1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
/*
* Mach Operating System
* Copyright (c) 1993-1990 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* Author: David B. Golub, Carnegie Mellon University
* Date: 7/90
*/
#if MACH_KDB
/*
* Commands to run process.
*/
#include <mach/boolean.h>
#include <machine/db_machdep.h>
#include <ddb/db_lex.h>
#include <ddb/db_break.h>
#include <ddb/db_access.h>
#include <ddb/db_run.h>
#include <ddb/db_task_thread.h>
#include <ddb/db_command.h>
#include <ddb/db_examine.h>
#include <ddb/db_output.h>
#include <ddb/db_watch.h>
#include <ddb/db_cond.h>
int db_run_mode;
boolean_t db_sstep_print;
int db_loop_count;
int db_call_depth;
int db_inst_count;
int db_last_inst_count;
int db_load_count;
int db_store_count;
boolean_t
db_stop_at_pc(is_breakpoint, task)
boolean_t *is_breakpoint;
task_t task;
{
db_addr_t pc;
db_thread_breakpoint_t bkpt;
db_clear_task_single_step(DDB_REGS, task);
db_clear_breakpoints();
db_clear_watchpoints();
pc = PC_REGS(DDB_REGS);
#ifdef FIXUP_PC_AFTER_BREAK
if (*is_breakpoint) {
/*
* Breakpoint trap. Fix up the PC if the
* machine requires it.
*/
FIXUP_PC_AFTER_BREAK
pc = PC_REGS(DDB_REGS);
}
#endif /* FIXUP_PC_AFTER_BREAK */
/*
* Now check for a breakpoint at this address.
*/
bkpt = db_find_thread_breakpoint_here(task, pc);
if (bkpt) {
if (db_cond_check(bkpt)) {
*is_breakpoint = TRUE;
return (TRUE); /* stop here */
}
}
*is_breakpoint = FALSE;
if (db_run_mode == STEP_INVISIBLE) {
db_run_mode = STEP_CONTINUE;
return (FALSE); /* continue */
}
if (db_run_mode == STEP_COUNT) {
return (FALSE); /* continue */
}
if (db_run_mode == STEP_ONCE) {
if (--db_loop_count > 0) {
if (db_sstep_print) {
db_print_loc_and_inst(pc, task);
}
return (FALSE); /* continue */
}
}
if (db_run_mode == STEP_RETURN) {
/* WARNING: the following assumes an instruction fits an int */
db_expr_t ins = db_get_task_value(pc, sizeof(int), FALSE, task);
/* continue until matching return */
if (!inst_trap_return(ins) &&
(!inst_return(ins) || --db_call_depth != 0)) {
if (db_sstep_print) {
if (inst_call(ins) || inst_return(ins)) {
int i;
db_printf("[after %6d /%4d] ",
db_inst_count,
db_inst_count - db_last_inst_count);
db_last_inst_count = db_inst_count;
for (i = db_call_depth; --i > 0; )
db_printf(" ");
db_print_loc_and_inst(pc, task);
db_printf("\n");
}
}
if (inst_call(ins))
db_call_depth++;
return (FALSE); /* continue */
}
}
if (db_run_mode == STEP_CALLT) {
/* WARNING: the following assumes an instruction fits an int */
db_expr_t ins = db_get_task_value(pc, sizeof(int), FALSE, task);
/* continue until call or return */
if (!inst_call(ins) &&
!inst_return(ins) &&
!inst_trap_return(ins)) {
return (FALSE); /* continue */
}
}
if (db_find_breakpoint_here(task, pc))
return(FALSE);
db_run_mode = STEP_NONE;
return (TRUE);
}
void
db_restart_at_pc(watchpt, task)
boolean_t watchpt;
task_t task;
{
db_addr_t pc = PC_REGS(DDB_REGS);
if ((db_run_mode == STEP_COUNT) ||
(db_run_mode == STEP_RETURN) ||
(db_run_mode == STEP_CALLT)) {
/*
* We are about to execute this instruction,
* so count it now.
*/
db_get_task_value(pc, sizeof(int), FALSE, task);
db_inst_count++;
db_load_count += inst_load(ins);
db_store_count += inst_store(ins);
#ifdef SOFTWARE_SSTEP
db_addr_t brpc;
/* Account for instructions in delay slots */
brpc = next_instr_address(pc, 1, task);
if ((brpc != pc) && (inst_branch(ins) || inst_call(ins))) {
/* Note: this ~assumes an instruction <= sizeof(int) */
db_get_task_value(brpc, sizeof(int), FALSE, task);
db_inst_count++;
db_load_count += inst_load(ins);
db_store_count += inst_store(ins);
}
#endif /* SOFTWARE_SSTEP */
}
if (db_run_mode == STEP_CONTINUE) {
if (watchpt || db_find_breakpoint_here(task, pc)) {
/*
* Step over breakpoint/watchpoint.
*/
db_run_mode = STEP_INVISIBLE;
db_set_task_single_step(DDB_REGS, task);
} else {
db_set_breakpoints();
db_set_watchpoints();
}
} else {
db_set_task_single_step(DDB_REGS, task);
}
}
void
db_single_step(regs, task)
db_regs_t *regs;
task_t task;
{
if (db_run_mode == STEP_CONTINUE) {
db_run_mode = STEP_INVISIBLE;
db_set_task_single_step(regs, task);
}
}
#ifdef SOFTWARE_SSTEP
/*
* Software implementation of single-stepping.
* If your machine does not have a trace mode
* similar to the vax or sun ones you can use
* this implementation, done for the mips.
* Just define the above conditional and provide
* the functions/macros defined below.
*
* extern boolean_t
* inst_branch(), returns true if the instruction might branch
* extern unsigned
* branch_taken(), return the address the instruction might
* branch to
* db_getreg_val(); return the value of a user register,
* as indicated in the hardware instruction
* encoding, e.g. 8 for r8
*
* next_instr_address(pc,bd,task) returns the address of the first
* instruction following the one at "pc",
* which is either in the taken path of
* the branch (bd==1) or not. This is
* for machines (mips) with branch delays.
*
* A single-step may involve at most 2 breakpoints -
* one for branch-not-taken and one for branch taken.
* If one of these addresses does not already have a breakpoint,
* we allocate a breakpoint and save it here.
* These breakpoints are deleted on return.
*/
db_breakpoint_t db_not_taken_bkpt = 0;
db_breakpoint_t db_taken_bkpt = 0;
db_breakpoint_t __attribute__ ((pure))
db_find_temp_breakpoint(task, addr)
const task_t task;
db_addr_t addr;
{
if (db_taken_bkpt && (db_taken_bkpt->address == addr) &&
db_taken_bkpt->task == task)
return db_taken_bkpt;
if (db_not_taken_bkpt && (db_not_taken_bkpt->address == addr) &&
db_not_taken_bkpt->task == task)
return db_not_taken_bkpt;
return 0;
}
void
db_set_task_single_step(regs, task)
db_regs_t *regs;
task_t task;
{
db_addr_t pc = PC_REGS(regs), brpc;
unsigned int inst;
boolean_t unconditional;
/*
* User was stopped at pc, e.g. the instruction
* at pc was not executed.
*/
inst = db_get_task_value(pc, sizeof(int), FALSE, task);
if (inst_branch(inst) || inst_call(inst)) {
extern db_expr_t getreg_val();
brpc = branch_taken(inst, pc, getreg_val, regs);
if (brpc != pc) { /* self-branches are hopeless */
db_taken_bkpt = db_set_temp_breakpoint(task, brpc);
} else
db_taken_bkpt = 0;
pc = next_instr_address(pc,1,task);
}
/* check if this control flow instruction is an unconditional transfer */
unconditional = inst_unconditional_flow_transfer(inst);
pc = next_instr_address(pc,0,task);
/*
We only set the sequential breakpoint if previous instruction was not
an unconditional change of flow of control. If the previous instruction
is an unconditional change of flow of control, setting a breakpoint in the
next sequential location may set a breakpoint in data or in another routine,
which could screw up either the program or the debugger.
(Consider, for instance, that the next sequential instruction is the
start of a routine needed by the debugger.)
*/
if (!unconditional && db_find_breakpoint_here(task, pc) == 0) {
db_not_taken_bkpt = db_set_temp_breakpoint(task, pc);
}
else
db_not_taken_bkpt = 0;
}
void
db_clear_task_single_step(regs, task)
const db_regs_t *regs;
task_t task;
{
if (db_taken_bkpt != 0) {
db_delete_temp_breakpoint(task, db_taken_bkpt);
db_taken_bkpt = 0;
}
if (db_not_taken_bkpt != 0) {
db_delete_temp_breakpoint(task, db_not_taken_bkpt);
db_not_taken_bkpt = 0;
}
}
#endif /* SOFTWARE_SSTEP */
extern int db_cmd_loop_done;
/* single-step */
/*ARGSUSED*/
void
db_single_step_cmd(addr, have_addr, count, modif)
db_expr_t addr;
int have_addr;
db_expr_t count;
const char * modif;
{
boolean_t print = FALSE;
if (count == -1)
count = 1;
if (modif[0] == 'p')
print = TRUE;
db_run_mode = STEP_ONCE;
db_loop_count = count;
db_sstep_print = print;
db_inst_count = 0;
db_last_inst_count = 0;
db_load_count = 0;
db_store_count = 0;
db_cmd_loop_done = 1;
}
/* trace and print until call/return */
/*ARGSUSED*/
void
db_trace_until_call_cmd(addr, have_addr, count, modif)
db_expr_t addr;
int have_addr;
db_expr_t count;
const char * modif;
{
boolean_t print = FALSE;
if (modif[0] == 'p')
print = TRUE;
db_run_mode = STEP_CALLT;
db_sstep_print = print;
db_inst_count = 0;
db_last_inst_count = 0;
db_load_count = 0;
db_store_count = 0;
db_cmd_loop_done = 1;
}
/*ARGSUSED*/
void
db_trace_until_matching_cmd(addr, have_addr, count, modif)
db_expr_t addr;
int have_addr;
db_expr_t count;
const char * modif;
{
boolean_t print = FALSE;
if (modif[0] == 'p')
print = TRUE;
db_run_mode = STEP_RETURN;
db_call_depth = 1;
db_sstep_print = print;
db_inst_count = 0;
db_last_inst_count = 0;
db_load_count = 0;
db_store_count = 0;
db_cmd_loop_done = 1;
}
/* continue */
/*ARGSUSED*/
void
db_continue_cmd(addr, have_addr, count, modif)
db_expr_t addr;
int have_addr;
db_expr_t count;
const char * modif;
{
if (modif[0] == 'c')
db_run_mode = STEP_COUNT;
else
db_run_mode = STEP_CONTINUE;
db_inst_count = 0;
db_last_inst_count = 0;
db_load_count = 0;
db_store_count = 0;
db_cmd_loop_done = 1;
}
boolean_t
db_in_single_step(void)
{
return(db_run_mode != STEP_NONE && db_run_mode != STEP_CONTINUE);
}
#endif /* MACH_KDB */
|