summaryrefslogtreecommitdiff
path: root/device/net_io.c
blob: 52a07163900877f5dc9e473d47170650b76f81b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
 /* 
 * Mach Operating System
 * Copyright (c) 1993-1989 Carnegie Mellon University
 * All Rights Reserved.
 * 
 * Permission to use, copy, modify and distribute this software and its
 * documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 * 
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 * 
 * Carnegie Mellon requests users of this software to return to
 * 
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 * 
 * any improvements or extensions that they make and grant Carnegie Mellon
 * the rights to redistribute these changes.
 */
/*
 *	Author: David B. Golub, Carnegie Mellon University
 *	Date: 	3/98
 *
 *	Network IO.
 *
 *	Packet filter code taken from vaxif/enet.c written		 
 *		CMU and Stanford. 
 */

/*
 *	Note:  don't depend on anything in this file.
 *	It may change a lot real soon.	-cmaeda 11 June 1993
 */

#include <sys/types.h>
#include <string.h>

#include <device/net_status.h>
#include <machine/machspl.h>		/* spl definitions */
#include <device/net_io.h>
#include <device/if_hdr.h>
#include <device/io_req.h>
#include <device/ds_routines.h>

#include <mach/boolean.h>
#include <mach/vm_param.h>

#include <ipc/ipc_port.h>
#include <ipc/ipc_kmsg.h>
#include <ipc/ipc_mqueue.h>

#include <kern/counters.h>
#include <kern/debug.h>
#include <kern/lock.h>
#include <kern/printf.h>
#include <kern/queue.h>
#include <kern/sched_prim.h>
#include <kern/slab.h>
#include <kern/thread.h>

#include <machine/machspl.h>

#if	MACH_TTD
#include <ttd/ttd_stub.h>
#endif	/* MACH_TTD */

#if	MACH_TTD
int kttd_async_counter= 0;
#endif	/* MACH_TTD */


/*
 *	Packet Buffer Management
 *
 *	This module manages a private pool of kmsg buffers.
 */

/*
 * List of net kmsgs queued to be sent to users.
 * Messages can be high priority or low priority.
 * The network thread processes high priority messages first.
 */
decl_simple_lock_data(,net_queue_lock)
boolean_t	net_thread_awake = FALSE;
struct ipc_kmsg_queue	net_queue_high;
int		net_queue_high_size = 0;
int		net_queue_high_max = 0;		/* for debugging */
struct ipc_kmsg_queue	net_queue_low;
int		net_queue_low_size = 0;
int		net_queue_low_max = 0;		/* for debugging */

/*
 * List of net kmsgs that can be touched at interrupt level.
 * If it is empty, we will also steal low priority messages.
 */
decl_simple_lock_data(,net_queue_free_lock)
struct ipc_kmsg_queue	net_queue_free;
int		net_queue_free_size = 0;	/* on free list */
int		net_queue_free_max = 0;		/* for debugging */

/*
 * This value is critical to network performance.
 * At least this many buffers should be sitting in net_queue_free.
 * If this is set too small, we will drop network packets.
 * Even a low drop rate (<1%) can cause severe network throughput problems.
 * We add one to net_queue_free_min for every filter.
 */
int		net_queue_free_min = 3;

int		net_queue_free_hits = 0;	/* for debugging */
int		net_queue_free_steals = 0;	/* for debugging */
int		net_queue_free_misses = 0;	/* for debugging */

int		net_kmsg_send_high_hits = 0;	/* for debugging */
int		net_kmsg_send_low_hits = 0;	/* for debugging */
int		net_kmsg_send_high_misses = 0;	/* for debugging */
int		net_kmsg_send_low_misses = 0;	/* for debugging */

int		net_thread_awaken = 0;		/* for debugging */
int		net_ast_taken = 0;		/* for debugging */

decl_simple_lock_data(,net_kmsg_total_lock)
int		net_kmsg_total = 0;		/* total allocated */
int		net_kmsg_max;			/* initialized below */

vm_size_t	net_kmsg_size;			/* initialized below */

/*
 *	We want more buffers when there aren't enough in the free queue
 *	and the low priority queue.  However, we don't want to allocate
 *	more than net_kmsg_max.
 */

#define net_kmsg_want_more()		\
	(((net_queue_free_size + net_queue_low_size) < net_queue_free_min) && \
	 (net_kmsg_total < net_kmsg_max))

ipc_kmsg_t
net_kmsg_get(void)
{
	register ipc_kmsg_t kmsg;
	spl_t s;

	/*
	 *	First check the list of free buffers.
	 */
	s = splimp();
	simple_lock(&net_queue_free_lock);
	kmsg = ipc_kmsg_queue_first(&net_queue_free);
	if (kmsg != IKM_NULL) {
	    ipc_kmsg_rmqueue_first_macro(&net_queue_free, kmsg);
	    net_queue_free_size--;
	    net_queue_free_hits++;
	}
	simple_unlock(&net_queue_free_lock);

	if (kmsg == IKM_NULL) {
	    /*
	     *	Try to steal from the low priority queue.
	     */
	    simple_lock(&net_queue_lock);
	    kmsg = ipc_kmsg_queue_first(&net_queue_low);
	    if (kmsg != IKM_NULL) {
		ipc_kmsg_rmqueue_first_macro(&net_queue_low, kmsg);
		net_queue_low_size--;
		net_queue_free_steals++;
	    }
	    simple_unlock(&net_queue_lock);
	}

	if (kmsg == IKM_NULL)
	    net_queue_free_misses++;
	(void) splx(s);

	if (net_kmsg_want_more() || (kmsg == IKM_NULL)) {
	    boolean_t awake;

	    s = splimp();
	    simple_lock(&net_queue_lock);
	    awake = net_thread_awake;
	    net_thread_awake = TRUE;
	    simple_unlock(&net_queue_lock);
	    (void) splx(s);

	    if (!awake)
		thread_wakeup((event_t) &net_thread_awake);
	}

	return kmsg;
}

void
net_kmsg_put(register ipc_kmsg_t kmsg)
{
	spl_t s;

	s = splimp();
	simple_lock(&net_queue_free_lock);
	ipc_kmsg_enqueue_macro(&net_queue_free, kmsg);
	if (++net_queue_free_size > net_queue_free_max)
	    net_queue_free_max = net_queue_free_size;
	simple_unlock(&net_queue_free_lock);
	(void) splx(s);
}

void
net_kmsg_collect(void)
{
	register ipc_kmsg_t kmsg;
	spl_t s;

	s = splimp();
	simple_lock(&net_queue_free_lock);
	while (net_queue_free_size > net_queue_free_min) {
	    kmsg = ipc_kmsg_dequeue(&net_queue_free);
	    net_queue_free_size--;
	    simple_unlock(&net_queue_free_lock);
	    (void) splx(s);

	    net_kmsg_free(kmsg);
	    simple_lock(&net_kmsg_total_lock);
	    net_kmsg_total--;
	    simple_unlock(&net_kmsg_total_lock);

	    s = splimp();
	    simple_lock(&net_queue_free_lock);
	}
	simple_unlock(&net_queue_free_lock);
	(void) splx(s);
}

void
net_kmsg_more(void)
{
	register ipc_kmsg_t kmsg;

	/*
	 * Replenish net kmsg pool if low.  We don't have the locks
	 * necessary to look at these variables, but that's OK because
	 * misread values aren't critical.  The danger in this code is
	 * that while we allocate buffers, interrupts are happening
	 * which take buffers out of the free list.  If we are not
	 * careful, we will sit in the loop and allocate a zillion
	 * buffers while a burst of packets arrives.  So we count
	 * buffers in the low priority queue as available, because
	 * net_kmsg_get will make use of them, and we cap the total
	 * number of buffers we are willing to allocate.
	 */

	while (net_kmsg_want_more()) {
	    simple_lock(&net_kmsg_total_lock);
	    net_kmsg_total++;
	    simple_unlock(&net_kmsg_total_lock);
	    kmsg = net_kmsg_alloc();
	    net_kmsg_put(kmsg);
	}
}

/*
 *	Packet Filter Data Structures
 *
 *	Each network interface has a set of packet filters
 *	that are run on incoming packets.
 *
 *	Each packet filter may represent a single network
 *	session or multiple network sessions.  For example,
 *	all application level TCP sessions would be represented
 *	by a single packet filter data structure.
 *	
 *	If a packet filter has a single session, we use a
 *	struct net_rcv_port to represent it.  If the packet
 *	filter represents multiple sessions, we use a 
 *	struct net_hash_header to represent it.
 */

/*
 * Each interface has a write port and a set of read ports.
 * Each read port has one or more filters to determine what packets
 * should go to that port.
 */

/*
 * Receive port for net, with packet filter.
 * This data structure by itself represents a packet
 * filter for a single session.
 */
struct net_rcv_port {
	queue_chain_t	input;		/* list of input open_descriptors */
	queue_chain_t	output;		/* list of output open_descriptors */
	ipc_port_t	rcv_port;	/* port to send packet to */
	int		rcv_qlimit;	/* port's qlimit */
	int		rcv_count;	/* number of packets received */
	int		priority;	/* priority for filter */
	filter_t	*filter_end;	/* pointer to end of filter */
	filter_t	filter[NET_MAX_FILTER];
					/* filter operations */
};
typedef struct net_rcv_port *net_rcv_port_t;

struct kmem_cache	net_rcv_cache;	/* cache of net_rcv_port structs */


#define NET_HASH_SIZE   256
#define N_NET_HASH      4
#define N_NET_HASH_KEYS 4

unsigned int bpf_hash (int, unsigned int *);

/*
 * A single hash entry.
 */
struct net_hash_entry {
	queue_chain_t   chain;	        /* list of entries with same hval */
#define he_next chain.next
#define he_prev chain.prev
	ipc_port_t      rcv_port;	/* destination port */
	int             rcv_qlimit;	/* qlimit for the port */
	unsigned int	keys[N_NET_HASH_KEYS];
};
typedef struct net_hash_entry *net_hash_entry_t;

struct kmem_cache	net_hash_entry_cache;

/*
 * This structure represents a packet filter with multiple sessions.
 *
 * For example, all application level TCP sessions might be
 * represented by one of these structures.  It looks like a 
 * net_rcv_port struct so that both types can live on the
 * same packet filter queues.
 */
struct net_hash_header {
	struct net_rcv_port rcv;
        int n_keys;			/* zero if not used */
        int ref_count;			/* reference count */
        net_hash_entry_t table[NET_HASH_SIZE];
} filter_hash_header[N_NET_HASH];

typedef struct net_hash_header *net_hash_header_t;

decl_simple_lock_data(,net_hash_header_lock)

#define HASH_ITERATE(head, elt) (elt) = (net_hash_entry_t) (head); do {
#define HASH_ITERATE_END(head, elt) \
	(elt) = (net_hash_entry_t) queue_next((queue_entry_t) (elt));	   \
	} while ((elt) != (head));


#define FILTER_ITERATE(if_port_list, fp, nextfp, chain)	\
	for ((fp) = (net_rcv_port_t) queue_first(if_port_list);	\
	     !queue_end(if_port_list, (queue_entry_t)(fp));	\
	     (fp) = (nextfp)) {					\
		(nextfp) = (net_rcv_port_t) queue_next(chain);
#define FILTER_ITERATE_END }

/* entry_p must be net_rcv_port_t or net_hash_entry_t */
#define ENQUEUE_DEAD(dead, entry_p, chain) {			\
	queue_next(&(entry_p)->chain) = (queue_entry_t) (dead);	\
	(dead) = (queue_entry_t)(entry_p);			\
}

extern boolean_t net_do_filter();	/* CSPF */
extern int bpf_do_filter();		/* BPF */

int hash_ent_remove (
   struct ifnet *ifp,
   net_hash_header_t hp,
   int used,
   net_hash_entry_t *head, 
	net_hash_entry_t entp,
   queue_entry_t *dead_p);

void net_free_dead_infp (queue_entry_t dead_infp);
void net_free_dead_entp (queue_entry_t dead_entp);

int bpf_validate(
    bpf_insn_t f,
    int bytes,
    bpf_insn_t *match);

int bpf_eq (
    bpf_insn_t f1,
	bpf_insn_t f2,
    register int bytes);

int net_add_q_info (ipc_port_t rcv_port);

int bpf_match (
   net_hash_header_t hash,
   int n_keys,
   unsigned int *keys,
   net_hash_entry_t **hash_headpp,
      net_hash_entry_t *entpp);


/*
 *	ethernet_priority:
 *
 *	This function properly belongs in the ethernet interfaces;
 *	it should not be called by this module.  (We get packet
 *	priorities as an argument to net_filter.)  It is here
 *	to avoid massive code duplication.
 *
 *	Returns TRUE for high-priority packets.
 */

boolean_t ethernet_priority(kmsg)
	ipc_kmsg_t kmsg;
{
	register unsigned char *addr =
		(unsigned char *) net_kmsg(kmsg)->header;

	/*
	 *	A simplistic check for broadcast packets.
	 */

	if ((addr[0] == 0xff) && (addr[1] == 0xff) &&
	    (addr[2] == 0xff) && (addr[3] == 0xff) &&
	    (addr[4] == 0xff) && (addr[5] == 0xff))
	    return FALSE;
	else
	    return TRUE;
}

mach_msg_type_t header_type = {
	MACH_MSG_TYPE_BYTE,
	8,
	NET_HDW_HDR_MAX,
	TRUE,
	FALSE,
	FALSE,
	0
};

mach_msg_type_t packet_type = {
	MACH_MSG_TYPE_BYTE,	/* name */
	8,			/* size */
	0,			/* number */
	TRUE,			/* inline */
	FALSE,			/* longform */
	FALSE			/* deallocate */
};

/*
 *	net_deliver:
 *
 *	Called and returns holding net_queue_lock, at splimp.
 *	Dequeues a message and delivers it at spl0.
 *	Returns FALSE if no messages.
 */
boolean_t net_deliver(nonblocking)
	boolean_t nonblocking;
{
	register ipc_kmsg_t kmsg;
	boolean_t high_priority;
	struct ipc_kmsg_queue send_list;

	/*
	 * Pick up a pending network message and deliver it.
	 * Deliver high priority messages before low priority.
	 */

	if ((kmsg = ipc_kmsg_dequeue(&net_queue_high)) != IKM_NULL) {
	    net_queue_high_size--;
	    high_priority = TRUE;
	} else if ((kmsg = ipc_kmsg_dequeue(&net_queue_low)) != IKM_NULL) {
	    net_queue_low_size--;
	    high_priority = FALSE;
	} else
	    return FALSE;
	simple_unlock(&net_queue_lock);
	(void) spl0();

	/*
	 * Run the packet through the filters,
	 * getting back a queue of packets to send.
	 */
	net_filter(kmsg, &send_list);

	if (!nonblocking) {
	    /*
	     * There is a danger of running out of available buffers
	     * because they all get moved into the high priority queue
	     * or a port queue.  In particular, we might need to
	     * allocate more buffers as we pull (previously available)
	     * buffers out of the low priority queue.  But we can only
	     * allocate if we are allowed to block.
	     */
	    net_kmsg_more();
	}

	while ((kmsg = ipc_kmsg_dequeue(&send_list)) != IKM_NULL) {
	    int count;

	    /*
	     * Fill in the rest of the kmsg.
	     */
	    count = net_kmsg(kmsg)->net_rcv_msg_packet_count;

	    ikm_init_special(kmsg, IKM_SIZE_NETWORK);

	    kmsg->ikm_header.msgh_bits =
		    MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, 0);
	    /* remember message sizes must be rounded up */
	    kmsg->ikm_header.msgh_size =
		    (((mach_msg_size_t) (sizeof(struct net_rcv_msg)
					- NET_RCV_MAX + count)) + 3) &~ 3;
	    kmsg->ikm_header.msgh_local_port = MACH_PORT_NULL;
	    kmsg->ikm_header.msgh_kind = MACH_MSGH_KIND_NORMAL;
	    kmsg->ikm_header.msgh_id = NET_RCV_MSG_ID;

	    net_kmsg(kmsg)->header_type = header_type;
	    net_kmsg(kmsg)->packet_type = packet_type;
	    net_kmsg(kmsg)->net_rcv_msg_packet_count = count;

	    /*
	     * Send the packet to the destination port.  Drop it
	     * if the destination port is over its backlog.
	     */

	    if (ipc_mqueue_send(kmsg, MACH_SEND_TIMEOUT, 0) ==
						    MACH_MSG_SUCCESS) {
		if (high_priority)
		    net_kmsg_send_high_hits++;
		else
		    net_kmsg_send_low_hits++;
		/* the receiver is responsible for the message now */
	    } else {
		if (high_priority)
		    net_kmsg_send_high_misses++;
		else
		    net_kmsg_send_low_misses++;
		ipc_kmsg_destroy(kmsg);
	    }
	}

	(void) splimp();
	simple_lock(&net_queue_lock);
	return TRUE;
}

/*
 *	We want to deliver packets using ASTs, so we can avoid the
 *	thread_wakeup/thread_block needed to get to the network
 *	thread.  However, we can't allocate memory in the AST handler,
 *	because memory allocation might block.  Hence we have the
 *	network thread to allocate memory.  The network thread also
 *	delivers packets, so it can be allocating and delivering for a
 *	burst.  net_thread_awake is protected by net_queue_lock
 *	(instead of net_queue_free_lock) so that net_packet and
 *	net_ast can safely determine if the network thread is running.
 *	This prevents a race that might leave a packet sitting without
 *	being delivered.  It is possible for net_kmsg_get to think
 *	the network thread is awake, and so avoid a wakeup, and then
 *	have the network thread sleep without allocating.  The next
 *	net_kmsg_get will do a wakeup.
 */

void net_ast()
{
	spl_t s;

	net_ast_taken++;

	/*
	 *	If the network thread is awake, then we would
	 *	rather deliver messages from it, because
	 *	it can also allocate memory.
	 */

	s = splimp();
	simple_lock(&net_queue_lock);
	while (!net_thread_awake && net_deliver(TRUE))
		continue;

	/*
	 *	Prevent an unnecessary AST.  Either the network
	 *	thread will deliver the messages, or there are
	 *	no messages left to deliver.
	 */

	simple_unlock(&net_queue_lock);
	(void) splsched();
	ast_off(cpu_number(), AST_NETWORK);
	(void) splx(s);
}

void net_thread_continue()
{
	for (;;) {
		spl_t s;

		net_thread_awaken++;

		/*
		 *	First get more buffers.
		 */
		net_kmsg_more();

		s = splimp();
		simple_lock(&net_queue_lock);
		while (net_deliver(FALSE))
			continue;

		net_thread_awake = FALSE;
		assert_wait(&net_thread_awake, FALSE);
		simple_unlock(&net_queue_lock);
		(void) splx(s);
		counter(c_net_thread_block++);
		thread_block(net_thread_continue);
	}
}

void net_thread()
{
	spl_t s;

	/*
	 *	We should be very high priority.
	 */

	thread_set_own_priority(0);

	/*
	 *	We sleep initially, so that we don't allocate any buffers
	 *	unless the network is really in use and they are needed.
	 */

	s = splimp();
	simple_lock(&net_queue_lock);
	net_thread_awake = FALSE;
	assert_wait(&net_thread_awake, FALSE);
	simple_unlock(&net_queue_lock);
	(void) splx(s);
	counter(c_net_thread_block++);
	thread_block(net_thread_continue);
	net_thread_continue();
	/*NOTREACHED*/
}

void
reorder_queue(first, last)
	register queue_t	first, last;
{
	register queue_entry_t	prev, next;

	prev = first->prev;
	next = last->next;

	prev->next = last;
	next->prev = first;

	last->prev = prev;
	last->next = first;

	first->next = next;
	first->prev = last;
}

/*
 * Incoming packet.  Header has already been moved to proper place.
 * We are already at splimp.
 */
void
net_packet(ifp, kmsg, count, priority)
	register struct ifnet	*ifp;
	register ipc_kmsg_t	kmsg;
	unsigned int		count;
	boolean_t		priority;
{
	boolean_t awake;

#if	MACH_TTD
	/*
	 * Do a quick check to see if it is a kernel TTD packet.
	 *
	 * Only check if KernelTTD is enabled, ie. the current
	 * device driver supports TTD, and the bootp succeded.
	 */
	if (kttd_enabled && kttd_handle_async(kmsg)) {
		/* 
		 * Packet was a valid ttd packet and
		 * doesn't need to be passed up to filter.
		 * The ttd code put the used kmsg buffer
		 * back onto the free list.
		 */
		if (kttd_debug)
			printf("**%x**", kttd_async_counter++);
		return;
	}
#endif	/* MACH_TTD */

	kmsg->ikm_header.msgh_remote_port = (mach_port_t) ifp;
	net_kmsg(kmsg)->net_rcv_msg_packet_count = count;

	simple_lock(&net_queue_lock);
	if (priority) {
	    ipc_kmsg_enqueue(&net_queue_high, kmsg);
	    if (++net_queue_high_size > net_queue_high_max)
		net_queue_high_max = net_queue_high_size;
	} else {
	    ipc_kmsg_enqueue(&net_queue_low, kmsg);
	    if (++net_queue_low_size > net_queue_low_max)
		net_queue_low_max = net_queue_low_size;
	}
	/*
	 *	If the network thread is awake, then we don't
	 *	need to take an AST, because the thread will
	 *	deliver the packet.
	 */
	awake = net_thread_awake;
	simple_unlock(&net_queue_lock);

	if (!awake) {
	    spl_t s = splsched();
	    ast_on(cpu_number(), AST_NETWORK);
	    (void) splx(s);
	}
}

int net_filter_queue_reorder = 0; /* non-zero to enable reordering */

/*
 * Run a packet through the filters, returning a list of messages.
 * We are *not* called at interrupt level.
 */
void
net_filter(kmsg, send_list)
	register ipc_kmsg_t	kmsg;
	ipc_kmsg_queue_t	send_list;
{
	register struct ifnet	*ifp;
	register net_rcv_port_t	infp, nextfp;
	register ipc_kmsg_t	new_kmsg;

 	net_hash_entry_t	entp, *hash_headp;
 	ipc_port_t		dest;
 	queue_entry_t		dead_infp = (queue_entry_t) 0;
 	queue_entry_t		dead_entp = (queue_entry_t) 0;
 	unsigned int		ret_count;

	queue_head_t *if_port_list;

	int count = net_kmsg(kmsg)->net_rcv_msg_packet_count;
	ifp = (struct ifnet *) kmsg->ikm_header.msgh_remote_port;
	ipc_kmsg_queue_init(send_list);

	if (net_kmsg(kmsg)->sent)
	    if_port_list = &ifp->if_snd_port_list;
	else
	    if_port_list = &ifp->if_rcv_port_list;

	/*
	 * Unfortunately we can't allocate or deallocate memory
	 * while holding these locks. And we can't drop the locks
	 * while examining the filter lists.
	 * Both locks are hold in case a filter is removed from both
	 * queues.
	 */
	simple_lock(&ifp->if_rcv_port_list_lock);
	simple_lock(&ifp->if_snd_port_list_lock);
	FILTER_ITERATE(if_port_list, infp, nextfp,
		       net_kmsg(kmsg)->sent ? &infp->output : &infp->input)
	{
 	    entp = (net_hash_entry_t) 0;
 	    if ((infp->filter[0] & NETF_TYPE_MASK) == NETF_BPF) {
 		ret_count = bpf_do_filter(infp, net_kmsg(kmsg)->packet
					  + sizeof(struct packet_header),
					  count - sizeof(struct packet_header),
					  net_kmsg(kmsg)->header,
					  ifp->if_header_size, &hash_headp,
					  &entp);
		if (entp == (net_hash_entry_t) 0)
		  dest = infp->rcv_port;
		else
		  dest = entp->rcv_port;
		if (ret_count)
		  ret_count += sizeof(struct packet_header);
 	    } else {
 		ret_count = net_do_filter(infp, net_kmsg(kmsg)->packet, count,
 					  net_kmsg(kmsg)->header);
 		if (ret_count)
 		    ret_count = count;
 		dest = infp->rcv_port;
 	    }		    

 	    if (ret_count) {

		/*
		 * Make a send right for the destination.
		 */

 		dest = ipc_port_copy_send(dest);
		if (!IP_VALID(dest)) {
		    /*
		     * This filter is dead.  We remove it from the
		     * filter list and set it aside for deallocation.
		     */

 		    if (entp == (net_hash_entry_t) 0) {
			if (infp->filter[0] & NETF_IN)
			    queue_remove(&ifp->if_rcv_port_list, infp,
					 net_rcv_port_t, input);
			if (infp->filter[0] & NETF_OUT)
			    queue_remove(&ifp->if_snd_port_list, infp,
					 net_rcv_port_t, output);

			/* Use input only for queues of dead filters. */
 			ENQUEUE_DEAD(dead_infp, infp, input);
 			continue;
 		    } else {
 			hash_ent_remove (ifp,
 					 (net_hash_header_t)infp,
 					 FALSE,		/* no longer used */
 					 hash_headp,
 					 entp,
 					 &dead_entp);
 			continue;
 		    }
		}

		/*
		 * Deliver copy of packet to this channel.
		 */
		if (ipc_kmsg_queue_empty(send_list)) {
		    /*
		     * Only receiver, so far
		     */
		    new_kmsg = kmsg;
		} else {
		    /*
		     * Other receivers - must allocate message and copy.
		     */
		    new_kmsg = net_kmsg_get();
		    if (new_kmsg == IKM_NULL) {
			ipc_port_release_send(dest);
			break;
		    }

		    memcpy(
			net_kmsg(new_kmsg)->packet,
			net_kmsg(kmsg)->packet,
			ret_count);
		    memcpy(
			net_kmsg(new_kmsg)->header,
			net_kmsg(kmsg)->header,
			NET_HDW_HDR_MAX);
		}
 		net_kmsg(new_kmsg)->net_rcv_msg_packet_count = ret_count;
		new_kmsg->ikm_header.msgh_remote_port = (mach_port_t) dest;
		ipc_kmsg_enqueue(send_list, new_kmsg);

	    {
		register net_rcv_port_t prevfp;
		int rcount = ++infp->rcv_count;

		/*
		 * See if ordering of filters is wrong
		 */
		if (infp->priority >= NET_HI_PRI) {
#define REORDER_PRIO(chain)						\
		    prevfp = (net_rcv_port_t) queue_prev(&infp->chain);	\
		    /*							\
		     * If infp is not the first element on the queue,	\
		     * and the previous element is at equal priority	\
		     * but has a lower count, then promote infp to	\
		     * be in front of prevfp.				\
		     */							\
		    if ((queue_t)prevfp != if_port_list &&		\
			infp->priority == prevfp->priority) {		\
			/*						\
			 * Threshold difference to prevent thrashing	\
			 */						\
			if (net_filter_queue_reorder			\
			    && (100 + prevfp->rcv_count < rcount))	\
			    reorder_queue(&prevfp->chain, &infp->chain);\
		    }

		    REORDER_PRIO(input);
		    REORDER_PRIO(output);

		    /*
		     * High-priority filter -> no more deliveries
		     */
		    break;
		}
	    }
	    }
	}
	FILTER_ITERATE_END
	simple_unlock(&ifp->if_snd_port_list_lock);
	simple_unlock(&ifp->if_rcv_port_list_lock);

	/*
	 * Deallocate dead filters.
	 */
 	if (dead_infp != 0)
 		net_free_dead_infp(dead_infp);
 	if (dead_entp != 0)
 		net_free_dead_entp(dead_entp);

	if (ipc_kmsg_queue_empty(send_list)) {
	    /* Not sent - recycle */
	    net_kmsg_put(kmsg);
	}
}

boolean_t
net_do_filter(infp, data, data_count, header)
	net_rcv_port_t	infp;
	char *		data;
	unsigned int	data_count;
	char *		header;
{
	int		stack[NET_FILTER_STACK_DEPTH+1];
	register int	*sp;
	register filter_t	*fp, *fpe;
	register unsigned int	op, arg;

	/*
	 * The filter accesses the header and data
	 * as unsigned short words.
	 */
	data_count /= sizeof(unsigned short);

#define	data_word	((unsigned short *)data)
#define	header_word	((unsigned short *)header)

	sp = &stack[NET_FILTER_STACK_DEPTH];
	fp = &infp->filter[1]; /* filter[0] used for flags */
	fpe = infp->filter_end;

	*sp = TRUE;

	while (fp < fpe) {
	    arg = *fp++;
	    op = NETF_OP(arg);
	    arg = NETF_ARG(arg);

	    switch (arg) {
		case NETF_NOPUSH:
		    arg = *sp++;
		    break;
		case NETF_PUSHZERO:
		    arg = 0;
		    break;
		case NETF_PUSHLIT:
		    arg = *fp++;
		    break;
		case NETF_PUSHIND:
		    arg = *sp++;
		    if (arg >= data_count)
			return FALSE;
		    arg = data_word[arg];
		    break;
		case NETF_PUSHHDRIND:
		    arg = *sp++;
		    if (arg >= NET_HDW_HDR_MAX/sizeof(unsigned short))
			return FALSE;
		    arg = header_word[arg];
		    break;
		default:
		    if (arg >= NETF_PUSHSTK) {
			arg = sp[arg - NETF_PUSHSTK];
		    }
		    else if (arg >= NETF_PUSHHDR) {
			arg = header_word[arg - NETF_PUSHHDR];
		    }
		    else {
			arg -= NETF_PUSHWORD;
			if (arg >= data_count)
			    return FALSE;
			arg = data_word[arg];
		    }
		    break;

	    }
	    switch (op) {
		case NETF_OP(NETF_NOP):
		    *--sp = arg;
		    break;
		case NETF_OP(NETF_AND):
		    *sp &= arg;
		    break;
		case NETF_OP(NETF_OR):
		    *sp |= arg;
		    break;
		case NETF_OP(NETF_XOR):
		    *sp ^= arg;
		    break;
		case NETF_OP(NETF_EQ):
		    *sp = (*sp == arg);
		    break;
		case NETF_OP(NETF_NEQ):
		    *sp = (*sp != arg);
		    break;
		case NETF_OP(NETF_LT):
		    *sp = (*sp < arg);
		    break;
		case NETF_OP(NETF_LE):
		    *sp = (*sp <= arg);
		    break;
		case NETF_OP(NETF_GT):
		    *sp = (*sp > arg);
		    break;
		case NETF_OP(NETF_GE):
		    *sp = (*sp >= arg);
		    break;
		case NETF_OP(NETF_COR):
		    if (*sp++ == arg)
			return (TRUE);
		    break;
		case NETF_OP(NETF_CAND):
		    if (*sp++ != arg)
			return (FALSE);
		    break;
		case NETF_OP(NETF_CNOR):
		    if (*sp++ == arg)
			return (FALSE);
		    break;
		case NETF_OP(NETF_CNAND):
		    if (*sp++ != arg)
			return (TRUE);
		    break;
		case NETF_OP(NETF_LSH):
		    *sp <<= arg;
		    break;
		case NETF_OP(NETF_RSH):
		    *sp >>= arg;
		    break;
		case NETF_OP(NETF_ADD):
		    *sp += arg;
		    break;
		case NETF_OP(NETF_SUB):
		    *sp -= arg;
		    break;
	    }
	}
	return ((*sp) ? TRUE : FALSE);

#undef	data_word
#undef	header_word
}

/*
 * Check filter for invalid operations or stack over/under-flow.
 */
boolean_t
parse_net_filter(filter, count)
	register filter_t	*filter;
	unsigned int		count;
{
	register int	sp;
	register filter_t	*fpe = &filter[count];
	register filter_t	op, arg;

	/*
	 * count is at least 1, and filter[0] is used for flags.
	 */
	filter++;
	sp = NET_FILTER_STACK_DEPTH;

	for (; filter < fpe; filter++) {
	    op = NETF_OP(*filter);
	    arg = NETF_ARG(*filter);

	    switch (arg) {
		case NETF_NOPUSH:
		    break;
		case NETF_PUSHZERO:
		    sp--;
		    break;
		case NETF_PUSHLIT:
		    filter++;
		    if (filter >= fpe)
			return (FALSE);	/* literal value not in filter */
		    sp--;
		    break;
		case NETF_PUSHIND:
		case NETF_PUSHHDRIND:
		    break;
		default:
		    if (arg >= NETF_PUSHSTK) {
			if (arg - NETF_PUSHSTK + sp > NET_FILTER_STACK_DEPTH)
			    return FALSE;
		    }
		    else if (arg >= NETF_PUSHHDR) {
			if (arg - NETF_PUSHHDR >=
				NET_HDW_HDR_MAX/sizeof(unsigned short))
			    return FALSE;
		    }
		    /* else... cannot check for packet bounds
				without packet */
		    sp--;
		    break;
	    }
	    if (sp < 2) {
		return (FALSE);	/* stack overflow */
	    }
	    if (op == NETF_OP(NETF_NOP))
		continue;

	    /*
	     * all non-NOP operators are binary.
	     */
	    if (sp > NET_MAX_FILTER-2)
		return (FALSE);

	    sp++;
	    switch (op) {
		case NETF_OP(NETF_AND):
		case NETF_OP(NETF_OR):
		case NETF_OP(NETF_XOR):
		case NETF_OP(NETF_EQ):
		case NETF_OP(NETF_NEQ):
		case NETF_OP(NETF_LT):
		case NETF_OP(NETF_LE):
		case NETF_OP(NETF_GT):
		case NETF_OP(NETF_GE):
		case NETF_OP(NETF_COR):
		case NETF_OP(NETF_CAND):
		case NETF_OP(NETF_CNOR):
		case NETF_OP(NETF_CNAND):
		case NETF_OP(NETF_LSH):
		case NETF_OP(NETF_RSH):
		case NETF_OP(NETF_ADD):
		case NETF_OP(NETF_SUB):
		    break;
		default:
		    return (FALSE);
	    }
	}
	return (TRUE);
}

/*
 * Set a filter for a network interface.
 *
 * We are given a naked send right for the rcv_port.
 * If we are successful, we must consume that right.
 */
io_return_t
net_set_filter(ifp, rcv_port, priority, filter, filter_count)
	struct ifnet	*ifp;
	ipc_port_t	rcv_port;
	int		priority;
	filter_t	*filter;
	unsigned int	filter_count;
{
    int				filter_bytes;
    bpf_insn_t			match;
    register net_rcv_port_t	infp, my_infp;
    net_rcv_port_t		nextfp;
    net_hash_header_t		hhp;
    register net_hash_entry_t	entp, hash_entp;
    net_hash_entry_t		*head, nextentp;
    queue_entry_t		dead_infp, dead_entp;
    int				i;
    int				ret, is_new_infp;
    io_return_t			rval;
    boolean_t			in, out;

    /*
     * Check the filter syntax.
     */

    filter_bytes = CSPF_BYTES(filter_count);
    match = (bpf_insn_t) 0;

    if (filter_count == 0) {
	return (D_INVALID_OPERATION);
    } else if (!((filter[0] & NETF_IN) || (filter[0] & NETF_OUT))) {
	return (D_INVALID_OPERATION); /* NETF_IN or NETF_OUT required */
    } else if ((filter[0] & NETF_TYPE_MASK) == NETF_BPF) {
	ret = bpf_validate((bpf_insn_t)filter, filter_bytes, &match);
	if (!ret)
	    return (D_INVALID_OPERATION);
    } else if ((filter[0] & NETF_TYPE_MASK) == 0) {
	if (!parse_net_filter(filter, filter_count))
	    return (D_INVALID_OPERATION);
    } else {
	return (D_INVALID_OPERATION);
    }

    rval = D_SUCCESS;			/* default return value */
    dead_infp = dead_entp = 0;

    if (match == (bpf_insn_t) 0) {
        /*
	 * If there is no match instruction, we allocate
	 * a normal packet filter structure.
	 */
	my_infp = (net_rcv_port_t) kmem_cache_alloc(&net_rcv_cache);
	my_infp->rcv_port = rcv_port;
	is_new_infp = TRUE;
    } else {
        /*
	 * If there is a match instruction, we assume there will be
	 * multiple sessions with a common substructure and allocate
	 * a hash table to deal with them.
	 */
	my_infp = 0;
	hash_entp = (net_hash_entry_t) kmem_cache_alloc(&net_hash_entry_cache);
	is_new_infp = FALSE;
    }    

    /*
     * Look for an existing filter on the same reply port.
     * Look for filters with dead ports (for GC).
     * Look for a filter with the same code except KEY insns.
     */
    void check_filter_list(queue_head_t *if_port_list)
    {
	FILTER_ITERATE(if_port_list, infp, nextfp,
                       (if_port_list == &ifp->if_rcv_port_list)
                       ? &infp->input : &infp->output)
	{
	    if (infp->rcv_port == MACH_PORT_NULL) {
		if (match != 0
		    && infp->priority == priority
		    && my_infp == 0
		    && (infp->filter_end - infp->filter) == filter_count
		    && bpf_eq((bpf_insn_t)infp->filter,
			      (bpf_insn_t)filter, filter_bytes))
		    my_infp = infp;

		for (i = 0; i < NET_HASH_SIZE; i++) {
		    head = &((net_hash_header_t) infp)->table[i];
		    if (*head == 0)
			continue;

		    /*
		     * Check each hash entry to make sure the
		     * destination port is still valid.  Remove
		     * any invalid entries.
		     */
		    entp = *head;
		    do {
			nextentp = (net_hash_entry_t) entp->he_next;
  
			/* checked without 
			   ip_lock(entp->rcv_port) */
			if (entp->rcv_port == rcv_port
			    || !IP_VALID(entp->rcv_port)
			    || !ip_active(entp->rcv_port)) {
			    ret = hash_ent_remove (ifp,
				(net_hash_header_t)infp,
				(my_infp == infp),
				head,
				entp,
				&dead_entp);
			    if (ret)
				goto hash_loop_end;
			}
			
			entp = nextentp;
		    /* While test checks head since hash_ent_remove
		       might modify it.
		     */
		    } while (*head != 0 && entp != *head);
		}

		hash_loop_end:
		    ;
	    } else if (infp->rcv_port == rcv_port
		       || !IP_VALID(infp->rcv_port)
		       || !ip_active(infp->rcv_port)) {

		    /* Remove the old filter from lists */
		    if (infp->filter[0] & NETF_IN)
			queue_remove(&ifp->if_rcv_port_list, infp,
				     net_rcv_port_t, input);
		    if (infp->filter[0] & NETF_OUT)
			queue_remove(&ifp->if_snd_port_list, infp,
				     net_rcv_port_t, output);

		    ENQUEUE_DEAD(dead_infp, infp, input);
	    }
	}
	FILTER_ITERATE_END
    }

    in = (filter[0] & NETF_IN) != 0;
    out = (filter[0] & NETF_OUT) != 0;

    simple_lock(&ifp->if_rcv_port_list_lock);
    simple_lock(&ifp->if_snd_port_list_lock);

    if (in)
	check_filter_list(&ifp->if_rcv_port_list);
    if (out)
	check_filter_list(&ifp->if_snd_port_list);

    if (my_infp == 0) {
	/* Allocate a dummy infp */
	simple_lock(&net_hash_header_lock);
	for (i = 0; i < N_NET_HASH; i++) {
	    if (filter_hash_header[i].n_keys == 0)
		break;
	}
	if (i == N_NET_HASH) {
	    simple_unlock(&net_hash_header_lock);
	    simple_unlock(&ifp->if_snd_port_list_lock);
	    simple_unlock(&ifp->if_rcv_port_list_lock);

            ipc_port_release_send(rcv_port);
	    if (match != 0)
		    kmem_cache_free(&net_hash_entry_cache,
				    (vm_offset_t)hash_entp);

	    rval = D_NO_MEMORY;
	    goto clean_and_return;
	}

	hhp = &filter_hash_header[i];
	hhp->n_keys = match->jt;
	simple_unlock(&net_hash_header_lock);

	hhp->ref_count = 0;
	for (i = 0; i < NET_HASH_SIZE; i++)
	    hhp->table[i] = 0;

	my_infp = (net_rcv_port_t)hhp;
	my_infp->rcv_port = MACH_PORT_NULL;	/* indication of dummy */
	is_new_infp = TRUE;
    }

    if (is_new_infp) {
	my_infp->priority = priority;
	my_infp->rcv_count = 0;

	/* Copy filter program. */
	memcpy (my_infp->filter, filter, filter_bytes);
	my_infp->filter_end =
	    (filter_t *)((char *)my_infp->filter + filter_bytes);

	if (match == 0) {
	    my_infp->rcv_qlimit = net_add_q_info(rcv_port);
	} else {
	    my_infp->rcv_qlimit = 0;
	}

	/* Insert my_infp according to priority */
	if (in) {
	    queue_iterate(&ifp->if_rcv_port_list, infp, net_rcv_port_t, input)
		if (priority > infp->priority)
		    break;

	    queue_enter(&ifp->if_rcv_port_list, my_infp, net_rcv_port_t, input);
	}

	if (out) {
	    queue_iterate(&ifp->if_snd_port_list, infp, net_rcv_port_t, output)
		if (priority > infp->priority)
		    break;

	    queue_enter(&ifp->if_snd_port_list, my_infp, net_rcv_port_t, output);
	}
    }
    
    if (match != 0)
    {	    /* Insert to hash list */
	net_hash_entry_t *p;
	
	hash_entp->rcv_port = rcv_port;
	for (i = 0; i < match->jt; i++)		/* match->jt is n_keys */
	    hash_entp->keys[i] = match[i+1].k;
	p = &((net_hash_header_t)my_infp)->
			table[bpf_hash(match->jt, hash_entp->keys)];
	
	/* Not checking for the same key values */
	if (*p == 0) {
	    queue_init (&hash_entp->chain);
	    *p = hash_entp;
	} else {
	    enqueue_tail(&(*p)->chain, &hash_entp->chain);
	}

	((net_hash_header_t)my_infp)->ref_count++;
	hash_entp->rcv_qlimit = net_add_q_info(rcv_port);
    }
    
    simple_unlock(&ifp->if_snd_port_list_lock);
    simple_unlock(&ifp->if_rcv_port_list_lock);

clean_and_return:
    /* No locks are held at this point. */

    if (dead_infp != 0)
	    net_free_dead_infp(dead_infp);
    if (dead_entp != 0)
	    net_free_dead_entp(dead_entp);
    
    return (rval);
}

/*
 * Other network operations
 */
io_return_t
net_getstat(ifp, flavor, status, count)
	struct ifnet	*ifp;
	dev_flavor_t	flavor;
	dev_status_t	status;		/* pointer to OUT array */
	natural_t	*count;		/* OUT */
{
	switch (flavor) {
	    case NET_STATUS:
	    {
		register struct net_status *ns = (struct net_status *)status;

		if (*count < NET_STATUS_COUNT)
		    return (D_INVALID_OPERATION);
		
		ns->min_packet_size = ifp->if_header_size;
		ns->max_packet_size = ifp->if_header_size + ifp->if_mtu;
		ns->header_format   = ifp->if_header_format;
		ns->header_size	    = ifp->if_header_size;
		ns->address_size    = ifp->if_address_size;
		ns->flags	    = ifp->if_flags;
		ns->mapped_size	    = 0;

		*count = NET_STATUS_COUNT;
		break;
	    }
	    case NET_ADDRESS:
	    {
		register int	addr_byte_count;
		register int	addr_int_count;
		register int	i;

		addr_byte_count = ifp->if_address_size;
		addr_int_count = (addr_byte_count + (sizeof(int)-1))
					 / sizeof(int);

		if (*count < addr_int_count)
		{
/* XXX debug hack. */
printf ("net_getstat: count: %d, addr_int_count: %d\n",
		*count, addr_int_count);
		    return (D_INVALID_OPERATION);
		}

		memcpy(status, ifp->if_address, addr_byte_count);
		if (addr_byte_count < addr_int_count * sizeof(int))
		    memset((char *)status + addr_byte_count, 0, 
			  (addr_int_count * sizeof(int)
				      - addr_byte_count));

		for (i = 0; i < addr_int_count; i++) {
		    register int word;

		    word = status[i];
		    status[i] = htonl(word);
		}
		*count = addr_int_count;
		break;
	    }
	    default:
		return (D_INVALID_OPERATION);
	}
	return (D_SUCCESS);
}

io_return_t
net_write(ifp, start, ior)
	register struct ifnet *ifp;
	int		(*start)();
	io_req_t	ior;
{
	spl_t	s;
	kern_return_t	rc;
	boolean_t	wait;

	/*
	 * Reject the write if the interface is down.
	 */
	if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
	    return (D_DEVICE_DOWN);

	/*
	 * Reject the write if the packet is too large or too small.
	 */
	if (ior->io_count < ifp->if_header_size ||
	    ior->io_count > ifp->if_header_size + ifp->if_mtu)
	    return (D_INVALID_SIZE);

	/*
	 * Wire down the memory.
	 */

	rc = device_write_get(ior, &wait);
	if (rc != KERN_SUCCESS)
	    return (rc);

	/*
	 *	Network interfaces can't cope with VM continuations.
	 *	If wait is set, just panic.
	*/
	if (wait) {
		panic("net_write: VM continuation");
	}

	/*
	 * Queue the packet on the output queue, and
	 * start the device.
	 */
	s = splimp();
	IF_ENQUEUE(&ifp->if_snd, ior);
	(*start)(ifp->if_unit);
	splx(s);
	
	return (D_IO_QUEUED);
}

/*
 * Initialize the whole package.
 */
void
net_io_init()
{
	register vm_size_t	size;

	size = sizeof(struct net_rcv_port);
	kmem_cache_init(&net_rcv_cache, "net_rcv_port", size, 0,
			NULL, NULL, NULL, 0);

 	size = sizeof(struct net_hash_entry);
	kmem_cache_init(&net_hash_entry_cache, "net_hash_entry", size, 0,
			NULL, NULL, NULL, 0);

	size = ikm_plus_overhead(sizeof(struct net_rcv_msg));
	net_kmsg_size = round_page(size);

	/*
	 *	net_kmsg_max caps the number of buffers
	 *	we are willing to allocate.  By default,
	 *	we allow for net_queue_free_min plus
	 *	the queue limit for each filter.
	 *	(Added as the filters are added.)
	 */

	simple_lock_init(&net_kmsg_total_lock);
	if (net_kmsg_max == 0)
	    net_kmsg_max = net_queue_free_min;

	simple_lock_init(&net_queue_free_lock);
	ipc_kmsg_queue_init(&net_queue_free);

	simple_lock_init(&net_queue_lock);
	ipc_kmsg_queue_init(&net_queue_high);
	ipc_kmsg_queue_init(&net_queue_low);

 	simple_lock_init(&net_hash_header_lock);
}


/* ======== BPF: Berkeley Packet Filter ======== */

/*-
 * Copyright (c) 1990-1991 The Regents of the University of California.
 * All rights reserved.
 *
 * This code is derived from the Stanford/CMU enet packet filter,
 * (net/enet.c) distributed as part of 4.3BSD, and code contributed
 * to Berkeley by Steven McCanne and Van Jacobson both of Lawrence 
 * Berkeley Laboratory.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)bpf.c	7.5 (Berkeley) 7/15/91
 */

#if defined(sparc) || defined(mips) || defined(ibm032) || defined(alpha)
#define BPF_ALIGN
#endif

#ifndef BPF_ALIGN
#define EXTRACT_SHORT(p)	((u_short)ntohs(*(u_short *)p))
#define EXTRACT_LONG(p)		(ntohl(*(u_long *)p))
#else
#define EXTRACT_SHORT(p)\
	((u_short)\
		((u_short)*((u_char *)p+0)<<8|\
		 (u_short)*((u_char *)p+1)<<0))
#define EXTRACT_LONG(p)\
		((u_long)*((u_char *)p+0)<<24|\
		 (u_long)*((u_char *)p+1)<<16|\
		 (u_long)*((u_char *)p+2)<<8|\
		 (u_long)*((u_char *)p+3)<<0)
#endif

/*
 * Execute the filter program starting at pc on the packet p
 * wirelen is the length of the original packet
 * buflen is the amount of data present
 */

int
bpf_do_filter(infp, p, wirelen, header, hlen, hash_headpp, entpp)
	net_rcv_port_t	infp;
	char *		p;		/* packet data */
	unsigned int	wirelen;	/* data_count (in bytes) */
	char *		header;
	unsigned int    hlen;           /* header len (in bytes) */
	net_hash_entry_t	**hash_headpp, *entpp;	/* out */
{
	register bpf_insn_t pc, pc_end;
	register unsigned int buflen;

	register unsigned long A, X;
	register int k;
	long mem[BPF_MEMWORDS];

	/* Generic pointer to either HEADER or P according to the specified offset. */
	char *data = NULL;

	pc = ((bpf_insn_t) infp->filter) + 1;
				/* filter[0].code is (NETF_BPF | flags) */
	pc_end = (bpf_insn_t)infp->filter_end;
	buflen = NET_RCV_MAX;
	*entpp = 0;			/* default */

	A = 0;
	X = 0;

	for (; pc < pc_end; ++pc) {
		switch (pc->code) {

		default:
#ifdef KERNEL
			return 0;
#else
			abort();
#endif			
		case BPF_RET|BPF_K:
			if (infp->rcv_port == MACH_PORT_NULL &&
			    *entpp == 0) {
				return 0;
			}
			return ((u_int)pc->k <= wirelen) ?
						pc->k : wirelen;

		case BPF_RET|BPF_A:
			if (infp->rcv_port == MACH_PORT_NULL &&
			    *entpp == 0) {
				return 0;
			}
			return ((u_int)A <= wirelen) ?
						A : wirelen;

		case BPF_RET|BPF_MATCH_IMM:
			if (bpf_match ((net_hash_header_t)infp, pc->jt, mem,
				       hash_headpp, entpp)) {
				return ((u_int)pc->k <= wirelen) ?
							pc->k : wirelen;
			}
			return 0;

		case BPF_LD|BPF_W|BPF_ABS:
			k = pc->k;

		load_word:
			if ((u_int)k + sizeof(long) <= hlen)
			     data = header;
			else if ((u_int)k + sizeof(long) <= buflen) {
			     k -= hlen;
			     data = p;
			} else
			     return 0;

#ifdef BPF_ALIGN
			if (((int)(data + k) & 3) != 0)
			     A = EXTRACT_LONG(&data[k]);
			else
#endif
			     A = ntohl(*(long *)(data + k));
			continue;

		case BPF_LD|BPF_H|BPF_ABS:
			k = pc->k;

		load_half:
			if ((u_int)k + sizeof(short) <= hlen)
			     data = header;
			else if ((u_int)k + sizeof(short) <= buflen) {
			     k -= hlen;
			     data = p;
			} else
			     return 0;

			A = EXTRACT_SHORT(&data[k]);
			continue;

		case BPF_LD|BPF_B|BPF_ABS:
		        k = pc->k;

		load_byte:
			if ((u_int)k < hlen)
			     data = header;
			else if ((u_int)k < buflen) {
			     data = p;
			     k -= hlen;
			} else
			     return 0;

			A = data[k];
			continue;

		case BPF_LD|BPF_W|BPF_LEN:
			A = wirelen;
			continue;

		case BPF_LDX|BPF_W|BPF_LEN:
			X = wirelen;
			continue;

		case BPF_LD|BPF_W|BPF_IND:
			k = X + pc->k;
			goto load_word;
			
		case BPF_LD|BPF_H|BPF_IND:
			k = X + pc->k;
			goto load_half;

		case BPF_LD|BPF_B|BPF_IND:
			k = X + pc->k;
			goto load_byte;

		case BPF_LDX|BPF_MSH|BPF_B:
			k = pc->k;
			if (k < hlen)
			     data = header;
			else if (k < buflen) {
			     data = p;
			     k -= hlen;
			} else
			     return 0;

			X = (data[k] & 0xf) << 2;
			continue;

		case BPF_LD|BPF_IMM:
			A = pc->k;
			continue;

		case BPF_LDX|BPF_IMM:
			X = pc->k;
			continue;

		case BPF_LD|BPF_MEM:
			A = mem[pc->k];
			continue;
			
		case BPF_LDX|BPF_MEM:
			X = mem[pc->k];
			continue;

		case BPF_ST:
			mem[pc->k] = A;
			continue;

		case BPF_STX:
			mem[pc->k] = X;
			continue;

		case BPF_JMP|BPF_JA:
			pc += pc->k;
			continue;

		case BPF_JMP|BPF_JGT|BPF_K:
			pc += (A > pc->k) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JGE|BPF_K:
			pc += (A >= pc->k) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JEQ|BPF_K:
			pc += (A == pc->k) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JSET|BPF_K:
			pc += (A & pc->k) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JGT|BPF_X:
			pc += (A > X) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JGE|BPF_X:
			pc += (A >= X) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JEQ|BPF_X:
			pc += (A == X) ? pc->jt : pc->jf;
			continue;

		case BPF_JMP|BPF_JSET|BPF_X:
			pc += (A & X) ? pc->jt : pc->jf;
			continue;

		case BPF_ALU|BPF_ADD|BPF_X:
			A += X;
			continue;
			
		case BPF_ALU|BPF_SUB|BPF_X:
			A -= X;
			continue;
			
		case BPF_ALU|BPF_MUL|BPF_X:
			A *= X;
			continue;
			
		case BPF_ALU|BPF_DIV|BPF_X:
			if (X == 0)
				return 0;
			A /= X;
			continue;
			
		case BPF_ALU|BPF_AND|BPF_X:
			A &= X;
			continue;
			
		case BPF_ALU|BPF_OR|BPF_X:
			A |= X;
			continue;

		case BPF_ALU|BPF_LSH|BPF_X:
			A <<= X;
			continue;

		case BPF_ALU|BPF_RSH|BPF_X:
			A >>= X;
			continue;

		case BPF_ALU|BPF_ADD|BPF_K:
			A += pc->k;
			continue;
			
		case BPF_ALU|BPF_SUB|BPF_K:
			A -= pc->k;
			continue;
			
		case BPF_ALU|BPF_MUL|BPF_K:
			A *= pc->k;
			continue;
			
		case BPF_ALU|BPF_DIV|BPF_K:
			A /= pc->k;
			continue;
			
		case BPF_ALU|BPF_AND|BPF_K:
			A &= pc->k;
			continue;
			
		case BPF_ALU|BPF_OR|BPF_K:
			A |= pc->k;
			continue;

		case BPF_ALU|BPF_LSH|BPF_K:
			A <<= pc->k;
			continue;

		case BPF_ALU|BPF_RSH|BPF_K:
			A >>= pc->k;
			continue;

		case BPF_ALU|BPF_NEG:
			A = -A;
			continue;

		case BPF_MISC|BPF_TAX:
			X = A;
			continue;

		case BPF_MISC|BPF_TXA:
			A = X;
			continue;
		}
	}

	return 0;
}

/*
 * Return 1 if the 'f' is a valid filter program without a MATCH
 * instruction. Return 2 if it is a valid filter program with a MATCH
 * instruction. Otherwise, return 0.
 * The constraints are that each jump be forward and to a valid
 * code.  The code must terminate with either an accept or reject. 
 * 'valid' is an array for use by the routine (it must be at least
 * 'len' bytes long).  
 *
 * The kernel needs to be able to verify an application's filter code.
 * Otherwise, a bogus program could easily crash the system.
 */
int
bpf_validate(f, bytes, match)
	bpf_insn_t f;
	int bytes;
	bpf_insn_t *match;
{
	register int i, j, len;
	register bpf_insn_t p;

	len = BPF_BYTES2LEN(bytes);

	/*
	 * f[0].code is already checked to be (NETF_BPF | flags).
	 * So skip f[0].
	 */

	for (i = 1; i < len; ++i) {
		/*
		 * Check that that jumps are forward, and within 
		 * the code block.
		 */
		p = &f[i];
		if (BPF_CLASS(p->code) == BPF_JMP) {
			register int from = i + 1;

			if (BPF_OP(p->code) == BPF_JA) {
				if (from + p->k >= len)
					return 0;
			}
			else if (from + p->jt >= len || from + p->jf >= len)
				return 0;
		}
		/*
		 * Check that memory operations use valid addresses.
		 */
		if ((BPF_CLASS(p->code) == BPF_ST ||
		     (BPF_CLASS(p->code) == BPF_LD && 
		      (p->code & 0xe0) == BPF_MEM)) &&
		    (p->k >= BPF_MEMWORDS || p->k < 0))
			return 0;
		/*
		 * Check for constant division by 0.
		 */
		if (p->code == (BPF_ALU|BPF_DIV|BPF_K) && p->k == 0)
			return 0;
		/*
		 * Check for match instruction.
		 * Only one match instruction per filter is allowed.
		 */
		if (p->code == (BPF_RET|BPF_MATCH_IMM)) {
			if (*match != 0 ||
			    p->jt == 0 ||
			    p->jt > N_NET_HASH_KEYS)
				return 0;
			i += p->jt;		/* skip keys */
			if (i + 1 > len)
				return 0;

			for (j = 1; j <= p->jt; j++) {
			    if (p[j].code != (BPF_MISC|BPF_KEY))
				return 0;
			}

			*match = p;
		}
	}
	if (BPF_CLASS(f[len - 1].code) == BPF_RET)
		return ((*match == 0) ? 1 : 2);
	else
		return 0;
}

int
bpf_eq (f1, f2, bytes)
	register bpf_insn_t f1, f2;
	register int bytes;
{
	register int count;

	count = BPF_BYTES2LEN(bytes);
	for (; count--; f1++, f2++) {
		if (!BPF_INSN_EQ(f1, f2)) {
			if ( f1->code == (BPF_MISC|BPF_KEY) &&
			     f2->code == (BPF_MISC|BPF_KEY) )
				continue;
			return FALSE;
		}
	};
	return TRUE;
}

unsigned int
bpf_hash (n, keys)
	register int n;
	register unsigned int *keys;
{
	register unsigned int hval = 0;
	
	while (n--) {
		hval += *keys++;
	}
	return (hval % NET_HASH_SIZE);
}


int
bpf_match (hash, n_keys, keys, hash_headpp, entpp)
	net_hash_header_t hash;
	register int n_keys;
	register unsigned int *keys;
	net_hash_entry_t **hash_headpp, *entpp;
{
	register net_hash_entry_t head, entp;
	register int i;

	if (n_keys != hash->n_keys)
		return FALSE;

	*hash_headpp = &hash->table[bpf_hash(n_keys, keys)];
	head = **hash_headpp;

	if (head == 0)
		return FALSE;

	HASH_ITERATE (head, entp)
	{
		for (i = 0; i < n_keys; i++) {
			if (keys[i] != entp->keys[i])
				break;
		}
		if (i == n_keys) {
			*entpp = entp;
			return TRUE;
		}
	}
	HASH_ITERATE_END (head, entp)
	return FALSE;
}	


/*
 * Removes a hash entry (ENTP) from its queue (HEAD).
 * If the reference count of filter (HP) becomes zero and not USED,
 * HP is removed from the corresponding port lists and is freed.
 */

int
hash_ent_remove (ifp, hp, used, head, entp, dead_p)
    struct ifnet	*ifp;
    net_hash_header_t 	hp;
    int			used;
    net_hash_entry_t	*head, entp;
    queue_entry_t	*dead_p;
{    
	hp->ref_count--;

	if (*head == entp) {
		if (queue_empty((queue_t) entp)) {
			*head = 0;
			ENQUEUE_DEAD(*dead_p, entp, chain);
			if (hp->ref_count == 0 && !used) {
				if (((net_rcv_port_t)hp)->filter[0] & NETF_IN)
					queue_remove(&ifp->if_rcv_port_list,
						     (net_rcv_port_t)hp,
						     net_rcv_port_t, input);
				if (((net_rcv_port_t)hp)->filter[0] & NETF_OUT)
					queue_remove(&ifp->if_snd_port_list,
						     (net_rcv_port_t)hp,
						     net_rcv_port_t, output);
				hp->n_keys = 0;
				return TRUE;
			}
			return FALSE;
		} else {
			*head = (net_hash_entry_t)queue_next((queue_t) entp);
		}
	}

	remqueue((queue_t)*head, (queue_entry_t)entp);
	ENQUEUE_DEAD(*dead_p, entp, chain);
	return FALSE;
}    

int
net_add_q_info (rcv_port)
	ipc_port_t	rcv_port;
{
	mach_port_msgcount_t qlimit = 0;
	    
	/*
	 * We use a new port, so increase net_queue_free_min
	 * and net_kmsg_max to allow for more queued messages.
	 */
	    
	if (IP_VALID(rcv_port)) {
		ip_lock(rcv_port);
		if (ip_active(rcv_port))
			qlimit = rcv_port->ip_qlimit;
		ip_unlock(rcv_port);
	}
	    
	simple_lock(&net_kmsg_total_lock);
	net_queue_free_min++;
	net_kmsg_max += qlimit + 1;
	simple_unlock(&net_kmsg_total_lock);

	return (int)qlimit;
}

void
net_del_q_info (qlimit)
	int qlimit;
{
	simple_lock(&net_kmsg_total_lock);
	net_queue_free_min--;
	net_kmsg_max -= qlimit + 1;
	simple_unlock(&net_kmsg_total_lock);
}


/*
 * net_free_dead_infp (dead_infp)
 *	queue_entry_t dead_infp;	list of dead net_rcv_port_t.
 *
 * Deallocates dead net_rcv_port_t.
 * No locks should be held when called.
 */
void
net_free_dead_infp (dead_infp)
	queue_entry_t dead_infp;
{
	register net_rcv_port_t infp, nextfp;

	for (infp = (net_rcv_port_t) dead_infp; infp != 0; infp = nextfp)
	{
		nextfp = (net_rcv_port_t) queue_next(&infp->input);
		ipc_port_release_send(infp->rcv_port);
		net_del_q_info(infp->rcv_qlimit);
		kmem_cache_free(&net_rcv_cache, (vm_offset_t) infp);
	}	    
}
    
/*
 * net_free_dead_entp (dead_entp)
 *	queue_entry_t dead_entp;	list of dead net_hash_entry_t.
 *
 * Deallocates dead net_hash_entry_t.
 * No locks should be held when called.
 */
void
net_free_dead_entp (dead_entp)
	queue_entry_t dead_entp;
{
	register net_hash_entry_t entp, nextentp;

	for (entp = (net_hash_entry_t)dead_entp; entp != 0; entp = nextentp)
	{
		nextentp = (net_hash_entry_t) queue_next(&entp->chain);

		ipc_port_release_send(entp->rcv_port);
		net_del_q_info(entp->rcv_qlimit);
		kmem_cache_free(&net_hash_entry_cache, (vm_offset_t) entp);
	}
}