1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
|
/*
* Mach Operating System
* Copyright (c) 1991,1990 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <stddef.h>
#include <string.h>
#include <mach/std_types.h>
#include <mach/kern_return.h>
#include <mach/thread_status.h>
#include <mach/exec/exec.h>
#include <mach/xen.h>
#include "vm_param.h"
#include <kern/counters.h>
#include <kern/debug.h>
#include <kern/mach_param.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#include <kern/slab.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <i386/thread.h>
#include <i386/proc_reg.h>
#include <i386/seg.h>
#include <i386/user_ldt.h>
#include <i386/fpu.h>
#include "eflags.h"
#include "gdt.h"
#include "ldt.h"
#include "ktss.h"
#include "pcb.h"
#include <machine/tss.h>
#if NCPUS > 1
#include <i386/mp_desc.h>
#endif
extern thread_t Load_context();
extern thread_t Switch_context();
extern void Thread_continue();
extern void user_ldt_free();
struct kmem_cache pcb_cache;
vm_offset_t kernel_stack[NCPUS]; /* top of active_stack */
/*
* stack_attach:
*
* Attach a kernel stack to a thread.
*/
void stack_attach(thread, stack, continuation)
register thread_t thread;
register vm_offset_t stack;
void (*continuation)(thread_t);
{
counter(if (++c_stacks_current > c_stacks_max)
c_stacks_max = c_stacks_current);
thread->kernel_stack = stack;
/*
* We want to run continuation, giving it as an argument
* the return value from Load_context/Switch_context.
* Thread_continue takes care of the mismatch between
* the argument-passing/return-value conventions.
* This function will not return normally,
* so we don`t have to worry about a return address.
*/
STACK_IKS(stack)->k_eip = (int) Thread_continue;
STACK_IKS(stack)->k_ebx = (int) continuation;
STACK_IKS(stack)->k_esp = (int) STACK_IEL(stack);
STACK_IKS(stack)->k_ebp = (int) 0;
/*
* Point top of kernel stack to user`s registers.
*/
STACK_IEL(stack)->saved_state = &thread->pcb->iss;
}
/*
* stack_detach:
*
* Detaches a kernel stack from a thread, returning the old stack.
*/
vm_offset_t stack_detach(thread)
register thread_t thread;
{
register vm_offset_t stack;
counter(if (--c_stacks_current < c_stacks_min)
c_stacks_min = c_stacks_current);
stack = thread->kernel_stack;
thread->kernel_stack = 0;
return stack;
}
#if NCPUS > 1
#define curr_gdt(mycpu) (mp_gdt[mycpu])
#define curr_ktss(mycpu) (mp_ktss[mycpu])
#else
#define curr_gdt(mycpu) ((void)(mycpu), gdt)
#define curr_ktss(mycpu) ((void)(mycpu), (struct task_tss *)&ktss)
#endif
#define gdt_desc_p(mycpu,sel) \
((struct real_descriptor *)&curr_gdt(mycpu)[sel_idx(sel)])
void switch_ktss(pcb)
register pcb_t pcb;
{
int mycpu = cpu_number();
{
vm_offset_t pcb_stack_top;
/*
* Save a pointer to the top of the "kernel" stack -
* actually the place in the PCB where a trap into
* kernel mode will push the registers.
* The location depends on V8086 mode. If we are
* not in V8086 mode, then a trap into the kernel
* won`t save the v86 segments, so we leave room.
*/
pcb_stack_top = (pcb->iss.efl & EFL_VM)
? (int) (&pcb->iss + 1)
: (int) (&pcb->iss.v86_segs);
#ifdef MACH_XEN
/* No IO mask here */
hyp_stack_switch(KERNEL_DS, pcb_stack_top);
#else /* MACH_XEN */
curr_ktss(mycpu)->tss.esp0 = pcb_stack_top;
#endif /* MACH_XEN */
}
{
register user_ldt_t tldt = pcb->ims.ldt;
/*
* Set the thread`s LDT.
*/
if (tldt == 0) {
/*
* Use system LDT.
*/
#ifdef MACH_HYP
hyp_set_ldt(&ldt, LDTSZ);
#else /* MACH_HYP */
set_ldt(KERNEL_LDT);
#endif /* MACH_HYP */
}
else {
/*
* Thread has its own LDT.
*/
#ifdef MACH_HYP
hyp_set_ldt(tldt->ldt,
(tldt->desc.limit_low|(tldt->desc.limit_high<<16)) /
sizeof(struct real_descriptor));
#else /* MACH_HYP */
*gdt_desc_p(mycpu,USER_LDT) = tldt->desc;
set_ldt(USER_LDT);
#endif /* MACH_HYP */
}
}
#ifdef MACH_XEN
{
int i;
for (i=0; i < USER_GDT_SLOTS; i++) {
if (memcmp(gdt_desc_p (mycpu, USER_GDT + (i << 3)),
&pcb->ims.user_gdt[i], sizeof pcb->ims.user_gdt[i])) {
if (hyp_do_update_descriptor(kv_to_ma(gdt_desc_p (mycpu, USER_GDT + (i << 3))),
*(uint64_t *) &pcb->ims.user_gdt[i]))
panic("couldn't set user gdt %d\n",i);
}
}
}
#else /* MACH_XEN */
/* Copy in the per-thread GDT slots. No reloading is necessary
because just restoring the segment registers on the way back to
user mode reloads the shadow registers from the in-memory GDT. */
memcpy (gdt_desc_p (mycpu, USER_GDT),
pcb->ims.user_gdt, sizeof pcb->ims.user_gdt);
#endif /* MACH_XEN */
/*
* Load the floating-point context, if necessary.
*/
fpu_load_context(pcb);
}
/* If NEW_IOPB is not null, the SIZE denotes the number of bytes in
the new bitmap. Expects iopb_lock to be held. */
void
update_ktss_iopb (unsigned char *new_iopb, io_port_t size)
{
struct task_tss *tss = curr_ktss (cpu_number ());
if (new_iopb && size > 0)
{
tss->tss.io_bit_map_offset
= offsetof (struct task_tss, barrier) - size;
memcpy (((char *) tss) + tss->tss.io_bit_map_offset,
new_iopb, size);
}
else
tss->tss.io_bit_map_offset = IOPB_INVAL;
}
/*
* stack_handoff:
*
* Move the current thread's kernel stack to the new thread.
*/
void stack_handoff(old, new)
register thread_t old;
register thread_t new;
{
register int mycpu = cpu_number();
register vm_offset_t stack;
/*
* Save FP registers if in use.
*/
fpu_save_context(old);
/*
* Switch address maps if switching tasks.
*/
{
task_t old_task, new_task;
if ((old_task = old->task) != (new_task = new->task)) {
PMAP_DEACTIVATE_USER(vm_map_pmap(old_task->map),
old, mycpu);
PMAP_ACTIVATE_USER(vm_map_pmap(new_task->map),
new, mycpu);
simple_lock (&new_task->machine.iopb_lock);
#if NCPUS>1
#warning SMP support missing (avoid races with io_perm_modify).
#else
/* This optimization only works on a single processor
machine, where old_task's iopb can not change while
we are switching. */
if (old_task->machine.iopb || new_task->machine.iopb)
#endif
update_ktss_iopb (new_task->machine.iopb,
new_task->machine.iopb_size);
simple_unlock (&new_task->machine.iopb_lock);
}
}
/*
* Load the rest of the user state for the new thread
*/
switch_ktss(new->pcb);
/*
* Switch to new thread
*/
stack = current_stack();
old->kernel_stack = 0;
new->kernel_stack = stack;
active_threads[mycpu] = new;
/*
* Switch exception link to point to new
* user registers.
*/
STACK_IEL(stack)->saved_state = &new->pcb->iss;
}
/*
* Switch to the first thread on a CPU.
*/
void load_context(new)
register thread_t new;
{
switch_ktss(new->pcb);
Load_context(new);
}
/*
* Switch to a new thread.
* Save the old thread`s kernel state or continuation,
* and return it.
*/
thread_t switch_context(old, continuation, new)
register thread_t old;
void (*continuation)();
register thread_t new;
{
/*
* Save FP registers if in use.
*/
fpu_save_context(old);
/*
* Switch address maps if switching tasks.
*/
{
task_t old_task, new_task;
int mycpu = cpu_number();
if ((old_task = old->task) != (new_task = new->task)) {
PMAP_DEACTIVATE_USER(vm_map_pmap(old_task->map),
old, mycpu);
PMAP_ACTIVATE_USER(vm_map_pmap(new_task->map),
new, mycpu);
simple_lock (&new_task->machine.iopb_lock);
#if NCPUS>1
#warning SMP support missing (avoid races with io_perm_modify).
#else
/* This optimization only works on a single processor
machine, where old_task's iopb can not change while
we are switching. */
if (old_task->machine.iopb || new_task->machine.iopb)
#endif
update_ktss_iopb (new_task->machine.iopb,
new_task->machine.iopb_size);
simple_unlock (&new_task->machine.iopb_lock);
}
}
/*
* Load the rest of the user state for the new thread
*/
switch_ktss(new->pcb);
return Switch_context(old, continuation, new);
}
void pcb_module_init()
{
kmem_cache_init(&pcb_cache, "pcb", sizeof(struct pcb), 0,
NULL, NULL, NULL, 0);
fpu_module_init();
}
void pcb_init(thread)
register thread_t thread;
{
register pcb_t pcb;
pcb = (pcb_t) kmem_cache_alloc(&pcb_cache);
if (pcb == 0)
panic("pcb_init");
counter(if (++c_threads_current > c_threads_max)
c_threads_max = c_threads_current);
/*
* We can't let random values leak out to the user.
*/
memset(pcb, 0, sizeof *pcb);
simple_lock_init(&pcb->lock);
/*
* Guarantee that the bootstrapped thread will be in user
* mode.
*/
pcb->iss.cs = USER_CS;
pcb->iss.ss = USER_DS;
pcb->iss.ds = USER_DS;
pcb->iss.es = USER_DS;
pcb->iss.fs = USER_DS;
pcb->iss.gs = USER_DS;
pcb->iss.efl = EFL_USER_SET;
thread->pcb = pcb;
}
void pcb_terminate(thread)
register thread_t thread;
{
register pcb_t pcb = thread->pcb;
counter(if (--c_threads_current < c_threads_min)
c_threads_min = c_threads_current);
if (pcb->ims.ifps != 0)
fp_free(pcb->ims.ifps);
if (pcb->ims.ldt != 0)
user_ldt_free(pcb->ims.ldt);
kmem_cache_free(&pcb_cache, (vm_offset_t) pcb);
thread->pcb = 0;
}
/*
* pcb_collect:
*
* Attempt to free excess pcb memory.
*/
void pcb_collect(thread)
thread_t thread;
{
}
/*
* thread_setstatus:
*
* Set the status of the specified thread.
*/
kern_return_t thread_setstatus(thread, flavor, tstate, count)
thread_t thread;
int flavor;
thread_state_t tstate;
unsigned int count;
{
switch (flavor) {
case i386_THREAD_STATE:
case i386_REGS_SEGS_STATE:
{
register struct i386_thread_state *state;
register struct i386_saved_state *saved_state;
if (count < i386_THREAD_STATE_COUNT) {
return(KERN_INVALID_ARGUMENT);
}
state = (struct i386_thread_state *) tstate;
if (flavor == i386_REGS_SEGS_STATE) {
/*
* Code and stack selectors must not be null,
* and must have user protection levels.
* Only the low 16 bits are valid.
*/
state->cs &= 0xffff;
state->ss &= 0xffff;
state->ds &= 0xffff;
state->es &= 0xffff;
state->fs &= 0xffff;
state->gs &= 0xffff;
if (state->cs == 0 || (state->cs & SEL_PL) != SEL_PL_U
|| state->ss == 0 || (state->ss & SEL_PL) != SEL_PL_U)
return KERN_INVALID_ARGUMENT;
}
saved_state = USER_REGS(thread);
/*
* General registers
*/
saved_state->edi = state->edi;
saved_state->esi = state->esi;
saved_state->ebp = state->ebp;
saved_state->uesp = state->uesp;
saved_state->ebx = state->ebx;
saved_state->edx = state->edx;
saved_state->ecx = state->ecx;
saved_state->eax = state->eax;
saved_state->eip = state->eip;
saved_state->efl = (state->efl & ~EFL_USER_CLEAR)
| EFL_USER_SET;
/*
* Segment registers. Set differently in V8086 mode.
*/
if (state->efl & EFL_VM) {
/*
* Set V8086 mode segment registers.
*/
saved_state->cs = state->cs & 0xffff;
saved_state->ss = state->ss & 0xffff;
saved_state->v86_segs.v86_ds = state->ds & 0xffff;
saved_state->v86_segs.v86_es = state->es & 0xffff;
saved_state->v86_segs.v86_fs = state->fs & 0xffff;
saved_state->v86_segs.v86_gs = state->gs & 0xffff;
/*
* Zero protected mode segment registers.
*/
saved_state->ds = 0;
saved_state->es = 0;
saved_state->fs = 0;
saved_state->gs = 0;
if (thread->pcb->ims.v86s.int_table) {
/*
* Hardware assist on.
*/
thread->pcb->ims.v86s.flags =
state->efl & (EFL_TF | EFL_IF);
}
}
else if (flavor == i386_THREAD_STATE) {
/*
* 386 mode. Set segment registers for flat
* 32-bit address space.
*/
saved_state->cs = USER_CS;
saved_state->ss = USER_DS;
saved_state->ds = USER_DS;
saved_state->es = USER_DS;
saved_state->fs = USER_DS;
saved_state->gs = USER_DS;
}
else {
/*
* User setting segment registers.
* Code and stack selectors have already been
* checked. Others will be reset by 'iret'
* if they are not valid.
*/
saved_state->cs = state->cs;
saved_state->ss = state->ss;
saved_state->ds = state->ds;
saved_state->es = state->es;
saved_state->fs = state->fs;
saved_state->gs = state->gs;
}
break;
}
case i386_FLOAT_STATE: {
if (count < i386_FLOAT_STATE_COUNT)
return(KERN_INVALID_ARGUMENT);
return fpu_set_state(thread,
(struct i386_float_state *) tstate);
}
/*
* Temporary - replace by i386_io_map
*/
case i386_ISA_PORT_MAP_STATE: {
//register struct i386_isa_port_map_state *state;
if (count < i386_ISA_PORT_MAP_STATE_COUNT)
return(KERN_INVALID_ARGUMENT);
#if 0
/*
* If the thread has no ktss yet,
* we must allocate one.
*/
state = (struct i386_isa_port_map_state *) tstate;
tss = thread->pcb->ims.io_tss;
if (tss == 0) {
tss = iopb_create();
thread->pcb->ims.io_tss = tss;
}
memcpy(tss->bitmap,
state->pm,
sizeof state->pm);
#endif
break;
}
case i386_V86_ASSIST_STATE:
{
register struct i386_v86_assist_state *state;
vm_offset_t int_table;
int int_count;
if (count < i386_V86_ASSIST_STATE_COUNT)
return KERN_INVALID_ARGUMENT;
state = (struct i386_v86_assist_state *) tstate;
int_table = state->int_table;
int_count = state->int_count;
if (int_table >= VM_MAX_ADDRESS ||
int_table +
int_count * sizeof(struct v86_interrupt_table)
> VM_MAX_ADDRESS)
return KERN_INVALID_ARGUMENT;
thread->pcb->ims.v86s.int_table = int_table;
thread->pcb->ims.v86s.int_count = int_count;
thread->pcb->ims.v86s.flags =
USER_REGS(thread)->efl & (EFL_TF | EFL_IF);
break;
}
default:
return(KERN_INVALID_ARGUMENT);
}
return(KERN_SUCCESS);
}
/*
* thread_getstatus:
*
* Get the status of the specified thread.
*/
kern_return_t thread_getstatus(thread, flavor, tstate, count)
register thread_t thread;
int flavor;
thread_state_t tstate; /* pointer to OUT array */
unsigned int *count; /* IN/OUT */
{
switch (flavor) {
case THREAD_STATE_FLAVOR_LIST:
if (*count < 4)
return (KERN_INVALID_ARGUMENT);
tstate[0] = i386_THREAD_STATE;
tstate[1] = i386_FLOAT_STATE;
tstate[2] = i386_ISA_PORT_MAP_STATE;
tstate[3] = i386_V86_ASSIST_STATE;
*count = 4;
break;
case i386_THREAD_STATE:
case i386_REGS_SEGS_STATE:
{
register struct i386_thread_state *state;
register struct i386_saved_state *saved_state;
if (*count < i386_THREAD_STATE_COUNT)
return(KERN_INVALID_ARGUMENT);
state = (struct i386_thread_state *) tstate;
saved_state = USER_REGS(thread);
/*
* General registers.
*/
state->edi = saved_state->edi;
state->esi = saved_state->esi;
state->ebp = saved_state->ebp;
state->ebx = saved_state->ebx;
state->edx = saved_state->edx;
state->ecx = saved_state->ecx;
state->eax = saved_state->eax;
state->eip = saved_state->eip;
state->efl = saved_state->efl;
state->uesp = saved_state->uesp;
state->cs = saved_state->cs;
state->ss = saved_state->ss;
if (saved_state->efl & EFL_VM) {
/*
* V8086 mode.
*/
state->ds = saved_state->v86_segs.v86_ds & 0xffff;
state->es = saved_state->v86_segs.v86_es & 0xffff;
state->fs = saved_state->v86_segs.v86_fs & 0xffff;
state->gs = saved_state->v86_segs.v86_gs & 0xffff;
if (thread->pcb->ims.v86s.int_table) {
/*
* Hardware assist on
*/
if ((thread->pcb->ims.v86s.flags &
(EFL_IF|V86_IF_PENDING))
== 0)
state->efl &= ~EFL_IF;
}
}
else {
/*
* 386 mode.
*/
state->ds = saved_state->ds & 0xffff;
state->es = saved_state->es & 0xffff;
state->fs = saved_state->fs & 0xffff;
state->gs = saved_state->gs & 0xffff;
}
*count = i386_THREAD_STATE_COUNT;
break;
}
case i386_FLOAT_STATE: {
if (*count < i386_FLOAT_STATE_COUNT)
return(KERN_INVALID_ARGUMENT);
*count = i386_FLOAT_STATE_COUNT;
return fpu_get_state(thread,
(struct i386_float_state *)tstate);
}
/*
* Temporary - replace by i386_io_map
*/
case i386_ISA_PORT_MAP_STATE: {
register struct i386_isa_port_map_state *state;
if (*count < i386_ISA_PORT_MAP_STATE_COUNT)
return(KERN_INVALID_ARGUMENT);
state = (struct i386_isa_port_map_state *) tstate;
simple_lock (&thread->task->machine.iopb_lock);
if (thread->task->machine.iopb == 0)
memset (state->pm, 0xff, sizeof state->pm);
else
memcpy((char *) state->pm,
(char *) thread->task->machine.iopb,
sizeof state->pm);
simple_unlock (&thread->task->machine.iopb_lock);
*count = i386_ISA_PORT_MAP_STATE_COUNT;
break;
}
case i386_V86_ASSIST_STATE:
{
register struct i386_v86_assist_state *state;
if (*count < i386_V86_ASSIST_STATE_COUNT)
return KERN_INVALID_ARGUMENT;
state = (struct i386_v86_assist_state *) tstate;
state->int_table = thread->pcb->ims.v86s.int_table;
state->int_count = thread->pcb->ims.v86s.int_count;
*count = i386_V86_ASSIST_STATE_COUNT;
break;
}
default:
return(KERN_INVALID_ARGUMENT);
}
return(KERN_SUCCESS);
}
/*
* Alter the thread`s state so that a following thread_exception_return
* will make the thread return 'retval' from a syscall.
*/
void
thread_set_syscall_return(thread, retval)
thread_t thread;
kern_return_t retval;
{
thread->pcb->iss.eax = retval;
}
/*
* Return prefered address of user stack.
* Always returns low address. If stack grows up,
* the stack grows away from this address;
* if stack grows down, the stack grows towards this
* address.
*/
vm_offset_t
user_stack_low(stack_size)
vm_size_t stack_size;
{
return (VM_MAX_ADDRESS - stack_size);
}
/*
* Allocate argument area and set registers for first user thread.
*/
vm_offset_t
set_user_regs(stack_base, stack_size, exec_info, arg_size)
vm_offset_t stack_base; /* low address */
vm_offset_t stack_size;
struct exec_info *exec_info;
vm_size_t arg_size;
{
vm_offset_t arg_addr;
register struct i386_saved_state *saved_state;
arg_size = (arg_size + sizeof(int) - 1) & ~(sizeof(int)-1);
arg_addr = stack_base + stack_size - arg_size;
saved_state = USER_REGS(current_thread());
saved_state->uesp = (int)arg_addr;
saved_state->eip = exec_info->entry;
return (arg_addr);
}
|