	thread_quantum_update(); /* in priority.c */
	    register int	state;

	    if (usermode)
		state = CPU_STATE_USER;
	    else if (!cpu_idle(my_cpu))
		state = CPU_STATE_SYSTEM;
	    else
		state = CPU_STATE_IDLE;

	    machine_slot[my_cpu].cpu_ticks[state]++;

	    /*
	     *	Adjust the thread's priority and check for
	     *	quantum expiration.
	     */

	    thread_quantum_update(my_cpu, thread, 1, state);
	}

#if 	MACH_PCSAMPLE
	/*
	 * Take a sample of pc for the user if required.
	 * This had better be MP safe.  It might be interesting
	 * to keep track of cpu in the sample.
	 */
	if (usermode) {
		take_pc_sample_macro(thread, SAMPLED_PC_PERIODIC);
	}
#endif /* MACH_PCSAMPLE */

	/*
	 *	Time-of-day and time-out list are updated only
	 *	on the master CPU.
	 */
	if (my_cpu == master_cpu) {

	    register spl_t s;
	    register timer_elt_t	telt;
	    boolean_t	needsoft = FALSE;

#if	TS_FORMAT == 1
	    /*
	     *	Increment the tick count for the timestamping routine.
	     */
	    ts_tick_count++;
#endif	TS_FORMAT == 1

	    /*
	     *	Update the tick count since bootup, and handle
	     *	timeouts.
	     */

	    s = splsched();
	    simple_lock(&timer_lock);

	    elapsed_ticks++;

	    telt = (timer_elt_t)queue_first(&timer_head.chain);
	    if (telt->ticks <= elapsed_ticks)
		needsoft = TRUE;
	    simple_unlock(&timer_lock);
	    splx(s);

	    /*
	     *	Increment the time-of-day clock.
	     */
	    if (timedelta == 0) {
		time_value_add_usec(&time, usec);
	    }
	    else {
		register int	delta;

		if (timedelta < 0) {
		    delta = usec - tickdelta;
		    timedelta += tickdelta;
		}
		else {
		    delta = usec + tickdelta;
		    timedelta -= tickdelta;
		}
		time_value_add_usec(&time, delta);
	    }
	    update_mapped_time(&time);

	    /*
	     *	Schedule soft-interupt for timeout if needed
	     */
	    if (needsoft) {
		if (basepri) {
		    (void) splsoftclock();
		    softclock();
		}
		else {
		    setsoftclock();
		}
	    }
	}
}

/*
 *	There is a nasty race between softclock and reset_timeout.
 *	For example, scheduling code looks at timer_set and calls
 *	reset_timeout, thinking the timer is set.  However, softclock
 *	has already removed the timer but hasn't called thread_timeout
 *	yet.
 *
 *	Interim solution:  We initialize timers after pulling
 *	them out of the queue, so a race with reset_timeout won't
 *	hurt.  The timeout functions (eg, thread_timeout,
 *	thread_depress_timeout) check timer_set/depress_priority
 *	to see if the timer has been cancelled and if so do nothing.
 *
 *	This still isn't correct.  For example, softclock pulls a
 *	timer off the queue, then thread_go resets timer_set (but
 *	reset_timeout does nothing), then thread_set_timeout puts the
 *	timer back on the queue and sets timer_set, then
 *	thread_timeout finally runs and clears timer_set, then
 *	thread_set_timeout tries to put the timer on the queue again
 *	and corrupts it.
 */

void softclock()
{
	/*
	 *	Handle timeouts.
	 */
	spl_t	s;
	register timer_elt_t	telt;
	register int	(*fcn)();
	register char	*param;

	while (TRUE) {
	    s = splsched();
	    simple_lock(&timer_lock);
	    telt = (timer_elt_t) queue_first(&timer_head.chain);
	    if (telt->ticks > elapsed_ticks) {
		simple_unlock(&timer_lock);
		splx(s);
		break;
	    }
	    fcn = telt->fcn;
	    param = telt->param;

	    remqueue(&timer_head.chain, (queue_entry_t)telt);
	    telt->set = TELT_UNSET;
	    simple_unlock(&timer_lock);
	    splx(s);

	    assert(fcn != 0);
	    (*fcn)(param);
	}
}

/*
 *	Set timeout.
 *
 *	Parameters:
 *		telt	 timer element.  Function and param are already set.
 *		interval time-out interval, in hz.
 */
void set_timeout(telt, interval)
	register timer_elt_t	telt;	/* already loaded */
	register unsigned int	interval;
{
	spl_t			s;
	register timer_elt_t	next;

	s = splsched();
	simple_lock(&timer_lock);

	interval += elapsed_ticks;

	for (next = (timer_elt_t)queue_first(&timer_head.chain);
	     ;
	     next = (timer_elt_t)queue_next((queue_entry_t)next)) {

	    if (next->ticks > interval)
		break;
	}
	telt->ticks = interval;
	/*
	 * Insert new timer element before 'next'
	 * (after 'next'->prev)
	 */
	insque((queue_entry_t) telt, ((queue_entry_t)next)->prev);
	telt->set = TELT_SET;
	simple_unlock(&timer_lock);
	splx(s);
}

boolean_t reset_timeout(telt)
	register timer_elt_t	telt;
{
	spl_t	s;

	s = splsched();
	simple_lock(&timer_lock);
	if (telt->set) {
	    remqueue(&timer_head.chain, (queue_entry_t)telt);
	    telt->set = TELT_UNSET;
	    simple_unlock(&timer_lock);
	    splx(s);
	    return TRUE;
	}
	else {
	    simple_unlock(&timer_lock);
	    splx(s);
	    return FALSE;
	}
}

void init_timeout()
{
	simple_lock_init(&timer_lock);
	queue_init(&timer_head.chain);
	timer_head.ticks = ~0;	/* MAXUINT - sentinel */

	elapsed_ticks = 0;
}

/*
 * Read the time.
 */
kern_return_t
host_get_time(host, current_time)
	host_t		host;
	time_value_t	*current_time;	/* OUT */
{
	if (host == HOST_NULL)
		return(KERN_INVALID_HOST);

	do {
		current_time->seconds = mtime->seconds;
		current_time->microseconds = mtime->microseconds;
	} while (current_time->seconds != mtime->check_seconds);

	return (KERN_SUCCESS);
}

/*
 * Set the time.  Only available to privileged users.
 */
kern_return_t
host_set_time(host, new_time)
	host_t		host;
	time_value_t	new_time;
{
	spl_t	s;

	if (host == HOST_NULL)
		return(KERN_INVALID_HOST);

#if	NCPUS > 1
	/*
	 * Switch to the master CPU to synchronize correctly.
	 */
	thread_bind(current_thread(), master_processor);
	if (current_processor() != master_processor)
	    thread_block((void (*)) 0);
#endif	NCPUS > 1

	s = splhigh();
	time = new_time;
	update_mapped_time(&time);
	resettodr();
	splx(s);

#if	NCPUS > 1
	/*
	 * Switch off the master CPU.
	 */
	thread_bind(current_thread(), PROCESSOR_NULL);
#endif	NCPUS > 1

	return (KERN_SUCCESS);
}

/*
 * Adjust the time gradually.
 */
kern_return_t
host_adjust_time(host, new_adjustment, old_adjustment)
	host_t		host;
	time_value_t	new_adjustment;
	time_value_t	*old_adjustment;	/* OUT */
{
	time_value_t	oadj;
	unsigned int	ndelta;
	spl_t		s;

	if (host == HOST_NULL)
		return (KERN_INVALID_HOST);

	ndelta = new_adjustment.seconds * 1000000
		+ new_adjustment.microseconds;

#if	NCPUS > 1
	thread_bind(current_thread(), master_processor);
	if (current_processor() != master_processor)
	    thread_block((void (*)) 0);
#endif	NCPUS > 1

	s = splclock();

	oadj.seconds = timedelta / 1000000;
	oadj.microseconds = timedelta % 1000000;

	if (timedelta == 0) {
	    if (ndelta > bigadj)
		tickdelta = 10 * tickadj;
	    else
		tickdelta = tickadj;
	}
	if (ndelta % tickdelta)
	    ndelta = ndelta / tickdelta * tickdelta;

	timedelta = ndelta;

	splx(s);
#if	NCPUS > 1
	thread_bind(current_thread(), PROCESSOR_NULL);
#endif	NCPUS > 1

	*old_adjustment = oadj;

	return (KERN_SUCCESS);
}

void mapable_time_init()
{
	if (kmem_alloc_wired(kernel_map, (vm_offset_t *) &mtime, PAGE_SIZE)
						!= KERN_SUCCESS)
		panic("mapable_time_init");
	bzero((char *)mtime, PAGE_SIZE);
	update_mapped_time(&time);
}

int timeopen()
{
	return(0);
}
int timeclose()
{
	return(0);
}

/*
 *	Compatibility for device drivers.
 *	New code should use set_timeout/reset_timeout and private timers.
 *	These code can't use a zone to allocate timers, because
 *	it can be called from interrupt handlers.
 */

#define NTIMERS		20

timer_elt_data_t timeout_timers[NTIMERS];

/*
 *	Set timeout.
 *
 *	fcn:		function to call
 *	param:		parameter to pass to function
 *	interval:	timeout interval, in hz.
 */
void timeout(fcn, param, interval)
	int	(*fcn)(/* char * param */);
	char *	param;
	int	interval;
{
	spl_t	s;
	register timer_elt_t elt;

	s = splsched();
	simple_lock(&timer_lock);
	for (elt = &timeout_timers[0]; elt < &timeout_timers[NTIMERS]; elt++)
	    if (elt->set == TELT_UNSET)
		break;
	if (elt == &timeout_timers[NTIMERS])
	    panic("timeout");
	elt->fcn = fcn;
	elt->param = param;
	elt->set = TELT_ALLOC;
	simple_unlock(&timer_lock);
	splx(s);

	set_timeout(elt, (unsigned int)interval);
}

/*
 * Returns a boolean indicating whether the timeout element was found
 * and removed.
 */
boolean_t untimeout(fcn, param)
	register int	(*fcn)();
	register char *	param;
{
	spl_t	s;
	register timer_elt_t elt;

	s = splsched();
	simple_lock(&timer_lock);
	queue_iterate(&timer_head.chain, elt, timer_elt_t, chain) {

	    if ((fcn == elt->fcn) && (param == elt->param)) {
		/*
		 *	Found it.
		 */
		remqueue(&timer_head.chain, (queue_entry_t)elt);
		elt->set = TELT_UNSET;

		simple_unlock(&timer_lock);
		splx(s);
		return (TRUE);
	    }
	}
	simple_unlock(&timer_lock);
	splx(s);
	return (FALSE);
}