summaryrefslogtreecommitdiff
path: root/i386/i386at/gpl/linux/block/triton.c
blob: 5829661170a15031d7e68c34edb65f66425a99b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*
 *  linux/drivers/block/triton.c	Version 1.06  Feb 6, 1996
 *
 *  Copyright (c) 1995-1996  Mark Lord
 *  May be copied or modified under the terms of the GNU General Public License
 */

/*
 * This module provides support for the Bus Master IDE DMA function
 * of the Intel PCI Triton chipset (82371FB).
 *
 * DMA is currently supported only for hard disk drives (not cdroms).
 *
 * Support for cdroms will likely be added at a later date,
 * after broader experience has been obtained with hard disks.
 *
 * Up to four drives may be enabled for DMA, and the Triton chipset will
 * (hopefully) arbitrate the PCI bus among them.  Note that the 82371FB chip
 * provides a single "line buffer" for the BM IDE function, so performance of
 * multiple (two) drives doing DMA simultaneously will suffer somewhat,
 * as they contest for that resource bottleneck.  This is handled transparently
 * inside the 82371FB chip.
 *
 * By default, DMA support is prepared for use, but is currently enabled only
 * for drives which support multi-word DMA mode2 (mword2), or which are
 * recognized as "good" (see table below).  Drives with only mode0 or mode1
 * (single or multi) DMA should also work with this chipset/driver (eg. MC2112A)
 * but are not enabled by default.  Use "hdparm -i" to view modes supported
 * by a given drive.
 *
 * The hdparm-2.4 (or later) utility can be used for manually enabling/disabling
 * DMA support, but must be (re-)compiled against this kernel version or later.
 *
 * To enable DMA, use "hdparm -d1 /dev/hd?" on a per-drive basis after booting.
 * If problems arise, ide.c will disable DMA operation after a few retries.
 * This error recovery mechanism works and has been extremely well exercised.
 *
 * IDE drives, depending on their vintage, may support several different modes
 * of DMA operation.  The boot-time modes are indicated with a "*" in
 * the "hdparm -i" listing, and can be changed with *knowledgeable* use of
 * the "hdparm -X" feature.  There is seldom a need to do this, as drives
 * normally power-up with their "best" PIO/DMA modes enabled.
 *
 * Testing was done with an ASUS P55TP4XE/100 system and the following drives:
 *
 *   Quantum Fireball 1080A (1Gig w/83kB buffer), DMA mode2, PIO mode4.
 *	- DMA mode2 works well (7.4MB/sec), despite the tiny on-drive buffer.
 *	- This drive also does PIO mode4, at about the same speed as DMA mode2.
 *	  An awesome drive for the price!
 *
 *   Fujitsu M1606TA (1Gig w/256kB buffer), DMA mode2, PIO mode4.
 *	- DMA mode2 gives horrible performance (1.6MB/sec), despite the good
 *	  size of the on-drive buffer and a boasted 10ms average access time.
 *	- PIO mode4 was better, but peaked at a mere 4.5MB/sec.
 *
 *   Micropolis MC2112A (1Gig w/508kB buffer), drive pre-dates EIDE and ATA2.
 *	- DMA works fine (2.2MB/sec), probably due to the large on-drive buffer.
 *	- This older drive can also be tweaked for fastPIO (3.7MB/sec) by using
 *	  maximum clock settings (5,4) and setting all flags except prefetch.
 *
 *   Western Digital AC31000H (1Gig w/128kB buffer), DMA mode1, PIO mode3.
 *	- DMA does not work reliably.  The drive appears to be somewhat tardy
 *	  in deasserting DMARQ at the end of a sector.  This is evident in
 *	  the observation that WRITEs work most of the time, depending on
 *	  cache-buffer occupancy, but multi-sector reads seldom work.
 *
 * Testing was done with a Gigabyte GA-586 ATE system and the following drive:
 * (Uwe Bonnes - bon@elektron.ikp.physik.th-darmstadt.de)
 *
 *   Western Digital AC31600H (1.6Gig w/128kB buffer), DMA mode2, PIO mode4.
 *	- much better than its 1Gig cousin, this drive is reported to work
 *	  very well with DMA (7.3MB/sec).
 *
 * Other drives:
 *
 *   Maxtor 7540AV (515Meg w/32kB buffer), DMA modes mword0/sword2, PIO mode3.
 *	- a budget drive, with budget performance, around 3MB/sec.
 *
 *   Western Digital AC2850F (814Meg w/64kB buffer), DMA mode1, PIO mode3.
 *	- another "caviar" drive, similar to the AC31000, except that this one
 *	  worked with DMA in at least one system.  Throughput is about 3.8MB/sec
 *	  for both DMA and PIO.
 *
 *   Conner CFS850A (812Meg w/64kB buffer), DMA mode2, PIO mode4.
 *	- like most Conner models, this drive proves that even a fast interface
 *	  cannot improve slow media.  Both DMA and PIO peak around 3.5MB/sec.
 *
 * If you have any drive models to add, email your results to:  mlord@bnr.ca
 * Keep an eye on /var/adm/messages for "DMA disabled" messages.
 *
 * Some people have reported trouble with Intel Zappa motherboards.
 * This can be fixed by upgrading the AMI BIOS to version 1.00.04.BS0,
 * available from ftp://ftp.intel.com/pub/bios/10004bs0.exe
 * (thanks to Glen Morrell <glen@spin.Stanford.edu> for researching this).
 *
 * And, yes, Intel Zappa boards really *do* use the Triton IDE ports.
 */
#include <linux/config.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/ioport.h>
#include <linux/interrupt.h>
#include <linux/blkdev.h>
#include <linux/hdreg.h>
#include <linux/pci.h>
#include <linux/bios32.h>

#include <asm/io.h>
#include <asm/dma.h>

#include "ide.h"

/*
 * good_dma_drives() lists the model names (from "hdparm -i")
 * of drives which do not support mword2 DMA but which are
 * known to work fine with this interface under Linux.
 */
const char *good_dma_drives[] = {"Micropolis 2112A",
				 "CONNER CTMA 4000"};

/*
 * Our Physical Region Descriptor (PRD) table should be large enough
 * to handle the biggest I/O request we are likely to see.  Since requests
 * can have no more than 256 sectors, and since the typical blocksize is
 * two sectors, we could get by with a limit of 128 entries here for the
 * usual worst case.  Most requests seem to include some contiguous blocks,
 * further reducing the number of table entries required.
 *
 * The driver reverts to PIO mode for individual requests that exceed
 * this limit (possible with 512 byte blocksizes, eg. MSDOS f/s), so handling
 * 100% of all crazy scenarios here is not necessary.
 *
 * As it turns out though, we must allocate a full 4KB page for this,
 * so the two PRD tables (ide0 & ide1) will each get half of that,
 * allowing each to have about 256 entries (8 bytes each) from this.
 */
#define PRD_BYTES	8
#define PRD_ENTRIES	(PAGE_SIZE / (2 * PRD_BYTES))

/*
 * dma_intr() is the handler for disk read/write DMA interrupts
 */
static void dma_intr (ide_drive_t *drive)
{
	byte stat, dma_stat;
	int i;
	struct request *rq = HWGROUP(drive)->rq;
	unsigned short dma_base = HWIF(drive)->dma_base;

	dma_stat = inb(dma_base+2);		/* get DMA status */
	outb(inb(dma_base)&~1, dma_base);	/* stop DMA operation */
	stat = GET_STAT();			/* get drive status */
	if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) {
		if ((dma_stat & 7) == 4) {	/* verify good DMA status */
			rq = HWGROUP(drive)->rq;
			for (i = rq->nr_sectors; i > 0;) {
				i -= rq->current_nr_sectors;
				ide_end_request(1, HWGROUP(drive));
			}
			return;
		}
		printk("%s: bad DMA status: 0x%02x\n", drive->name, dma_stat);
	}
	sti();
	ide_error(drive, "dma_intr", stat);
}

/*
 * build_dmatable() prepares a dma request.
 * Returns 0 if all went okay, returns 1 otherwise.
 */
static int build_dmatable (ide_drive_t *drive)
{
	struct request *rq = HWGROUP(drive)->rq;
	struct buffer_head *bh = rq->bh;
	unsigned long size, addr, *table = HWIF(drive)->dmatable;
	unsigned int count = 0;

	do {
		/*
		 * Determine addr and size of next buffer area.  We assume that
		 * individual virtual buffers are always composed linearly in
		 * physical memory.  For example, we assume that any 8kB buffer
		 * is always composed of two adjacent physical 4kB pages rather
		 * than two possibly non-adjacent physical 4kB pages.
		 */
		if (bh == NULL) {  /* paging and tape requests have (rq->bh == NULL) */
			addr = virt_to_bus (rq->buffer);
#ifdef CONFIG_BLK_DEV_IDETAPE
			if (drive->media == ide_tape)
				size = drive->tape.pc->request_transfer;
			else
#endif /* CONFIG_BLK_DEV_IDETAPE */	
			size = rq->nr_sectors << 9;
		} else {
			/* group sequential buffers into one large buffer */
			addr = virt_to_bus (bh->b_data);
			size = bh->b_size;
			while ((bh = bh->b_reqnext) != NULL) {
				if ((addr + size) != virt_to_bus (bh->b_data))
					break;
				size += bh->b_size;
			}
		}

		/*
		 * Fill in the dma table, without crossing any 64kB boundaries.
		 * We assume 16-bit alignment of all blocks.
		 */
		while (size) {
			if (++count >= PRD_ENTRIES) {
				printk("%s: DMA table too small\n", drive->name);
				return 1; /* revert to PIO for this request */
			} else {
				unsigned long bcount = 0x10000 - (addr & 0xffff);
				if (bcount > size)
					bcount = size;
				*table++ = addr;
				*table++ = bcount;
				addr += bcount;
				size -= bcount;
			}
		}
	} while (bh != NULL);
	if (count) {
		*--table |= 0x80000000;	/* set End-Of-Table (EOT) bit */
		return 0;
	}
	printk("%s: empty DMA table?\n", drive->name);
	return 1;	/* let the PIO routines handle this weirdness */
}

static int config_drive_for_dma (ide_drive_t *drive)
{
	const char **list;

	struct hd_driveid *id = drive->id;
	if (id && (id->capability & 1)) {
		/* Enable DMA on any drive that supports mword2 DMA */
		if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) {
			drive->using_dma = 1;
			return 0;		/* DMA enabled */
		}
		/* Consult the list of known "good" drives */
		list = good_dma_drives;
		while (*list) {
			if (!strcmp(*list++,id->model)) {
				drive->using_dma = 1;
				return 0;	/* DMA enabled */
			}
		}
	}
	return 1;	/* DMA not enabled */
}

/*
 * triton_dmaproc() initiates/aborts DMA read/write operations on a drive.
 *
 * The caller is assumed to have selected the drive and programmed the drive's
 * sector address using CHS or LBA.  All that remains is to prepare for DMA
 * and then issue the actual read/write DMA/PIO command to the drive.
 *
 * For ATAPI devices, we just prepare for DMA and return. The caller should
 * then issue the packet command to the drive and call us again with
 * ide_dma_begin afterwards.
 *
 * Returns 0 if all went well.
 * Returns 1 if DMA read/write could not be started, in which case
 * the caller should revert to PIO for the current request.
 */
static int triton_dmaproc (ide_dma_action_t func, ide_drive_t *drive)
{
	unsigned long dma_base = HWIF(drive)->dma_base;
	unsigned int reading = (1 << 3);

	switch (func) {
		case ide_dma_abort:
			outb(inb(dma_base)&~1, dma_base);	/* stop DMA */
			return 0;
		case ide_dma_check:
			return config_drive_for_dma (drive);
		case ide_dma_write:
			reading = 0;
		case ide_dma_read:
			break;
		case ide_dma_status_bad:
			return ((inb(dma_base+2) & 7) != 4);	/* verify good DMA status */
		case ide_dma_transferred:
#if 0
			return (number of bytes actually transferred);
#else
			return (0);
#endif
		case ide_dma_begin:
			outb(inb(dma_base)|1, dma_base);	/* begin DMA */
			return 0;
		default:
			printk("triton_dmaproc: unsupported func: %d\n", func);
			return 1;
	}
	if (build_dmatable (drive))
		return 1;
	outl(virt_to_bus (HWIF(drive)->dmatable), dma_base + 4); /* PRD table */
	outb(reading, dma_base);			/* specify r/w */
	outb(0x26, dma_base+2);				/* clear status bits */
#ifdef CONFIG_BLK_DEV_IDEATAPI
	if (drive->media != ide_disk)
		return 0;
#endif /* CONFIG_BLK_DEV_IDEATAPI */	
	ide_set_handler(drive, &dma_intr, WAIT_CMD);	/* issue cmd to drive */
	OUT_BYTE(reading ? WIN_READDMA : WIN_WRITEDMA, IDE_COMMAND_REG);
	outb(inb(dma_base)|1, dma_base);		/* begin DMA */
	return 0;
}

/*
 * print_triton_drive_flags() displays the currently programmed options
 * in the Triton chipset for a given drive.
 *
 *	If fastDMA  is "no", then slow ISA timings are used for DMA data xfers.
 *	If fastPIO  is "no", then slow ISA timings are used for PIO data xfers.
 *	If IORDY    is "no", then IORDY is assumed to always be asserted.
 *	If PreFetch is "no", then data pre-fetch/post are not used.
 *
 * When "fastPIO" and/or "fastDMA" are "yes", then faster PCI timings and
 * back-to-back 16-bit data transfers are enabled, using the sample_CLKs
 * and recovery_CLKs (PCI clock cycles) timing parameters for that interface.
 */
static void print_triton_drive_flags (unsigned int unit, byte flags)
{
	printk("         %s ", unit ? "slave :" : "master:");
	printk( "fastDMA=%s",	(flags&9)	? "on " : "off");
	printk(" PreFetch=%s",	(flags&4)	? "on " : "off");
	printk(" IORDY=%s",	(flags&2)	? "on " : "off");
	printk(" fastPIO=%s\n",	((flags&9)==1)	? "on " : "off");
}

static void init_triton_dma (ide_hwif_t *hwif, unsigned short base)
{
	static unsigned long dmatable = 0;

	printk("    %s: BusMaster DMA at 0x%04x-0x%04x", hwif->name, base, base+7);
	if (check_region(base, 8)) {
		printk(" -- ERROR, PORTS ALREADY IN USE");
	} else {
		request_region(base, 8, "triton DMA");
		hwif->dma_base = base;
		if (!dmatable) {
			/*
			 * Since we know we are on a PCI bus, we could
			 * actually use __get_free_pages() here instead
			 * of __get_dma_pages() -- no ISA limitations.
			 */
			dmatable = __get_dma_pages(GFP_KERNEL, 0);
		}
		if (dmatable) {
			hwif->dmatable = (unsigned long *) dmatable;
			dmatable += (PRD_ENTRIES * PRD_BYTES);
			outl(virt_to_bus(hwif->dmatable), base + 4);
			hwif->dmaproc  = &triton_dmaproc;
		}
	}
	printk("\n");
}

/*
 * calc_mode() returns the ATA PIO mode number, based on the number
 * of cycle clks passed in.  Assumes 33Mhz bus operation (30ns per clk).
 */
byte calc_mode (byte clks)
{
	if (clks == 3)	return 5;
	if (clks == 4)	return 4;
	if (clks <  6)	return 3;
	if (clks <  8)	return 2;
	if (clks < 13)	return 1;
	return 0;
}

/*
 * ide_init_triton() prepares the IDE driver for DMA operation.
 * This routine is called once, from ide.c during driver initialization,
 * for each triton chipset which is found (unlikely to be more than one).
 */
void ide_init_triton (byte bus, byte fn)
{
	int rc = 0, h;
	int dma_enabled = 0;
	unsigned short bmiba, pcicmd;
	unsigned int timings;

	printk("ide: Triton BM-IDE on PCI bus %d function %d\n", bus, fn);
	/*
	 * See if IDE and BM-DMA features are enabled:
	 */
	if ((rc = pcibios_read_config_word(bus, fn, 0x04, &pcicmd)))
		goto quit;
	if ((pcicmd & 1) == 0)  {
		printk("ide: Triton IDE ports are not enabled\n");
		goto quit;
	}
	if ((pcicmd & 4) == 0) {
		printk("ide: Triton BM-DMA feature is not enabled -- upgrade your BIOS\n");
	} else {
		/*
		 * Get the bmiba base address
		 */
		if ((rc = pcibios_read_config_word(bus, fn, 0x20, &bmiba)))
			goto quit;
		bmiba &= 0xfff0;	/* extract port base address */
		dma_enabled = 1;
	}

	/*
	 * See if ide port(s) are enabled
	 */
	if ((rc = pcibios_read_config_dword(bus, fn, 0x40, &timings)))
		goto quit;
	if (!(timings & 0x80008000)) {
		printk("ide: neither Triton IDE port is enabled\n");
		goto quit;
	}

	/*
	 * Save the dma_base port addr for each interface
	 */
	for (h = 0; h < MAX_HWIFS; ++h) {
		byte s_clks, r_clks;
		ide_hwif_t *hwif = &ide_hwifs[h];
		unsigned short time;
		if (hwif->io_base == 0x1f0) {
			time = timings & 0xffff;
			if ((timings & 0x8000) == 0)	/* interface enabled? */
				continue;
			hwif->chipset = ide_triton;
			if (dma_enabled)
				init_triton_dma(hwif, bmiba);
		} else if (hwif->io_base == 0x170) {
			time = timings >> 16;
			if ((timings & 0x8000) == 0)	/* interface enabled? */
				continue;
			hwif->chipset = ide_triton;
			if (dma_enabled)
				init_triton_dma(hwif, bmiba + 8);
		} else
			continue;
		s_clks = ((~time >> 12) & 3) + 2;
		r_clks = ((~time >>  8) & 3) + 1;
		printk("    %s timing: (0x%04x) sample_CLKs=%d, recovery_CLKs=%d (PIO mode%d)\n",
		 hwif->name, time, s_clks, r_clks, calc_mode(s_clks+r_clks));
		print_triton_drive_flags (0, time & 0xf);
		print_triton_drive_flags (1, (time >> 4) & 0xf);
	}

quit: if (rc) printk("ide: pcibios access failed - %s\n", pcibios_strerror(rc));
}