1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
|
/*
* Copyright (c) 2010-2014 Richard Braun.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <kern/assert.h>
#include <kern/macros.h>
#include <kern/debug.h>
#include <kern/printf.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <vm/vm_page.h>
#include "biosmem.h"
#include "x15/elf.h"
#include "x15/multiboot.h"
/* Mach glue. */
#define __bootdata /* nothing */
#define __boot /* nothing */
#define __init /* nothing */
#define boot_memmove memmove
#define boot_memset(P,C,S) memset(phystokv(P), C, S)
#define boot_strlen(P) strlen(phystokv(P))
#define boot_panic panic
#define printk printf
#define BOOT_VTOP(addr) _kvtophys(addr)
/* XXX */
extern char _boot;
extern char _end;
/*
* Maximum number of entries in the BIOS memory map.
*
* Because of adjustments of overlapping ranges, the memory map can grow
* to twice this size.
*/
#define BIOSMEM_MAX_MAP_SIZE 128
/*
* Memory range types.
*/
#define BIOSMEM_TYPE_AVAILABLE 1
#define BIOSMEM_TYPE_RESERVED 2
#define BIOSMEM_TYPE_ACPI 3
#define BIOSMEM_TYPE_NVS 4
#define BIOSMEM_TYPE_UNUSABLE 5
#define BIOSMEM_TYPE_DISABLED 6
/*
* Memory map entry.
*/
struct biosmem_map_entry {
uint64_t base_addr;
uint64_t length;
unsigned int type;
};
/*
* Contiguous block of physical memory.
*
* Tha "available" range records what has been passed to the VM system as
* available inside the segment.
*/
struct biosmem_segment {
phys_addr_t start;
phys_addr_t end;
phys_addr_t avail_start;
phys_addr_t avail_end;
};
/*
* Memory map built from the information passed by the boot loader.
*
* If the boot loader didn't pass a valid memory map, a simple map is built
* based on the mem_lower and mem_upper multiboot fields.
*/
static struct biosmem_map_entry biosmem_map[BIOSMEM_MAX_MAP_SIZE * 2]
__bootdata;
static unsigned int biosmem_map_size __bootdata;
/*
* Physical segment boundaries.
*/
static struct biosmem_segment biosmem_segments[VM_PAGE_MAX_SEGS] __bootdata;
/*
* Boundaries of the simple bootstrap heap.
*
* This heap is located above BIOS memory.
*/
static uint32_t biosmem_heap_start __bootdata;
static uint32_t biosmem_heap_cur __bootdata;
static uint32_t biosmem_heap_end __bootdata;
static char biosmem_panic_toobig_msg[] __bootdata
= "biosmem: too many memory map entries";
static char biosmem_panic_setup_msg[] __bootdata
= "biosmem: unable to set up the early memory allocator";
static char biosmem_panic_noseg_msg[] __bootdata
= "biosmem: unable to find any memory segment";
static char biosmem_panic_inval_msg[] __bootdata
= "biosmem: attempt to allocate 0 page";
static char biosmem_panic_nomem_msg[] __bootdata
= "biosmem: unable to allocate memory";
static void __boot
biosmem_map_build(const struct multiboot_raw_info *mbi)
{
struct multiboot_raw_mmap_entry *mb_entry, *mb_end;
struct biosmem_map_entry *start, *entry, *end;
unsigned long addr;
addr = phystokv(mbi->mmap_addr);
mb_entry = (struct multiboot_raw_mmap_entry *)addr;
mb_end = (struct multiboot_raw_mmap_entry *)(addr + mbi->mmap_length);
start = biosmem_map;
entry = start;
end = entry + BIOSMEM_MAX_MAP_SIZE;
while ((mb_entry < mb_end) && (entry < end)) {
entry->base_addr = mb_entry->base_addr;
entry->length = mb_entry->length;
entry->type = mb_entry->type;
mb_entry = (void *)mb_entry + sizeof(mb_entry->size) + mb_entry->size;
entry++;
}
biosmem_map_size = entry - start;
}
static void __boot
biosmem_map_build_simple(const struct multiboot_raw_info *mbi)
{
struct biosmem_map_entry *entry;
entry = biosmem_map;
entry->base_addr = 0;
entry->length = mbi->mem_lower << 10;
entry->type = BIOSMEM_TYPE_AVAILABLE;
entry++;
entry->base_addr = BIOSMEM_END;
entry->length = mbi->mem_upper << 10;
entry->type = BIOSMEM_TYPE_AVAILABLE;
biosmem_map_size = 2;
}
static int __boot
biosmem_map_entry_is_invalid(const struct biosmem_map_entry *entry)
{
return (entry->base_addr + entry->length) <= entry->base_addr;
}
static void __boot
biosmem_map_filter(void)
{
struct biosmem_map_entry *entry;
unsigned int i;
i = 0;
while (i < biosmem_map_size) {
entry = &biosmem_map[i];
if (biosmem_map_entry_is_invalid(entry)) {
biosmem_map_size--;
boot_memmove(entry, entry + 1,
(biosmem_map_size - i) * sizeof(*entry));
continue;
}
i++;
}
}
static void __boot
biosmem_map_sort(void)
{
struct biosmem_map_entry tmp;
unsigned int i, j;
/*
* Simple insertion sort.
*/
for (i = 1; i < biosmem_map_size; i++) {
tmp = biosmem_map[i];
for (j = i - 1; j < i; j--) {
if (biosmem_map[j].base_addr < tmp.base_addr)
break;
biosmem_map[j + 1] = biosmem_map[j];
}
biosmem_map[j + 1] = tmp;
}
}
static void __boot
biosmem_map_adjust(void)
{
struct biosmem_map_entry tmp, *a, *b, *first, *second;
uint64_t a_end, b_end, last_end;
unsigned int i, j, last_type;
biosmem_map_filter();
/*
* Resolve overlapping areas, giving priority to most restrictive
* (i.e. numerically higher) types.
*/
for (i = 0; i < biosmem_map_size; i++) {
a = &biosmem_map[i];
a_end = a->base_addr + a->length;
j = i + 1;
while (j < biosmem_map_size) {
b = &biosmem_map[j];
b_end = b->base_addr + b->length;
if ((a->base_addr >= b_end) || (a_end <= b->base_addr)) {
j++;
continue;
}
if (a->base_addr < b->base_addr) {
first = a;
second = b;
} else {
first = b;
second = a;
}
if (a_end > b_end) {
last_end = a_end;
last_type = a->type;
} else {
last_end = b_end;
last_type = b->type;
}
tmp.base_addr = second->base_addr;
tmp.length = MIN(a_end, b_end) - tmp.base_addr;
tmp.type = MAX(a->type, b->type);
first->length = tmp.base_addr - first->base_addr;
second->base_addr += tmp.length;
second->length = last_end - second->base_addr;
second->type = last_type;
/*
* Filter out invalid entries.
*/
if (biosmem_map_entry_is_invalid(a)
&& biosmem_map_entry_is_invalid(b)) {
*a = tmp;
biosmem_map_size--;
memmove(b, b + 1, (biosmem_map_size - j) * sizeof(*b));
continue;
} else if (biosmem_map_entry_is_invalid(a)) {
*a = tmp;
j++;
continue;
} else if (biosmem_map_entry_is_invalid(b)) {
*b = tmp;
j++;
continue;
}
if (tmp.type == a->type)
first = a;
else if (tmp.type == b->type)
first = b;
else {
/*
* If the overlapping area can't be merged with one of its
* neighbors, it must be added as a new entry.
*/
if (biosmem_map_size >= ARRAY_SIZE(biosmem_map))
boot_panic(biosmem_panic_toobig_msg);
biosmem_map[biosmem_map_size] = tmp;
biosmem_map_size++;
j++;
continue;
}
if (first->base_addr > tmp.base_addr)
first->base_addr = tmp.base_addr;
first->length += tmp.length;
j++;
}
}
biosmem_map_sort();
}
static int __boot
biosmem_map_find_avail(phys_addr_t *phys_start, phys_addr_t *phys_end)
{
const struct biosmem_map_entry *entry, *map_end;
phys_addr_t seg_start, seg_end;
uint64_t start, end;
seg_start = (phys_addr_t)-1;
seg_end = (phys_addr_t)-1;
map_end = biosmem_map + biosmem_map_size;
for (entry = biosmem_map; entry < map_end; entry++) {
if (entry->type != BIOSMEM_TYPE_AVAILABLE)
continue;
start = vm_page_round(entry->base_addr);
if (start >= *phys_end)
break;
end = vm_page_trunc(entry->base_addr + entry->length);
if ((start < end) && (start < *phys_end) && (end > *phys_start)) {
if (seg_start == (phys_addr_t)-1)
seg_start = start;
seg_end = end;
}
}
if ((seg_start == (phys_addr_t)-1) || (seg_end == (phys_addr_t)-1))
return -1;
if (seg_start > *phys_start)
*phys_start = seg_start;
if (seg_end < *phys_end)
*phys_end = seg_end;
return 0;
}
static void __boot
biosmem_set_segment(unsigned int seg_index, phys_addr_t start, phys_addr_t end)
{
biosmem_segments[seg_index].start = start;
biosmem_segments[seg_index].end = end;
}
static phys_addr_t __boot
biosmem_segment_end(unsigned int seg_index)
{
return biosmem_segments[seg_index].end;
}
static phys_addr_t __boot
biosmem_segment_size(unsigned int seg_index)
{
return biosmem_segments[seg_index].end - biosmem_segments[seg_index].start;
}
static void __boot
biosmem_save_cmdline_sizes(struct multiboot_raw_info *mbi)
{
struct multiboot_raw_module *mod;
uint32_t i;
if (mbi->flags & MULTIBOOT_LOADER_CMDLINE)
mbi->unused0 = boot_strlen((char *)(unsigned long)mbi->cmdline) + 1;
if (mbi->flags & MULTIBOOT_LOADER_MODULES) {
unsigned long addr;
addr = phystokv(mbi->mods_addr);
for (i = 0; i < mbi->mods_count; i++) {
mod = (struct multiboot_raw_module *)addr + i;
mod->reserved = boot_strlen((char *)(unsigned long)mod->string) + 1;
}
}
}
static void __boot
biosmem_find_boot_data_update(uint32_t min, uint32_t *start, uint32_t *end,
uint32_t data_start, uint32_t data_end)
{
assert (data_start < data_end);
if ((min <= data_start) && (data_start < *start)) {
*start = data_start;
*end = data_end;
}
}
/*
* Find the first boot data in the given range, and return their containing
* area (start address is returned directly, end address is returned in end).
* The following are considered boot data :
* - the kernel
* - the kernel command line
* - the module table
* - the modules
* - the modules command lines
* - the ELF section header table
* - the ELF .shstrtab, .symtab and .strtab sections
*
* If no boot data was found, 0 is returned, and the end address isn't set.
*/
static uint32_t __boot
biosmem_find_boot_data(const struct multiboot_raw_info *mbi, uint32_t min,
uint32_t max, uint32_t *endp)
{
struct multiboot_raw_module *mod;
struct elf_shdr *shdr;
uint32_t i, start, end = end;
unsigned long tmp;
start = max;
biosmem_find_boot_data_update(min, &start, &end,
BOOT_VTOP((unsigned long)&_boot),
BOOT_VTOP((unsigned long)&_end));
if ((mbi->flags & MULTIBOOT_LOADER_CMDLINE) && (mbi->cmdline != 0))
biosmem_find_boot_data_update(min, &start, &end, mbi->cmdline,
mbi->cmdline + mbi->unused0);
if (mbi->flags & MULTIBOOT_LOADER_MODULES) {
i = mbi->mods_count * sizeof(struct multiboot_raw_module);
biosmem_find_boot_data_update(min, &start, &end, mbi->mods_addr,
mbi->mods_addr + i);
tmp = phystokv(mbi->mods_addr);
for (i = 0; i < mbi->mods_count; i++) {
mod = (struct multiboot_raw_module *)tmp + i;
biosmem_find_boot_data_update(min, &start, &end, mod->mod_start,
mod->mod_end);
if (mod->string != 0)
biosmem_find_boot_data_update(min, &start, &end, mod->string,
mod->string + mod->reserved);
}
}
if (mbi->flags & MULTIBOOT_LOADER_SHDR) {
tmp = mbi->shdr_num * mbi->shdr_size;
biosmem_find_boot_data_update(min, &start, &end, mbi->shdr_addr,
mbi->shdr_addr + tmp);
tmp = phystokv(mbi->shdr_addr);
for (i = 0; i < mbi->shdr_num; i++) {
shdr = (struct elf_shdr *)(tmp + (i * mbi->shdr_size));
if ((shdr->type != ELF_SHT_SYMTAB)
&& (shdr->type != ELF_SHT_STRTAB))
continue;
biosmem_find_boot_data_update(min, &start, &end, shdr->addr,
shdr->addr + shdr->size);
}
}
if (start == max)
return 0;
*endp = end;
return start;
}
static void __boot
biosmem_setup_allocator(struct multiboot_raw_info *mbi)
{
uint32_t heap_start, heap_end, max_heap_start, max_heap_end;
uint32_t mem_end, next;
/*
* Find some memory for the heap. Look for the largest unused area in
* upper memory, carefully avoiding all boot data.
*/
mem_end = vm_page_trunc((mbi->mem_upper + 1024) << 10);
#ifndef __LP64__
if (mem_end > VM_PAGE_DIRECTMAP_LIMIT)
mem_end = VM_PAGE_DIRECTMAP_LIMIT;
#endif /* __LP64__ */
max_heap_start = 0;
max_heap_end = 0;
next = BIOSMEM_END;
do {
heap_start = next;
heap_end = biosmem_find_boot_data(mbi, heap_start, mem_end, &next);
if (heap_end == 0) {
heap_end = mem_end;
next = 0;
}
if ((heap_end - heap_start) > (max_heap_end - max_heap_start)) {
max_heap_start = heap_start;
max_heap_end = heap_end;
}
} while (next != 0);
max_heap_start = vm_page_round(max_heap_start);
max_heap_end = vm_page_trunc(max_heap_end);
if (max_heap_start >= max_heap_end)
boot_panic(biosmem_panic_setup_msg);
biosmem_heap_start = max_heap_start;
biosmem_heap_end = max_heap_end;
biosmem_heap_cur = biosmem_heap_end;
/* Mach pmap glue. */
extern vm_offset_t phys_last_addr;
phys_last_addr = (vm_offset_t) max_heap_end;
}
void __boot
biosmem_bootstrap(struct multiboot_raw_info *mbi)
{
phys_addr_t phys_start, phys_end;
int error;
if (mbi->flags & MULTIBOOT_LOADER_MMAP)
biosmem_map_build(mbi);
else
biosmem_map_build_simple(mbi);
biosmem_map_adjust();
phys_start = BIOSMEM_BASE;
phys_end = VM_PAGE_DMA_LIMIT;
error = biosmem_map_find_avail(&phys_start, &phys_end);
if (error)
boot_panic(biosmem_panic_noseg_msg);
biosmem_set_segment(VM_PAGE_SEG_DMA, phys_start, phys_end);
phys_start = VM_PAGE_DMA_LIMIT;
#ifdef VM_PAGE_DMA32_LIMIT
phys_end = VM_PAGE_DMA32_LIMIT;
error = biosmem_map_find_avail(&phys_start, &phys_end);
if (error)
goto out;
biosmem_set_segment(VM_PAGE_SEG_DMA32, phys_start, phys_end);
phys_start = VM_PAGE_DMA32_LIMIT;
#endif /* VM_PAGE_DMA32_LIMIT */
phys_end = VM_PAGE_DIRECTMAP_LIMIT;
error = biosmem_map_find_avail(&phys_start, &phys_end);
if (error)
goto out;
biosmem_set_segment(VM_PAGE_SEG_DIRECTMAP, phys_start, phys_end);
phys_start = VM_PAGE_DIRECTMAP_LIMIT;
phys_end = VM_PAGE_HIGHMEM_LIMIT;
error = biosmem_map_find_avail(&phys_start, &phys_end);
if (error)
goto out;
biosmem_set_segment(VM_PAGE_SEG_HIGHMEM, phys_start, phys_end);
out:
/*
* The kernel and modules command lines will be memory mapped later
* during initialization. Their respective sizes must be saved.
*/
biosmem_save_cmdline_sizes(mbi);
biosmem_setup_allocator(mbi);
}
void * __boot
biosmem_bootalloc(unsigned int nr_pages)
{
unsigned long addr, size;
size = vm_page_ptoa(nr_pages);
if (size == 0)
boot_panic(biosmem_panic_inval_msg);
/* Top-down allocation to avoid unnecessarily filling DMA segments */
addr = biosmem_heap_cur - size;
if ((addr < biosmem_heap_start) || (addr > biosmem_heap_cur))
boot_panic(biosmem_panic_nomem_msg);
biosmem_heap_cur = addr;
return boot_memset((void *)addr, 0, size);
}
phys_addr_t __boot
biosmem_directmap_size(void)
{
if (biosmem_segment_size(VM_PAGE_SEG_DIRECTMAP) != 0)
return biosmem_segment_end(VM_PAGE_SEG_DIRECTMAP);
else if (biosmem_segment_size(VM_PAGE_SEG_DMA32) != 0)
return biosmem_segment_end(VM_PAGE_SEG_DMA32);
else
return biosmem_segment_end(VM_PAGE_SEG_DMA);
}
static const char * __init
biosmem_type_desc(unsigned int type)
{
switch (type) {
case BIOSMEM_TYPE_AVAILABLE:
return "available";
case BIOSMEM_TYPE_RESERVED:
return "reserved";
case BIOSMEM_TYPE_ACPI:
return "ACPI";
case BIOSMEM_TYPE_NVS:
return "ACPI NVS";
case BIOSMEM_TYPE_UNUSABLE:
return "unusable";
default:
return "unknown (reserved)";
}
}
static void __init
biosmem_map_show(void)
{
const struct biosmem_map_entry *entry, *end;
printk("biosmem: physical memory map:\n");
for (entry = biosmem_map, end = entry + biosmem_map_size;
entry < end;
entry++)
printk("biosmem: %018llx:%018llx, %s\n", entry->base_addr,
entry->base_addr + entry->length,
biosmem_type_desc(entry->type));
printk("biosmem: heap: %x-%x\n", biosmem_heap_start, biosmem_heap_end);
}
static void __init
biosmem_load_segment(struct biosmem_segment *seg, uint64_t max_phys_end,
phys_addr_t phys_start, phys_addr_t phys_end,
phys_addr_t avail_start, phys_addr_t avail_end)
{
unsigned int seg_index;
seg_index = seg - biosmem_segments;
if (phys_end > max_phys_end) {
if (max_phys_end <= phys_start) {
printk("biosmem: warning: segment %s physically unreachable, "
"not loaded\n", vm_page_seg_name(seg_index));
return;
}
printk("biosmem: warning: segment %s truncated to %#llx\n",
vm_page_seg_name(seg_index), max_phys_end);
phys_end = max_phys_end;
}
if ((avail_start < phys_start) || (avail_start > phys_end))
avail_start = phys_start;
if ((avail_end < phys_start) || (avail_end > phys_end))
avail_end = phys_end;
seg->avail_start = avail_start;
seg->avail_end = avail_end;
vm_page_load(seg_index, phys_start, phys_end, avail_start, avail_end);
}
void __init
biosmem_setup(void)
{
uint64_t max_phys_end;
struct biosmem_segment *seg;
struct cpu *cpu;
unsigned int i;
biosmem_map_show();
#if notyet
cpu = cpu_current();
max_phys_end = (cpu->phys_addr_width == 0)
? (uint64_t)-1
: (uint64_t)1 << cpu->phys_addr_width;
#else
max_phys_end = (uint64_t)1 << 32;
(void) cpu;
#endif
for (i = 0; i < ARRAY_SIZE(biosmem_segments); i++) {
if (biosmem_segment_size(i) == 0)
break;
seg = &biosmem_segments[i];
biosmem_load_segment(seg, max_phys_end, seg->start, seg->end,
biosmem_heap_start,
biosmem_heap_cur == seg->start
? seg->end: biosmem_heap_cur);
}
}
static void __init
biosmem_free_usable_range(phys_addr_t start, phys_addr_t end)
{
struct vm_page *page;
printk("biosmem: release to vm_page: %llx-%llx (%lluk)\n",
(unsigned long long)start, (unsigned long long)end,
(unsigned long long)((end - start) >> 10));
while (start < end) {
page = vm_page_lookup_pa(start);
assert(page != NULL);
vm_page_manage(page);
start += PAGE_SIZE;
}
}
static void __init
biosmem_free_usable_update_start(phys_addr_t *start, phys_addr_t res_start,
phys_addr_t res_end)
{
if ((*start >= res_start) && (*start < res_end))
*start = res_end;
}
static phys_addr_t __init
biosmem_free_usable_start(phys_addr_t start)
{
const struct biosmem_segment *seg;
unsigned int i;
biosmem_free_usable_update_start(&start, (unsigned long)&_boot,
BOOT_VTOP((unsigned long)&_end));
biosmem_free_usable_update_start(&start, biosmem_heap_start,
biosmem_heap_end);
for (i = 0; i < ARRAY_SIZE(biosmem_segments); i++) {
seg = &biosmem_segments[i];
biosmem_free_usable_update_start(&start, seg->avail_start,
seg->avail_end);
}
return start;
}
static int __init
biosmem_free_usable_reserved(phys_addr_t addr)
{
const struct biosmem_segment *seg;
unsigned int i;
if ((addr >= (unsigned long)&_boot)
&& (addr < BOOT_VTOP((unsigned long)&_end)))
return 1;
if ((addr >= biosmem_heap_start) && (addr < biosmem_heap_end))
return 1;
for (i = 0; i < ARRAY_SIZE(biosmem_segments); i++) {
seg = &biosmem_segments[i];
if ((addr >= seg->avail_start) && (addr < seg->avail_end))
return 1;
}
return 0;
}
static phys_addr_t __init
biosmem_free_usable_end(phys_addr_t start, phys_addr_t entry_end)
{
while (start < entry_end) {
if (biosmem_free_usable_reserved(start))
break;
start += PAGE_SIZE;
}
return start;
}
static void __init
biosmem_free_usable_entry(phys_addr_t start, phys_addr_t end)
{
phys_addr_t entry_end;
entry_end = end;
for (;;) {
start = biosmem_free_usable_start(start);
if (start >= entry_end)
return;
end = biosmem_free_usable_end(start, entry_end);
biosmem_free_usable_range(start, end);
start = end;
}
}
void __init
biosmem_free_usable(void)
{
struct biosmem_map_entry *entry;
uint64_t start, end;
unsigned int i;
for (i = 0; i < biosmem_map_size; i++) {
entry = &biosmem_map[i];
if (entry->type != BIOSMEM_TYPE_AVAILABLE)
continue;
start = vm_page_round(entry->base_addr);
if (start >= VM_PAGE_HIGHMEM_LIMIT)
break;
end = vm_page_trunc(entry->base_addr + entry->length);
if (start < BIOSMEM_BASE)
start = BIOSMEM_BASE;
biosmem_free_usable_entry(start, end);
}
}
|