summaryrefslogtreecommitdiff
path: root/i386/i386at/model_dep.c
blob: 128f2504dda6ab193b43420a86ad6104c2d0da0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
/*
 * Mach Operating System
 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
 * All Rights Reserved.
 *
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 *	File:	model_dep.c
 *	Author:	Avadis Tevanian, Jr., Michael Wayne Young
 *
 *	Copyright (C) 1986, Avadis Tevanian, Jr., Michael Wayne Young
 *
 *	Basic initialization for I386 - ISA bus machines.
 */

#include <string.h>

#include <device/cons.h>

#include <mach/vm_param.h>
#include <mach/vm_prot.h>
#include <mach/machine.h>
#include <mach/machine/multiboot.h>
#include <mach/xen.h>

#include <i386/vm_param.h>
#include <kern/assert.h>
#include <kern/cpu_number.h>
#include <kern/debug.h>
#include <kern/mach_clock.h>
#include <kern/printf.h>
#include <kern/startup.h>
#include <sys/time.h>
#include <sys/types.h>
#include <vm/vm_page.h>
#include <i386/fpu.h>
#include <i386/gdt.h>
#include <i386/ktss.h>
#include <i386/ldt.h>
#include <i386/machspl.h>
#include <i386/pic.h>
#include <i386/pit.h>
#include <i386/pmap.h>
#include <i386/proc_reg.h>
#include <i386/locore.h>
#include <i386/model_dep.h>
#include <i386at/autoconf.h>
#include <i386at/idt.h>
#include <i386at/int_init.h>
#include <i386at/kd.h>
#include <i386at/rtc.h>
#include <i386at/model_dep.h>
#ifdef	MACH_XEN
#include <xen/console.h>
#include <xen/store.h>
#include <xen/evt.h>
#include <xen/xen.h>
#endif	/* MACH_XEN */

/* Location of the kernel's symbol table.
   Both of these are 0 if none is available.  */
#if MACH_KDB
#include <ddb/db_sym.h>
#include <i386/db_interface.h>
static vm_offset_t kern_sym_start, kern_sym_end;
#else /* MACH_KDB */
#define kern_sym_start	0
#define kern_sym_end	0
#endif /* MACH_KDB */

/* These indicate the total extent of physical memory addresses we're using.
   They are page-aligned.  */
vm_offset_t phys_first_addr = 0;
vm_offset_t phys_last_addr;

/* A copy of the multiboot info structure passed by the boot loader.  */
#ifdef MACH_XEN
struct start_info boot_info;
#ifdef MACH_PSEUDO_PHYS
unsigned long *mfn_list;
#if VM_MIN_KERNEL_ADDRESS != LINEAR_MIN_KERNEL_ADDRESS
unsigned long *pfn_list = (void*) PFN_LIST;
#endif
#endif	/* MACH_PSEUDO_PHYS */
#if VM_MIN_KERNEL_ADDRESS != LINEAR_MIN_KERNEL_ADDRESS
unsigned long la_shift = VM_MIN_KERNEL_ADDRESS;
#endif
#else	/* MACH_XEN */
struct multiboot_info boot_info;
#endif	/* MACH_XEN */

/* Command line supplied to kernel.  */
char *kernel_cmdline = "";

/* This is used for memory initialization:
   it gets bumped up through physical memory
   that exists and is not occupied by boot gunk.
   It is not necessarily page-aligned.  */
static vm_offset_t avail_next
#ifndef MACH_HYP
	= 0x1000 /* XX end of BIOS data area */
#endif	/* MACH_HYP */
	;

/* Possibly overestimated amount of available memory
   still remaining to be handed to the VM system.  */
static vm_size_t avail_remaining;

extern char	version[];

boolean_t	rebootflag = FALSE;	/* exported to kdintr */

/* XX interrupt stack pointer and highwater mark, for locore.S.  */
vm_offset_t int_stack_top, int_stack_high;

#ifdef LINUX_DEV
extern void linux_init(void);
#endif

/*
 * Find devices.  The system is alive.
 */
void machine_init(void)
{
	/*
	 * Initialize the console.
	 */
	cninit();

	/*
	 * Set up to use floating point.
	 */
	init_fpu();

#ifdef MACH_HYP
	hyp_init();
#else	/* MACH_HYP */
#ifdef LINUX_DEV
	/*
	 * Initialize Linux drivers.
	 */
	linux_init();
#endif

	/*
	 * Find the devices
	 */
	probeio();
#endif	/* MACH_HYP */

	/*
	 * Get the time
	 */
	inittodr();

#ifndef MACH_HYP
	/*
	 * Tell the BIOS not to clear and test memory.
	 */
	*(unsigned short *)phystokv(0x472) = 0x1234;
#endif	/* MACH_HYP */

	/*
	 * Unmap page 0 to trap NULL references.
	 */
	pmap_unmap_page_zero();
}

/* Conserve power on processor CPU.  */
void machine_idle (int cpu)
{
#ifdef	MACH_HYP
  hyp_idle();
#else	/* MACH_HYP */
  assert (cpu == cpu_number ());
  asm volatile ("hlt" : : : "memory");
#endif	/* MACH_HYP */
}

void machine_relax (void)
{
	asm volatile ("rep; nop" : : : "memory");
}

/*
 * Halt a cpu.
 */
void halt_cpu(void)
{
#ifdef	MACH_HYP
	hyp_halt();
#else	/* MACH_HYP */
	asm volatile("cli");
	while (TRUE)
	  machine_idle (cpu_number ());
#endif	/* MACH_HYP */
}

/*
 * Halt the system or reboot.
 */
void halt_all_cpus(reboot)
	boolean_t	reboot;
{
	if (reboot) {
#ifdef	MACH_HYP
	    hyp_reboot();
#endif	/* MACH_HYP */
	    kdreboot();
	}
	else {
	    rebootflag = TRUE;
#ifdef	MACH_HYP
	    hyp_halt();
#endif	/* MACH_HYP */
	    printf("In tight loop: hit ctl-alt-del to reboot\n");
	    (void) spl0();
	}
	while (TRUE)
	  machine_idle (cpu_number ());
}

void exit(int rc)
{
	halt_all_cpus(0);
}

void db_reset_cpu(void)
{
	halt_all_cpus(1);
}


/*
 * Compute physical memory size and other parameters.
 */
void
mem_size_init(void)
{
	vm_offset_t max_phys_size;

	/* Physical memory on all PCs starts at physical address 0.
	   XX make it a constant.  */
	phys_first_addr = 0;

#ifdef MACH_HYP
	if (boot_info.nr_pages >= 0x100000) {
		printf("Truncating memory size to 4GiB\n");
		phys_last_addr = 0xffffffffU;
	} else
		phys_last_addr = boot_info.nr_pages * 0x1000;
#else	/* MACH_HYP */
	vm_size_t phys_last_kb;

	if (boot_info.flags & MULTIBOOT_MEM_MAP) {
		struct multiboot_mmap *map, *map_end;

		map = (void*) phystokv(boot_info.mmap_addr);
		map_end = (void*) map + boot_info.mmap_count;

		while (map + 1 <= map_end) {
			if (map->Type == MB_ARD_MEMORY) {
				unsigned long long start = map->BaseAddr, end = map->BaseAddr + map->Length;;

				if (start >= 0x100000000ULL) {
					printf("Ignoring %luMiB RAM region above 4GiB\n", (unsigned long) (map->Length >> 20));
				} else {
					if (end >= 0x100000000ULL) {
						printf("Truncating memory region to 4GiB\n");
						end = 0x0ffffffffU;
					}
					if (end > phys_last_addr)
						phys_last_addr = end;

					printf("AT386 boot: physical memory map from 0x%lx to 0x%lx\n",
						(unsigned long) start,
						(unsigned long) end);
				}
			}
			map = (void*) map + map->size + sizeof(map->size);
		}
	} else {
		phys_last_kb = 0x400 + boot_info.mem_upper;
		/* Avoid 4GiB overflow.  */
		if (phys_last_kb < 0x400 || phys_last_kb >= 0x400000) {
			printf("Truncating memory size to 4GiB\n");
			phys_last_addr = 0xffffffffU;
		} else
			phys_last_addr = phys_last_kb * 0x400;
	}
#endif	/* MACH_HYP */

	printf("AT386 boot: physical memory from 0x%lx to 0x%lx\n",
	       phys_first_addr, phys_last_addr);

	/* Reserve room for virtual mappings.
	 * Yes, this loses memory.  Blame i386.  */
	max_phys_size = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS - VM_KERNEL_MAP_SIZE;
	if (phys_last_addr - phys_first_addr > max_phys_size) {
		phys_last_addr = phys_first_addr + max_phys_size;
		printf("Truncating memory to %luMiB\n", (phys_last_addr - phys_first_addr) / (1024 * 1024));
		/* TODO Xen: be nice, free lost memory */
	}

	phys_first_addr = round_page(phys_first_addr);
	phys_last_addr = trunc_page(phys_last_addr);

#ifdef MACH_HYP
	/* Memory is just contiguous */
	avail_remaining = phys_last_addr;
#else	/* MACH_HYP */
	avail_remaining
	  = phys_last_addr - (0x100000 - (boot_info.mem_lower * 0x400)
			      - 0x1000);
#endif	/* MACH_HYP */
}

/*
 * Basic PC VM initialization.
 * Turns on paging and changes the kernel segments to use high linear addresses.
 */
void
i386at_init(void)
{
	/* XXX move to intel/pmap.h */
	extern pt_entry_t *kernel_page_dir;
	int nb_direct, i;
	vm_offset_t addr, delta;

	/*
	 * Initialize the PIC prior to any possible call to an spl.
	 */
#ifndef	MACH_HYP
	picinit();
#else	/* MACH_HYP */
	hyp_intrinit();
#endif	/* MACH_HYP */

	/*
	 * Find memory size parameters.
	 */
	mem_size_init();

#ifdef MACH_XEN
	kernel_cmdline = (char*) boot_info.cmd_line;
#else	/* MACH_XEN */
	/* Copy content pointed by boot_info before losing access to it when it
	 * is too far in physical memory.  */
	if (boot_info.flags & MULTIBOOT_CMDLINE) {
		int len = strlen ((char*)phystokv(boot_info.cmdline)) + 1;
		assert(init_alloc_aligned(round_page(len), &addr));
		kernel_cmdline = (char*) phystokv(addr);
		memcpy(kernel_cmdline, (void *)phystokv(boot_info.cmdline), len);
		boot_info.cmdline = addr;
	}

	if (boot_info.flags & MULTIBOOT_MODS) {
		struct multiboot_module *m;
		int i;

		assert(init_alloc_aligned(round_page(boot_info.mods_count * sizeof(*m)), &addr));
		m = (void*) phystokv(addr);
		memcpy(m, (void*) phystokv(boot_info.mods_addr), boot_info.mods_count * sizeof(*m));
		boot_info.mods_addr = addr;

		for (i = 0; i < boot_info.mods_count; i++) {
			vm_size_t size = m[i].mod_end - m[i].mod_start;
			assert(init_alloc_aligned(round_page(size), &addr));
			memcpy((void*) phystokv(addr), (void*) phystokv(m[i].mod_start), size);
			m[i].mod_start = addr;
			m[i].mod_end = addr + size;

			size = strlen((char*) phystokv(m[i].string)) + 1;
			assert(init_alloc_aligned(round_page(size), &addr));
			memcpy((void*) phystokv(addr), (void*) phystokv(m[i].string), size);
			m[i].string = addr;
		}
	}
#endif	/* MACH_XEN */

	/*
	 *	Initialize kernel physical map, mapping the
	 *	region from loadpt to avail_start.
	 *	Kernel virtual address starts at VM_KERNEL_MIN_ADDRESS.
	 *	XXX make the BIOS page (page 0) read-only.
	 */
	pmap_bootstrap();

	/*
	 * We'll have to temporarily install a direct mapping
	 * between physical memory and low linear memory,
	 * until we start using our new kernel segment descriptors.
	 */
#if INIT_VM_MIN_KERNEL_ADDRESS != LINEAR_MIN_KERNEL_ADDRESS
	delta = INIT_VM_MIN_KERNEL_ADDRESS - LINEAR_MIN_KERNEL_ADDRESS;
	if ((vm_offset_t)(-delta) < delta)
		delta = (vm_offset_t)(-delta);
	nb_direct = delta >> PDESHIFT;
	for (i = 0; i < nb_direct; i++)
		kernel_page_dir[lin2pdenum(INIT_VM_MIN_KERNEL_ADDRESS) + i] =
			kernel_page_dir[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS) + i];
#endif
	/* We need BIOS memory mapped at 0xc0000 & co for Linux drivers */
#ifdef LINUX_DEV
#if VM_MIN_KERNEL_ADDRESS != 0
	kernel_page_dir[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)] =
		kernel_page_dir[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS)];
#endif
#endif

#ifdef	MACH_PV_PAGETABLES
	for (i = 0; i < PDPNUM; i++)
		pmap_set_page_readonly_init((void*) kernel_page_dir + i * INTEL_PGBYTES);
#if PAE
	pmap_set_page_readonly_init(kernel_pmap->pdpbase);
#endif	/* PAE */
#endif	/* MACH_PV_PAGETABLES */
#if PAE
	set_cr3((unsigned)_kvtophys(kernel_pmap->pdpbase));
#ifndef	MACH_HYP
	if (!CPU_HAS_FEATURE(CPU_FEATURE_PAE))
		panic("CPU doesn't have support for PAE.");
	set_cr4(get_cr4() | CR4_PAE);
#endif	/* MACH_HYP */
#else
	set_cr3((unsigned)_kvtophys(kernel_page_dir));
#endif	/* PAE */
#ifndef	MACH_HYP
	/* Turn paging on.
	 * Also set the WP bit so that on 486 or better processors
	 * page-level write protection works in kernel mode.
	 */
	set_cr0(get_cr0() | CR0_PG | CR0_WP);
	set_cr0(get_cr0() & ~(CR0_CD | CR0_NW));
	if (CPU_HAS_FEATURE(CPU_FEATURE_PGE))
		set_cr4(get_cr4() | CR4_PGE);
#endif	/* MACH_HYP */
	flush_instr_queue();
#ifdef	MACH_PV_PAGETABLES
	pmap_clear_bootstrap_pagetable((void *)boot_info.pt_base);
#endif	/* MACH_PV_PAGETABLES */

	/* Interrupt stacks are allocated in physical memory,
	   while kernel stacks are allocated in kernel virtual memory,
	   so phys_last_addr serves as a convenient dividing point.  */
	int_stack_high = phystokv(phys_last_addr);

	/*
	 * Initialize and activate the real i386 protected-mode structures.
	 */
	gdt_init();
	idt_init();
#ifndef	MACH_HYP
	int_init();
#endif	/* MACH_HYP */
	ldt_init();
	ktss_init();

#if INIT_VM_MIN_KERNEL_ADDRESS != LINEAR_MIN_KERNEL_ADDRESS
	/* Get rid of the temporary direct mapping and flush it out of the TLB.  */
	for (i = 0 ; i < nb_direct; i++) {
#ifdef	MACH_XEN
#ifdef	MACH_PSEUDO_PHYS
		if (!hyp_mmu_update_pte(kv_to_ma(&kernel_page_dir[lin2pdenum(VM_MIN_KERNEL_ADDRESS) + i]), 0))
#else	/* MACH_PSEUDO_PHYS */
		if (hyp_do_update_va_mapping(VM_MIN_KERNEL_ADDRESS + i * INTEL_PGBYTES, 0, UVMF_INVLPG | UVMF_ALL))
#endif	/* MACH_PSEUDO_PHYS */
			printf("couldn't unmap frame %d\n", i);
#else	/* MACH_XEN */
		kernel_page_dir[lin2pdenum(INIT_VM_MIN_KERNEL_ADDRESS) + i] = 0;
#endif	/* MACH_XEN */
	}
#endif
	/* Keep BIOS memory mapped */
#ifdef LINUX_DEV
#if VM_MIN_KERNEL_ADDRESS != 0
	kernel_page_dir[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS)] =
		kernel_page_dir[lin2pdenum(LINEAR_MIN_KERNEL_ADDRESS)];
#endif
#endif

	/* Not used after boot, better give it back.  */
#ifdef	MACH_XEN
	hyp_free_page(0, (void*) VM_MIN_KERNEL_ADDRESS);
#endif	/* MACH_XEN */

	flush_tlb();

#ifdef	MACH_XEN
	hyp_p2m_init();
#endif	/* MACH_XEN */

	/* XXX We'll just use the initialization stack we're already running on
	   as the interrupt stack for now.  Later this will have to change,
	   because the init stack will get freed after bootup.  */
	asm("movl %%esp,%0" : "=m" (int_stack_top));
}

/*
 *	C boot entrypoint - called by boot_entry in boothdr.S.
 *	Running in 32-bit flat mode, but without paging yet.
 */
void c_boot_entry(vm_offset_t bi)
{
	/* Stash the boot_image_info pointer.  */
	boot_info = *(typeof(boot_info)*)phystokv(bi);
	int cpu_type;

	/* Before we do _anything_ else, print the hello message.
	   If there are no initialized console devices yet,
	   it will be stored and printed at the first opportunity.  */
	printf("%s", version);
	printf("\n");

#ifdef MACH_XEN
	printf("Running on %s.\n", boot_info.magic);
	if (boot_info.flags & SIF_PRIVILEGED)
		panic("Mach can't run as dom0.");
#ifdef MACH_PSEUDO_PHYS
	mfn_list = (void*)boot_info.mfn_list;
#endif
#else	/* MACH_XEN */

#if	MACH_KDB
	/*
	 * Locate the kernel's symbol table, if the boot loader provided it.
	 * We need to do this before i386at_init()
	 * so that the symbol table's memory won't be stomped on.
	 */
	if ((boot_info.flags & MULTIBOOT_AOUT_SYMS)
	    && boot_info.syms.a.addr)
	{
		vm_size_t symtab_size, strtab_size;

		kern_sym_start = (vm_offset_t)phystokv(boot_info.syms.a.addr);
		symtab_size = (vm_offset_t)phystokv(boot_info.syms.a.tabsize);
		strtab_size = (vm_offset_t)phystokv(boot_info.syms.a.strsize);
		kern_sym_end = kern_sym_start + 4 + symtab_size + strtab_size;

		printf("kernel symbol table at %08lx-%08lx (%d,%d)\n",
		       kern_sym_start, kern_sym_end,
		       symtab_size, strtab_size);
	}
#endif	/* MACH_KDB */
#endif	/* MACH_XEN */

	cpu_type = discover_x86_cpu_type ();

	/*
	 * Do basic VM initialization
	 */
	i386at_init();

#if	MACH_KDB
	/*
	 * Initialize the kernel debugger's kernel symbol table.
	 */
	if (kern_sym_start)
	{
		aout_db_sym_init((char *)kern_sym_start, (char *)kern_sym_end, "mach", (char *)0);
	}
#endif	/* MACH_KDB */

	machine_slot[0].is_cpu = TRUE;
	machine_slot[0].running = TRUE;
	machine_slot[0].cpu_subtype = CPU_SUBTYPE_AT386;

	switch (cpu_type)
	  {
	  default:
	    printf("warning: unknown cpu type %d, assuming i386\n", cpu_type);
	  case 3:
	    machine_slot[0].cpu_type = CPU_TYPE_I386;
	    break;
	  case 4:
	    machine_slot[0].cpu_type = CPU_TYPE_I486;
	    break;
	  case 5:
	    machine_slot[0].cpu_type = CPU_TYPE_PENTIUM;
	    break;
	  case 6:
	  case 15:
	    machine_slot[0].cpu_type = CPU_TYPE_PENTIUMPRO;
	    break;
	  }

	/*
	 * Start the system.
	 */
	setup_main();

}

#include <mach/vm_prot.h>
#include <vm/pmap.h>
#include <mach/time_value.h>

int
timemmap(dev, off, prot)
	dev_t dev;
	vm_offset_t off;
	vm_prot_t prot;
{
	extern time_value_t *mtime;

	if (prot & VM_PROT_WRITE) return (-1);

	return (i386_btop(pmap_extract(pmap_kernel(), (vm_offset_t) mtime)));
}

void
startrtclock(void)
{
	clkstart();
}

void
inittodr(void)
{
	time_value_t	new_time;

	new_time.seconds = 0;
	new_time.microseconds = 0;

	(void) readtodc((u_int *)&new_time.seconds);

	{
	    spl_t	s = splhigh();
	    time = new_time;
	    splx(s);
	}
}

void
resettodr(void)
{
	writetodc();
}

unsigned int pmap_free_pages(void)
{
	return atop(avail_remaining);
}

/* Always returns page-aligned regions.  */
boolean_t
init_alloc_aligned(vm_size_t size, vm_offset_t *addrp)
{
	vm_offset_t addr;

#ifdef MACH_HYP
	/* There is none */
	if (!avail_next)
		avail_next = _kvtophys(boot_info.pt_base) + (boot_info.nr_pt_frames + 3) * 0x1000;
#else	/* MACH_HYP */
	extern char start[], end[];
	int i;
	static int wrapped = 0;

	/* Memory regions to skip.  */
	vm_offset_t cmdline_start_pa = boot_info.flags & MULTIBOOT_CMDLINE
		? boot_info.cmdline : 0;
	vm_offset_t cmdline_end_pa = cmdline_start_pa
		? cmdline_start_pa+strlen((char*)phystokv(cmdline_start_pa))+1
		: 0;
	vm_offset_t mods_start_pa = boot_info.flags & MULTIBOOT_MODS
		? boot_info.mods_addr : 0;
	vm_offset_t mods_end_pa = mods_start_pa
		? mods_start_pa
		  + boot_info.mods_count * sizeof(struct multiboot_module)
		: 0;

	retry:
#endif	/* MACH_HYP */

	/* Page-align the start address.  */
	avail_next = round_page(avail_next);

#ifndef MACH_HYP
	/* Start with memory above 16MB, reserving the low memory for later. */
	/* Don't care on Xen */
	if (!wrapped && phys_last_addr > 16 * 1024*1024)
	  {
	    if (avail_next < 16 * 1024*1024)
	      avail_next = 16 * 1024*1024;
	    else if (avail_next == phys_last_addr)
	      {
		/* We have used all the memory above 16MB, so now start on
		   the low memory.  This will wind up at the end of the list
		   of free pages, so it should not have been allocated to any
		   other use in early initialization before the Linux driver
		   glue initialization needs to allocate low memory.  */
		avail_next = 0x1000;
		wrapped = 1;
	      }
	  }
#endif	/* MACH_HYP */

	/* Check if we have reached the end of memory.  */
        if (avail_next == 
		(
#ifndef MACH_HYP
		wrapped ? 16 * 1024*1024 : 
#endif	/* MACH_HYP */
		phys_last_addr))
		return FALSE;

	/* Tentatively assign the current location to the caller.  */
	addr = avail_next;

	/* Bump the pointer past the newly allocated region
	   and see where that puts us.  */
	avail_next += size;

#ifndef MACH_HYP
	/* Skip past the I/O and ROM area.  */
	if (boot_info.flags & MULTIBOOT_MEM_MAP)
	{
		struct multiboot_mmap *map, *map_end, *current = NULL, *next = NULL;
		unsigned long long minimum_next = ~0ULL;

		map = (void*) phystokv(boot_info.mmap_addr);
		map_end = (void*) map + boot_info.mmap_count;

		/* Find both our current map, and the next one */
		while (map + 1 <= map_end)
		{
			if (map->Type == MB_ARD_MEMORY)
			{
				unsigned long long start = map->BaseAddr;
				unsigned long long end = start + map->Length;;

				if (start <= addr && avail_next <= end)
				{
					/* Ok, fits in the current map */
					current = map;
					break;
				}
				else if (avail_next <= start && start < minimum_next)
				{
					/* This map is not far from avail_next */
					next = map;
					minimum_next = start;
				}
			}
			map = (void*) map + map->size + sizeof(map->size);
		}

		if (!current) {
			/* Area does not fit in the current map, switch to next
			 * map if any */
			if (!next || next->BaseAddr >= phys_last_addr)
			{
				/* No further reachable map, we have reached
				 * the end of memory, but possibly wrap around
				 * 16MiB. */
				avail_next = phys_last_addr;
				goto retry;
			}

			/* Start from next map */
			avail_next = next->BaseAddr;
			goto retry;
		}
	}
	else if ((avail_next > (boot_info.mem_lower * 0x400)) && (addr < 0x100000))
	{
		avail_next = 0x100000;
		goto retry;
	}

	/* Skip our own kernel code, data, and bss.  */
	if ((phystokv(avail_next) > (vm_offset_t)start) && (phystokv(addr) < (vm_offset_t)end))
	{
		avail_next = _kvtophys(end);
		goto retry;
	}

	/* Skip any areas occupied by valuable boot_info data.  */
	if ((avail_next > cmdline_start_pa) && (addr < cmdline_end_pa))
	{
		avail_next = cmdline_end_pa;
		goto retry;
	}
	if ((avail_next > mods_start_pa) && (addr < mods_end_pa))
	{
		avail_next = mods_end_pa;
		goto retry;
	}
	if ((phystokv(avail_next) > kern_sym_start) && (phystokv(addr) < kern_sym_end))
	{
		avail_next = _kvtophys(kern_sym_end);
		goto retry;
	}
	if (boot_info.flags & MULTIBOOT_MODS)
	{
		struct multiboot_module *m = (struct multiboot_module *)
			phystokv(boot_info.mods_addr);
		for (i = 0; i < boot_info.mods_count; i++)
		{
			if ((avail_next > m[i].mod_start)
			    && (addr < m[i].mod_end))
			{
				avail_next = m[i].mod_end;
				goto retry;
			}
			/* XXX string */
		}
	}
#endif	/* MACH_HYP */

	avail_remaining -= size;

	*addrp = addr;
	return TRUE;
}

boolean_t pmap_next_page(addrp)
	vm_offset_t *addrp;
{
	return init_alloc_aligned(PAGE_SIZE, addrp);
}

/* Grab a physical page:
   the standard memory allocation mechanism
   during system initialization.  */
vm_offset_t
pmap_grab_page(void)
{
	vm_offset_t addr;
	if (!pmap_next_page(&addr))
		panic("Not enough memory to initialize Mach");
	return addr;
}

boolean_t pmap_valid_page(x)
	vm_offset_t x;
{
	/* XXX is this OK?  What does it matter for?  */
	return (((phys_first_addr <= x) && (x < phys_last_addr))
#ifndef MACH_HYP
		&& !(
		((boot_info.mem_lower * 1024) <= x) && 
		(x < 1024*1024))
#endif	/* MACH_HYP */
		);
}