/*+M************************************************************************* * Adaptec AIC7xxx device driver for Linux. * * Copyright (c) 1994 John Aycock * The University of Calgary Department of Computer Science. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide, * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux, * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual, * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the * ANSI SCSI-2 specification (draft 10c), ... * * -------------------------------------------------------------------------- * * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org): * * Substantially modified to include support for wide and twin bus * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes, * SCB paging, and other rework of the code. * * Parts of this driver were also based on the FreeBSD driver by * Justin T. Gibbs. His copyright follows: * * -------------------------------------------------------------------------- * Copyright (c) 1994-1997 Justin Gibbs. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Where this Software is combined with software released under the terms of * the GNU Public License ("GPL") and the terms of the GPL would require the * combined work to also be released under the terms of the GPL, the terms * and conditions of this License will apply in addition to those of the * GPL with the exception of any terms or conditions of this License that * conflict with, or are expressly prohibited by, the GPL. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $Id: aic7xxx.c,v 1.1.4.1 2004/01/16 22:41:26 roland Exp $ *--------------------------------------------------------------------------- * * Thanks also go to (in alphabetical order) the following: * * Rory Bolt - Sequencer bug fixes * Jay Estabrook - Initial DEC Alpha support * Doug Ledford - Much needed abort/reset bug fixes * Kai Makisara - DMAing of SCBs * * A Boot time option was also added for not resetting the scsi bus. * * Form: aic7xxx=extended * aic7xxx=no_reset * aic7xxx=ultra * aic7xxx=irq_trigger:[0,1] # 0 edge, 1 level * aic7xxx=verbose * * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97 * *-M*************************************************************************/ /*+M************************************************************************** * * Further driver modifications made by Doug Ledford * * Copyright (c) 1997-1998 Doug Ledford * * These changes are released under the same licensing terms as the FreeBSD * driver written by Justin Gibbs. Please see his Copyright notice above * for the exact terms and conditions covering my changes as well as the * warranty statement. * * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include * but are not limited to: * * 1: Import of the latest FreeBSD sequencer code for this driver * 2: Modification of kernel code to accomodate different sequencer semantics * 3: Extensive changes throughout kernel portion of driver to improve * abort/reset processing and error hanndling * 4: Other work contributed by various people on the Internet * 5: Changes to printk information and verbosity selection code * 6: General reliability related changes, especially in IRQ management * 7: Modifications to the default probe/attach order for supported cards * 8: SMP friendliness has been improved * * Overall, this driver represents a significant departure from the official * aic7xxx driver released by Dan Eischen in two ways. First, in the code * itself. A diff between the two version of the driver is now a several * thousand line diff. Second, in approach to solving the same problem. The * problem is importing the FreeBSD aic7xxx driver code to linux can be a * difficult and time consuming process, that also can be error prone. Dan * Eischen's official driver uses the approach that the linux and FreeBSD * drivers should be as identical as possible. To that end, his next version * of this driver will be using a mid-layer code library that he is developing * to moderate communications between the linux mid-level SCSI code and the * low level FreeBSD driver. He intends to be able to essentially drop the * FreeBSD driver into the linux kernel with only a few minor tweaks to some * include files and the like and get things working, making for fast easy * imports of the FreeBSD code into linux. * * I disagree with Dan's approach. Not that I don't think his way of doing * things would be nice, easy to maintain, and create a more uniform driver * between FreeBSD and Linux. I have no objection to those issues. My * disagreement is on the needed functionality. There simply are certain * things that are done differently in FreeBSD than linux that will cause * problems for this driver regardless of any middle ware Dan implements. * The biggest example of this at the moment is interrupt semantics. Linux * doesn't provide the same protection techniques as FreeBSD does, nor can * they be easily implemented in any middle ware code since they would truly * belong in the kernel proper and would effect all drivers. For the time * being, I see issues such as these as major stumbling blocks to the * reliability of code based upon such middle ware. Therefore, I choose to * use a different approach to importing the FreeBSD code that doesn't * involve any middle ware type code. My approach is to import the sequencer * code from FreeBSD wholesale. Then, to only make changes in the kernel * portion of the driver as they are needed for the new sequencer semantics. * In this way, the portion of the driver that speaks to the rest of the * linux kernel is fairly static and can be changed/modified to solve * any problems one might encounter without concern for the FreeBSD driver. * * Note: If time and experience should prove me wrong that the middle ware * code Dan writes is reliable in its operation, then I'll retract my above * statements. But, for those that don't know, I'm from Missouri (in the US) * and our state motto is "The Show-Me State". Well, before I will put * faith into it, you'll have to show me that it works :) * *_M*************************************************************************/ /* * The next three defines are user configurable. These should be the only * defines a user might need to get in here and change. There are other * defines buried deeper in the code, but those really shouldn't need touched * under normal conditions. */ /* * AIC7XXX_FAKE_NEGOTIATION_CMDS * We now have two distinctly different methods of device negotiation * in this code. The two methods are selected by either defining or not * defining this option. The difference is as follows: * * With AIC7XXX_FAKE_NEGOTIATION_CMDS not set (commented out) * When the driver is in need of issuing a negotiation command for any * given device, it will add the negotiation message on to part of a * regular SCSI command for the device. In the process, if the device * is configured for and using tagged queueing, then the code will * also issue that single command as a non-tagged command, attach the * negotiation message to that one command, and use a temporary * queue depth of one to keep the untagged and tagged commands from * overlapping. * Pros: This doesn't use any extra SCB structures, it's simple, it * works most of the time (if not all of the time now), and * since we get the device capability info frmo the INQUIRY data * now, shouldn't cause any problems. * Cons: When we need to send a negotiation command to a device, we * must use a command that is being sent to LUN 0 of the device. * If we try sending one to high LUN numbers, then some devices * get noticeably upset. Since we have to wait for a command with * LUN == 0 to come along, we may not be able to renegotiate when * we want if the user is actually using say LUN 1 of a CD Changer * instead of using LUN 0 for an extended period of time. * * With AIC7XXX_FAKE_NEGOTIATION_CMDS defined * When we need to negotiate with a device, instead of attaching our * negotiation message to an existing command, we insert our own * fictional Scsi_Cmnd into the chain that has the negotiation message * attached to it. We send this one command as untagged regardless * of the device type, and we fiddle with the queue depth the same as * we would with the option unset to avoid overlapping commands. The * primary difference between this and the unset option is that the * negotiation message is no longer attached to a specific command, * instead it is its own command and is merely triggered by a * combination of both A) We need to negotiate and B) The mid level * SCSI code has sent us a command. We still don't do any negotiation * unless there is a valid SCSI command to be processed. * Pros: This fixes the problem above in the Cons section. Since we * issue our own fake command, we can set the LUN to 0 regardless * of what the LUN is in the real command. It also means that if * the device get's nasty over negotiation issues, it won't be * showing up on a regular command, so we won't get any SENSE buffer * data or STATUS_BYTE returns to the mid level code that are caused * by snits in the negotiation code. * Cons: We add more code, and more complexity. This means more ways * in which things could break. It means a larger driver. It means * more resource consumption for the fake commands. However, the * biggest problem is this. Take a system where there is a CD-ROM * on the SCSI bus. Someone has a CD in the CD-ROM and is using it. * For some reason the SCSI bus gets reset. We don't touch the * CD-ROM again for quite a period of time (so we don't renegotiate * after the reset until we do touch the CD-ROM again). In the * time while we aren't using the CD-ROM, the current disc is * removed and a new one put in. When we go to check that disc, we * will first have to renegotiate. In so doing, we issue our fake * SCSI command, which happens to be TEST_UNIT_READY. The CD-ROM * negotiates with us, then responds to our fake command with a * CHECK_CONDITION status. We REQUEST_SENSE from the CD-ROM, it * then sends the SENSE data to our fake command to tell it that * it has been through a disc change. There, now we've cleared out * the SENSE data along with our negotiation command, and when the * real command executes, it won't pick up that the CD was changed. * That's the biggest Con to this approach. In the future, I could * probably code around this problem though, so this option is still * viable. * * So, which command style should you use? I would appreciate it if people * could try out both types. I want to know about any cases where one * method works and the other doesn't. If one method works on significantly * more systems than another, then it will become the default. If the second * option turns out to work best, then I'll find a way to work around that * big con I listed. * * -- July 7, 02:33 * OK...I just added some code that should make the Con listed for the * fake commands a non issue now. However, it needs testing. For now, * I'm going to make the default to use the fake commands, we'll see how * it goes. */ #define AIC7XXX_FAKE_NEGOTIATION_CMDS /* * AIC7XXX_STRICT_PCI_SETUP * Should we assume the PCI config options on our controllers are set with * sane and proper values, or should we be anal about our PCI config * registers and force them to what we want? The main advantage to * defining this option is on non-Intel hardware where the BIOS may not * have been run to set things up, or if you have one of the BIOSless * Adaptec controllers, such as a 2910, that don't get set up by the * BIOS. However, keep in mind that we really do set the most important * items in the driver regardless of this setting, this only controls some * of the more esoteric PCI options on these cards. In that sense, I * would default to leaving this off. However, if people wish to try * things both ways, that would also help me to know if there are some * machines where it works one way but not another. * * -- July 7, 17:09 * OK...I need this on my machine for testing, so the default is to * leave it defined. * * -- July 7, 18:49 * I needed it for testing, but it didn't make any difference, so back * off she goes. * * -- July 16, 23:04 * I turned it back on to try and compensate for the 2.1.x PCI code * which no longer relies solely on the BIOS and now tries to set * things itself. */ #define AIC7XXX_STRICT_PCI_SETUP /* * AIC7XXX_VERBOSE_DEBUGGING * This option enables a lot of extra printk();s in the code, surrounded * by if (aic7xxx_verbose ...) statements. Executing all of those if * statements and the extra checks can get to where it actually does have * an impact on CPU usage and such, as well as code size. Disabling this * define will keep some of those from becoming part of the code. * * NOTE: Currently, this option has no real effect, I will be adding the * various #ifdef's in the code later when I've decided a section is * complete and no longer needs debugging. OK...a lot of things are now * surrounded by this define, so turning this off does have an impact. */ /* * #define AIC7XXX_VERBOSE_DEBUGGING */ #if defined(MODULE) || defined(PCMCIA) #include #endif #if defined(PCMCIA) # undef MODULE #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "sd.h" #include "scsi.h" #include "hosts.h" #include "aic7xxx.h" #include "aic7xxx/sequencer.h" #include "aic7xxx/scsi_message.h" #include "aic7xxx_reg.h" #include #include #include /* for kmalloc() */ #include /* for CONFIG_PCI */ /* * To generate the correct addresses for the controller to issue * on the bus. Originally added for DEC Alpha support. */ #define VIRT_TO_BUS(a) (unsigned int)virt_to_bus((void *)(a)) struct proc_dir_entry proc_scsi_aic7xxx = { PROC_SCSI_AIC7XXX, 7, "aic7xxx", S_IFDIR | S_IRUGO | S_IXUGO, 2, 0, 0, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; #define AIC7XXX_C_VERSION "5.1.13" #define NUMBER(arr) (sizeof(arr) / sizeof(arr[0])) #define MIN(a,b) (((a) < (b)) ? (a) : (b)) #define MAX(a,b) (((a) > (b)) ? (a) : (b)) #define ALL_TARGETS -1 #define ALL_CHANNELS -1 #define ALL_LUNS -1 #define MAX_TARGETS 16 #define MAX_LUNS 8 #ifndef TRUE # define TRUE 1 #endif #ifndef FALSE # define FALSE 0 #endif #ifndef KERNEL_VERSION # define KERNEL_VERSION(x,y,z) (((x)<<16)+((y)<<8)+(z)) #endif /* * We need the bios32.h file if we are kernel version 2.1.92 or less. The * full set of pci_* changes wasn't in place until 2.1.93 */ #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,1,92) # if defined(__sparc_v9__) || defined(__powerpc__) # error "PPC and Sparc platforms are only support under 2.1.92 and above" # endif # include #endif #if defined(__powerpc__) # define MMAPIO # ifdef mb # undef mb # endif # define mb() \ __asm__ __volatile__("eieio" ::: "memory") #elif defined(__i386__) # define MMAPIO # ifdef mb # undef mb # endif # define mb() \ __asm__ __volatile__("lock ; addl $0,0(%%esp)": : :"memory") #elif defined(__alpha__) # ifdef mb # undef mb # endif # define mb() \ __asm__ __volatile__("mb": : :"memory") #endif #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,0) # include # include # define cpuid smp_processor_id() # if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) # define DRIVER_LOCK_INIT \ spin_lock_init(&p->spin_lock); # define DRIVER_LOCK \ if(!p->cpu_lock_count[cpuid]) { \ spin_lock_irqsave(&p->spin_lock, cpu_flags); \ p->cpu_lock_count[cpuid]++; \ } else { \ p->cpu_lock_count[cpuid]++; \ } # define DRIVER_UNLOCK \ if(--p->cpu_lock_count[cpuid] == 0) \ spin_unlock_irqrestore(&p->spin_lock, cpu_flags); # else # define DRIVER_LOCK_INIT # define DRIVER_LOCK # define DRIVER_UNLOCK # endif #else # define cpuid 0 # define DRIVER_LOCK_INIT # define DRIVER_LOCK \ save_flags(cpu_flags); \ cli(); # define DRIVER_UNLOCK \ restore_flags(cpu_flags); # define le32_to_cpu(x) (x) # define cpu_to_le32(x) (x) #endif /* * You can try raising me if tagged queueing is enabled, or lowering * me if you only have 4 SCBs. */ #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE #else #define AIC7XXX_CMDS_PER_DEVICE 8 #endif /* Set this to the delay in seconds after SCSI bus reset. */ #ifdef CONFIG_AIC7XXX_RESET_DELAY #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY #else #define AIC7XXX_RESET_DELAY 5 #endif /* * Control collection of SCSI transfer statistics for the /proc filesystem. * * NOTE: Do NOT enable this when running on kernels version 1.2.x and below. * NOTE: This does affect performance since it has to maintain statistics. */ #ifdef CONFIG_AIC7XXX_PROC_STATS #define AIC7XXX_PROC_STATS #endif /* * NOTE: Uncommenting the define below no longer has any effect, the * tagged queue value array is always active now. I've added * a setup option to set this particular array and I'm hoping * insmod will be smart enough to set it properly as well. It's * by use of this array that a person can enable tagged queueing. * The DEFAULT_TAG_COMMANDS define has been changed to disable * tagged queueing by default, so if your devices can handle tagged * queueing you will need to add a line to their lilo.conf file like: * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" * which will result in the first four devices on the first two * controllers being set to a tagged queue depth of 32. * * Set this for defining the number of tagged commands on a device * by device, and controller by controller basis. The first set * of tagged commands will be used for the first detected aic7xxx * controller, the second set will be used for the second detected * aic7xxx controller, and so on. These values will *only* be used * for targets that are tagged queueing capable; these values will * be ignored in all other cases. The tag_commands is an array of * 16 to allow for wide and twin adapters. Twin adapters will use * indexes 0-7 for channel 0, and indexes 8-15 for channel 1. * * *** Determining commands per LUN *** * * When AIC7XXX_CMDS_PER_DEVICE is not defined, the driver will use its * own algorithm to determine the commands/LUN. If SCB paging is * enabled, which is always now, the default is 8 commands per lun * that indicates it supports tagged queueing. All non-tagged devices * use an internal queue depth of 3, with no more than one of those * three commands active at one time. */ /* #define AIC7XXX_TAGGED_QUEUEING_BY_DEVICE */ typedef struct { unsigned char tag_commands[16]; /* Allow for wide/twin adapters. */ } adapter_tag_info_t; /* * Make a define that will tell the driver not to use tagged queueing * by default. */ #ifdef CONFIG_AIC7XXX_TCQ_ON_BY_DEFAULT #define DEFAULT_TAG_COMMANDS {0, 0, 0, 0, 0, 0, 0, 0,\ 0, 0, 0, 0, 0, 0, 0, 0} #else #define DEFAULT_TAG_COMMANDS {255, 255, 255, 255, 255, 255, 255, 255,\ 255, 255, 255, 255, 255, 255, 255, 255} #endif /* * Modify this as you see fit for your system. By setting tag_commands * to 0, the driver will use it's own algorithm for determining the * number of commands to use (see above). When 255, the driver will * not enable tagged queueing for that particular device. When positive * (> 0) and (< 255) the values in the array are used for the queue_depth. * Note that the maximum value for an entry is 254, but you're insane if * you try to use that many commands on one device. * * In this example, the first line will disable tagged queueing for all * the devices on the first probed aic7xxx adapter. * * The second line enables tagged queueing with 4 commands/LUN for IDs * (1, 2-11, 13-15), disables tagged queueing for ID 12, and tells the * driver to use its own algorithm for ID 1. * * The third line is the same as the first line. * * The fourth line disables tagged queueing for devices 0 and 3. It * enables tagged queueing for the other IDs, with 16 commands/LUN * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for * IDs 2, 5-7, and 9-15. */ /* * NOTE: The below structure is for reference only, the actual structure * to modify in order to change things is located around line * number 1305 adapter_tag_info_t aic7xxx_tag_info[] = { {DEFAULT_TAG_COMMANDS}, {{4, 0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 255, 4, 4, 4}}, {DEFAULT_TAG_COMMANDS}, {{255, 16, 4, 255, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} }; */ static adapter_tag_info_t aic7xxx_tag_info[] = { {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS}, {DEFAULT_TAG_COMMANDS} }; /* * Define an array of board names that can be indexed by aha_type. * Don't forget to change this when changing the types! */ static const char *board_names[] = { "AIC-7xxx Unknown", /* AIC_NONE */ "Adaptec AIC-7810 Hardware RAID Controller", /* AIC_7810 */ "Adaptec AIC-7770 SCSI host adapter", /* AIC_7770 */ "Adaptec AHA-274X SCSI host adapter", /* AIC_7771 */ "Adaptec AHA-284X SCSI host adapter", /* AIC_284x */ "Adaptec AIC-7850 SCSI host adapter", /* AIC_7850 */ "Adaptec AIC-7855 SCSI host adapter", /* AIC_7855 */ "Adaptec AIC-7860 Ultra SCSI host adapter", /* AIC_7860 */ "Adaptec AHA-2940A Ultra SCSI host adapter", /* AIC_7861 */ "Adaptec AIC-7870 SCSI host adapter", /* AIC_7870 */ "Adaptec AHA-294X SCSI host adapter", /* AIC_7871 */ "Adaptec AHA-394X SCSI host adapter", /* AIC_7872 */ "Adaptec AHA-398X SCSI host adapter", /* AIC_7873 */ "Adaptec AHA-2944 SCSI host adapter", /* AIC_7874 */ "Adaptec AIC-7880 Ultra SCSI host adapter", /* AIC_7880 */ "Adaptec AHA-294X Ultra SCSI host adapter", /* AIC_7881 */ "Adaptec AHA-394X Ultra SCSI host adapter", /* AIC_7882 */ "Adaptec AHA-398X Ultra SCSI host adapter", /* AIC_7883 */ "Adaptec AHA-2944 Ultra SCSI host adapter", /* AIC_7884 */ "Adaptec AIC-7895 Ultra SCSI host adapter", /* AIC_7895 */ "Adaptec AIC-7890/1 Ultra2 SCSI host adapter", /* AIC_7890 */ "Adaptec AHA-293X Ultra2 SCSI host adapter", /* AIC_7890 */ "Adaptec AHA-294X Ultra2 SCSI host adapter", /* AIC_7890 */ "Adaptec AIC-7896/7 Ultra2 SCSI host adapter", /* AIC_7896 */ "Adaptec AHA-394X Ultra2 SCSI host adapter", /* AIC_7897 */ "Adaptec AHA-395X Ultra2 SCSI host adapter", /* AIC_7897 */ "Adaptec PCMCIA SCSI controller", /* card bus stuff */ "Adaptec AIC-7892 Ultra 160/m SCSI host adapter", /* AIC_7892 */ "Adaptec AIC-7899 Ultra 160/m SCSI host adapter", /* AIC_7899 */ }; /* * There should be a specific return value for this in scsi.h, but * it seems that most drivers ignore it. */ #define DID_UNDERFLOW DID_ERROR /* * What we want to do is have the higher level scsi driver requeue * the command to us. There is no specific driver status for this * condition, but the higher level scsi driver will requeue the * command on a DID_BUS_BUSY error. * * Upon further inspection and testing, it seems that DID_BUS_BUSY * will *always* retry the command. We can get into an infinite loop * if this happens when we really want some sort of counter that * will automatically abort/reset the command after so many retries. * Using DID_ERROR will do just that. (Made by a suggestion by * Doug Ledford 8/1/96) */ #define DID_RETRY_COMMAND DID_ERROR #define HSCSIID 0x07 #define SCSI_RESET 0x040 /* * EISA/VL-bus stuff */ #define MINSLOT 1 #define MAXSLOT 15 #define SLOTBASE(x) ((x) << 12) #define BASE_TO_SLOT(x) ((x) >> 12) /* * Standard EISA Host ID regs (Offset from slot base) */ #define AHC_HID0 0x80 /* 0,1: msb of ID2, 2-7: ID1 */ #define AHC_HID1 0x81 /* 0-4: ID3, 5-7: LSB ID2 */ #define AHC_HID2 0x82 /* product */ #define AHC_HID3 0x83 /* firmware revision */ /* * AIC-7770 I/O range to reserve for a card */ #define MINREG 0xC00 #define MAXREG 0xCBF #define INTDEF 0x5C /* Interrupt Definition Register */ /* * AIC-78X0 PCI registers */ #define CLASS_PROGIF_REVID 0x08 #define DEVREVID 0x000000FFul #define PROGINFC 0x0000FF00ul #define SUBCLASS 0x00FF0000ul #define BASECLASS 0xFF000000ul #define CSIZE_LATTIME 0x0C #define CACHESIZE 0x0000003Ful /* only 5 bits */ #define LATTIME 0x0000FF00ul #define DEVCONFIG 0x40 #define SCBSIZE32 0x00010000ul /* aic789X only */ #define MPORTMODE 0x00000400ul /* aic7870 only */ #define RAMPSM 0x00000200ul /* aic7870 only */ #define RAMPSM_ULTRA2 0x00000004 #define VOLSENSE 0x00000100ul #define SCBRAMSEL 0x00000080ul #define SCBRAMSEL_ULTRA2 0x00000008 #define MRDCEN 0x00000040ul #define EXTSCBTIME 0x00000020ul /* aic7870 only */ #define EXTSCBPEN 0x00000010ul /* aic7870 only */ #define BERREN 0x00000008ul #define DACEN 0x00000004ul #define STPWLEVEL 0x00000002ul #define DIFACTNEGEN 0x00000001ul /* aic7870 only */ #define SCAMCTL 0x1a /* Ultra2 only */ #define CCSCBBADDR 0xf0 /* aic7895/6/7 */ /* * Define the different types of SEEPROMs on aic7xxx adapters * and make it also represent the address size used in accessing * its registers. The 93C46 chips have 1024 bits organized into * 64 16-bit words, while the 93C56 chips have 2048 bits organized * into 128 16-bit words. The C46 chips use 6 bits to address * each word, while the C56 and C66 (4096 bits) use 8 bits to * address each word. */ typedef enum {C46 = 6, C56_66 = 8} seeprom_chip_type; /* * * Define the format of the SEEPROM registers (16 bits). * */ struct seeprom_config { /* * SCSI ID Configuration Flags */ #define CFXFER 0x0007 /* synchronous transfer rate */ #define CFSYNCH 0x0008 /* enable synchronous transfer */ #define CFDISC 0x0010 /* enable disconnection */ #define CFWIDEB 0x0020 /* wide bus device (wide card) */ #define CFSYNCHISULTRA 0x0040 /* CFSYNC is an ultra offset */ #define CFNEWULTRAFORMAT 0x0080 /* Use the Ultra2 SEEPROM format */ #define CFSTART 0x0100 /* send start unit SCSI command */ #define CFINCBIOS 0x0200 /* include in BIOS scan */ #define CFRNFOUND 0x0400 /* report even if not found */ #define CFMULTILUN 0x0800 /* probe mult luns in BIOS scan */ #define CFWBCACHEYES 0x4000 /* Enable W-Behind Cache on drive */ #define CFWBCACHENC 0xc000 /* Don't change W-Behind Cache */ /* UNUSED 0x3000 */ unsigned short device_flags[16]; /* words 0-15 */ /* * BIOS Control Bits */ #define CFSUPREM 0x0001 /* support all removable drives */ #define CFSUPREMB 0x0002 /* support removable drives for boot only */ #define CFBIOSEN 0x0004 /* BIOS enabled */ /* UNUSED 0x0008 */ #define CFSM2DRV 0x0010 /* support more than two drives */ #define CF284XEXTEND 0x0020 /* extended translation (284x cards) */ /* UNUSED 0x0040 */ #define CFEXTEND 0x0080 /* extended translation enabled */ /* UNUSED 0xFF00 */ unsigned short bios_control; /* word 16 */ /* * Host Adapter Control Bits */ #define CFAUTOTERM 0x0001 /* Perform Auto termination */ #define CFULTRAEN 0x0002 /* Ultra SCSI speed enable (Ultra cards) */ #define CF284XSELTO 0x0003 /* Selection timeout (284x cards) */ #define CF284XFIFO 0x000C /* FIFO Threshold (284x cards) */ #define CFSTERM 0x0004 /* SCSI low byte termination */ #define CFWSTERM 0x0008 /* SCSI high byte termination (wide card) */ #define CFSPARITY 0x0010 /* SCSI parity */ #define CF284XSTERM 0x0020 /* SCSI low byte termination (284x cards) */ #define CFRESETB 0x0040 /* reset SCSI bus at boot */ #define CFBPRIMARY 0x0100 /* Channel B primary on 7895 chipsets */ #define CFSEAUTOTERM 0x0400 /* aic7890 Perform SE Auto Term */ #define CFLVDSTERM 0x0800 /* aic7890 LVD Termination */ /* UNUSED 0xF280 */ unsigned short adapter_control; /* word 17 */ /* * Bus Release, Host Adapter ID */ #define CFSCSIID 0x000F /* host adapter SCSI ID */ /* UNUSED 0x00F0 */ #define CFBRTIME 0xFF00 /* bus release time */ unsigned short brtime_id; /* word 18 */ /* * Maximum targets */ #define CFMAXTARG 0x00FF /* maximum targets */ /* UNUSED 0xFF00 */ unsigned short max_targets; /* word 19 */ unsigned short res_1[11]; /* words 20-30 */ unsigned short checksum; /* word 31 */ }; #define SELBUS_MASK 0x0a #define SELNARROW 0x00 #define SELBUSB 0x08 #define SINGLE_BUS 0x00 #define SCB_TARGET(scb) \ (((scb)->hscb->target_channel_lun & TID) >> 4) #define SCB_LUN(scb) \ ((scb)->hscb->target_channel_lun & LID) #define SCB_IS_SCSIBUS_B(scb) \ (((scb)->hscb->target_channel_lun & SELBUSB) != 0) /* * If an error occurs during a data transfer phase, run the command * to completion - it's easier that way - making a note of the error * condition in this location. This then will modify a DID_OK status * into an appropriate error for the higher-level SCSI code. */ #define aic7xxx_error(cmd) ((cmd)->SCp.Status) /* * Keep track of the targets returned status. */ #define aic7xxx_status(cmd) ((cmd)->SCp.sent_command) /* * The position of the SCSI commands scb within the scb array. */ #define aic7xxx_position(cmd) ((cmd)->SCp.have_data_in) /* * So we can keep track of our host structs */ static struct aic7xxx_host *first_aic7xxx = NULL; /* * As of Linux 2.1, the mid-level SCSI code uses virtual addresses * in the scatter-gather lists. We need to convert the virtual * addresses to physical addresses. */ struct hw_scatterlist { unsigned int address; unsigned int length; }; /* * Maximum number of SG segments these cards can support. */ #define AIC7XXX_MAX_SG 128 /* * The maximum number of SCBs we could have for ANY type * of card. DON'T FORGET TO CHANGE THE SCB MASK IN THE * SEQUENCER CODE IF THIS IS MODIFIED! */ #define AIC7XXX_MAXSCB 255 struct aic7xxx_hwscb { /* ------------ Begin hardware supported fields ---------------- */ /* 0*/ unsigned char control; /* 1*/ unsigned char target_channel_lun; /* 4/1/3 bits */ /* 2*/ unsigned char target_status; /* 3*/ unsigned char SG_segment_count; /* 4*/ unsigned int SG_list_pointer; /* 8*/ unsigned char residual_SG_segment_count; /* 9*/ unsigned char residual_data_count[3]; /*12*/ unsigned int data_pointer; /*16*/ unsigned int data_count; /*20*/ unsigned int SCSI_cmd_pointer; /*24*/ unsigned char SCSI_cmd_length; /*25*/ unsigned char tag; /* Index into our kernel SCB array. * Also used as the tag for tagged I/O */ #define SCB_PIO_TRANSFER_SIZE 26 /* amount we need to upload/download * via PIO to initialize a transaction. */ /*26*/ unsigned char next; /* Used to thread SCBs awaiting selection * or disconnected down in the sequencer. */ /*27*/ unsigned char prev; /*28*/ unsigned int pad; /* * Unused by the kernel, but we require * the padding so that the array of * hardware SCBs is alligned on 32 byte * boundaries so the sequencer can index */ }; typedef enum { SCB_FREE = 0x0000, SCB_WAITINGQ = 0x0002, SCB_ACTIVE = 0x0004, SCB_SENSE = 0x0008, SCB_ABORT = 0x0010, SCB_DEVICE_RESET = 0x0020, SCB_RESET = 0x0040, SCB_RECOVERY_SCB = 0x0080, SCB_WAS_BUSY = 0x0100, SCB_MSGOUT_SENT = 0x0200, SCB_MSGOUT_SDTR = 0x0400, SCB_MSGOUT_WDTR = 0x0800, SCB_MSGOUT_BITS = SCB_MSGOUT_SENT | SCB_MSGOUT_SDTR | SCB_MSGOUT_WDTR, SCB_QUEUED_ABORT = 0x1000, SCB_QUEUED_FOR_DONE = 0x2000 } scb_flag_type; typedef enum { AHC_FNONE = 0x00000000, AHC_PAGESCBS = 0x00000001, AHC_CHANNEL_B_PRIMARY = 0x00000002, AHC_USEDEFAULTS = 0x00000004, AHC_INDIRECT_PAGING = 0x00000008, AHC_CHNLB = 0x00000020, AHC_CHNLC = 0x00000040, AHC_EXTEND_TRANS_A = 0x00000100, AHC_EXTEND_TRANS_B = 0x00000200, AHC_TERM_ENB_A = 0x00000400, AHC_TERM_ENB_SE_LOW = 0x00000400, AHC_TERM_ENB_B = 0x00000800, AHC_TERM_ENB_SE_HIGH = 0x00000800, AHC_HANDLING_REQINITS = 0x00001000, AHC_TARGETMODE = 0x00002000, AHC_NEWEEPROM_FMT = 0x00004000, /* * Here ends the FreeBSD defined flags and here begins the linux defined * flags. NOTE: I did not preserve the old flag name during this change * specifically to force me to evaluate what flags were being used properly * and what flags weren't. This way, I could clean up the flag usage on * a use by use basis. Doug Ledford */ AHC_RESET_DELAY = 0x00080000, AHC_A_SCANNED = 0x00100000, AHC_B_SCANNED = 0x00200000, AHC_MULTI_CHANNEL = 0x00400000, AHC_BIOS_ENABLED = 0x00800000, AHC_SEEPROM_FOUND = 0x01000000, AHC_TERM_ENB_LVD = 0x02000000, AHC_ABORT_PENDING = 0x04000000, AHC_RESET_PENDING = 0x08000000, #define AHC_IN_ISR_BIT 28 AHC_IN_ISR = 0x10000000, AHC_IN_ABORT = 0x20000000, AHC_IN_RESET = 0x40000000, AHC_EXTERNAL_SRAM = 0x80000000 } ahc_flag_type; typedef enum { AHC_NONE = 0x0000, AHC_CHIPID_MASK = 0x00ff, AHC_AIC7770 = 0x0001, AHC_AIC7850 = 0x0002, AHC_AIC7860 = 0x0003, AHC_AIC7870 = 0x0004, AHC_AIC7880 = 0x0005, AHC_AIC7890 = 0x0006, AHC_AIC7895 = 0x0007, AHC_AIC7896 = 0x0008, AHC_AIC7892 = 0x0009, AHC_AIC7899 = 0x000a, AHC_VL = 0x0100, AHC_EISA = 0x0200, AHC_PCI = 0x0400, } ahc_chip; typedef enum { AHC_FENONE = 0x0000, AHC_ULTRA = 0x0001, AHC_ULTRA2 = 0x0002, AHC_WIDE = 0x0004, AHC_TWIN = 0x0008, AHC_MORE_SRAM = 0x0010, AHC_CMD_CHAN = 0x0020, AHC_QUEUE_REGS = 0x0040, AHC_SG_PRELOAD = 0x0080, AHC_SPIOCAP = 0x0100, AHC_ULTRA160 = 0x0200, AHC_AIC7770_FE = AHC_FENONE, AHC_AIC7850_FE = AHC_SPIOCAP, AHC_AIC7860_FE = AHC_ULTRA|AHC_SPIOCAP, AHC_AIC7870_FE = AHC_FENONE, AHC_AIC7880_FE = AHC_ULTRA, AHC_AIC7890_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA2| AHC_QUEUE_REGS|AHC_SG_PRELOAD, AHC_AIC7895_FE = AHC_MORE_SRAM|AHC_CMD_CHAN|AHC_ULTRA, AHC_AIC7896_FE = AHC_AIC7890_FE, AHC_AIC7892_FE = AHC_AIC7890_FE|AHC_ULTRA160, AHC_AIC7899_FE = AHC_AIC7890_FE|AHC_ULTRA160, } ahc_feature; struct aic7xxx_scb { struct aic7xxx_hwscb *hscb; /* corresponding hardware scb */ Scsi_Cmnd *cmd; /* Scsi_Cmnd for this scb */ struct aic7xxx_scb *q_next; /* next scb in queue */ volatile scb_flag_type flags; /* current state of scb */ struct hw_scatterlist *sg_list; /* SG list in adapter format */ unsigned char tag_action; unsigned char sg_count; unsigned char sense_cmd[6]; /* * Allocate 6 characters for * sense command. */ unsigned int sg_length; /* We init this during buildscb so we * don't have to calculate anything * during underflow/overflow/stat code */ void *kmalloc_ptr; }; /* * Define a linked list of SCBs. */ typedef struct { struct aic7xxx_scb *head; struct aic7xxx_scb *tail; } scb_queue_type; static struct { unsigned char errno; const char *errmesg; } hard_error[] = { { ILLHADDR, "Illegal Host Access" }, { ILLSADDR, "Illegal Sequencer Address referenced" }, { ILLOPCODE, "Illegal Opcode in sequencer program" }, { SQPARERR, "Sequencer Ram Parity Error" }, { DPARERR, "Data-Path Ram Parity Error" }, { MPARERR, "Scratch Ram/SCB Array Ram Parity Error" }, { PCIERRSTAT,"PCI Error detected" }, { CIOPARERR, "CIOBUS Parity Error" } }; static unsigned char generic_sense[] = { REQUEST_SENSE, 0, 0, 0, 255, 0 }; typedef struct { scb_queue_type free_scbs; /* * SCBs assigned to free slot on * card (no paging required) */ struct aic7xxx_scb *scb_array[AIC7XXX_MAXSCB]; struct aic7xxx_hwscb *hscbs; unsigned char numscbs; /* current number of scbs */ unsigned char maxhscbs; /* hardware scbs */ unsigned char maxscbs; /* max scbs including pageable scbs */ void *hscb_kmalloc_ptr; } scb_data_type; struct target_cmd { unsigned char mesg_bytes[4]; unsigned char command[28]; }; #define AHC_TRANS_CUR 0x0001 #define AHC_TRANS_ACTIVE 0x0002 #define AHC_TRANS_GOAL 0x0004 #define AHC_TRANS_USER 0x0008 #define AHC_TRANS_QUITE 0x0010 typedef struct { unsigned char cur_width; unsigned char goal_width; unsigned char cur_period; unsigned char goal_period; unsigned char cur_offset; unsigned char goal_offset; unsigned char user_width; unsigned char user_period; unsigned char user_offset; } transinfo_type; /* * Define a structure used for each host adapter. Note, in order to avoid * problems with architectures I can't test on (because I don't have one, * such as the Alpha based systems) which happen to give faults for * non-aligned memory accesses, care was taken to align this structure * in a way that gauranteed all accesses larger than 8 bits were aligned * on the appropriate boundary. It's also organized to try and be more * cache line efficient. Be careful when changing this lest you might hurt * overall performance and bring down the wrath of the masses. */ struct aic7xxx_host { /* * This is the first 64 bytes in the host struct */ /* * We are grouping things here....first, items that get either read or * written with nearly every interrupt */ volatile ahc_flag_type flags; ahc_feature features; /* chip features */ unsigned long base; /* card base address */ volatile unsigned char *maddr; /* memory mapped address */ unsigned long isr_count; /* Interrupt count */ unsigned long spurious_int; scb_data_type *scb_data; volatile unsigned short needsdtr; volatile unsigned short sdtr_pending; volatile unsigned short needwdtr; volatile unsigned short wdtr_pending; struct aic7xxx_cmd_queue { Scsi_Cmnd *head; Scsi_Cmnd *tail; } completeq; /* * Things read/written on nearly every entry into aic7xxx_queue() */ volatile scb_queue_type waiting_scbs; unsigned short discenable; /* Targets allowed to disconnect */ unsigned short tagenable; /* Targets using tagged I/O */ unsigned short orderedtag; /* Ordered Q tags allowed */ unsigned char unpause; /* unpause value for HCNTRL */ unsigned char pause; /* pause value for HCNTRL */ volatile unsigned char qoutfifonext; volatile unsigned char activescbs; /* active scbs */ volatile unsigned char max_activescbs; volatile unsigned char qinfifonext; #define DEVICE_PRESENT 0x01 #define BUS_DEVICE_RESET_PENDING 0x02 #define DEVICE_RESET_DELAY 0x04 #define DEVICE_PRINT_SDTR 0x08 #define DEVICE_PRINT_WDTR 0x10 #define DEVICE_WAS_BUSY 0x20 #define DEVICE_SCANNED 0x80 volatile unsigned char dev_flags[MAX_TARGETS]; volatile unsigned char dev_active_cmds[MAX_TARGETS]; volatile unsigned char dev_temp_queue_depth[MAX_TARGETS]; unsigned char dev_commands_sent[MAX_TARGETS]; unsigned int dev_timer_active; /* Which devs have a timer set */ struct timer_list dev_timer; unsigned long dev_expires[MAX_TARGETS]; #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,0) spinlock_t spin_lock; volatile unsigned char cpu_lock_count[NR_CPUS]; #endif #ifdef AIC7XXX_FAKE_NEGOTIATION_CMDS Scsi_Cmnd *dev_wdtr_cmnd[MAX_TARGETS]; Scsi_Cmnd *dev_sdtr_cmnd[MAX_TARGETS]; #endif unsigned char dev_last_queue_full[MAX_TARGETS]; unsigned char dev_last_queue_full_count[MAX_TARGETS]; unsigned char dev_max_queue_depth[MAX_TARGETS]; volatile scb_queue_type delayed_scbs[MAX_TARGETS]; unsigned char msg_buf[9]; /* The message for the target */ unsigned char msg_type; #define MSG_TYPE_NONE 0x00 #define MSG_TYPE_INITIATOR_MSGOUT 0x01 #define MSG_TYPE_INITIATOR_MSGIN 0x02 unsigned char msg_len; /* Length of message */ unsigned char msg_index; /* Index into msg_buf array */ transinfo_type transinfo[MAX_TARGETS]; /* * We put the less frequently used host structure items after the more * frequently used items to try and ease the burden on the cache subsystem. * These entries are not *commonly* accessed, whereas the preceding entries * are accessed very often. The only exceptions are the qinfifo, qoutfifo, * and untagged_scbs array. But, they are often accessed only once and each * access into these arrays is likely to blow a cache line, so they are put * down here so we can minimize the number of cache lines required to hold * the preceeding entries. */ volatile unsigned char untagged_scbs[256]; volatile unsigned char qoutfifo[256]; volatile unsigned char qinfifo[256]; unsigned int irq; /* IRQ for this adapter */ int instance; /* aic7xxx instance number */ int scsi_id; /* host adapter SCSI ID */ int scsi_id_b; /* channel B for twin adapters */ unsigned int bios_address; int board_name_index; unsigned short needsdtr_copy; /* default config */ unsigned short needwdtr_copy; /* default config */ unsigned short ultraenb; /* Ultra mode target list */ unsigned short bios_control; /* bios control - SEEPROM */ unsigned short adapter_control; /* adapter control - SEEPROM */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) struct pci_dev *pdev; #endif unsigned char pci_bus; unsigned char pci_device_fn; struct seeprom_config sc; unsigned short sc_type; unsigned short sc_size; struct aic7xxx_host *next; /* allow for multiple IRQs */ struct Scsi_Host *host; /* pointer to scsi host */ int host_no; /* SCSI host number */ unsigned long mbase; /* I/O memory address */ ahc_chip chip; /* chip type */ /* * Statistics Kept: * * Total Xfers (count for each command that has a data xfer), * broken down further by reads && writes. * * Binned sizes, writes && reads: * < 512, 512, 1-2K, 2-4K, 4-8K, 8-16K, 16-32K, 32-64K, 64K-128K, > 128K * * Total amounts read/written above 512 bytes (amts under ignored) * * NOTE: Enabling this feature is likely to cause a noticeable performance * decrease as the accesses into the stats structures blows apart multiple * cache lines and is CPU time consuming. * * NOTE: Since it doesn't really buy us much, but consumes *tons* of RAM * and blows apart all sorts of cache lines, I modified this so that we * no longer look at the LUN. All LUNs now go into the same bin on each * device for stats purposes. */ struct aic7xxx_xferstats { long w_total; /* total writes */ long r_total; /* total reads */ #ifdef AIC7XXX_PROC_STATS long w_bins[8]; /* binned write */ long r_bins[8]; /* binned reads */ #endif /* AIC7XXX_PROC_STATS */ } stats[MAX_TARGETS]; /* [(channel << 3)|target] */ #if 0 struct target_cmd *targetcmds; unsigned int num_targetcmds; #endif }; /* * Valid SCSIRATE values. (p. 3-17) * Provides a mapping of transfer periods in ns/4 to the proper value to * stick in the SCSIRATE reg to use that transfer rate. */ #define AHC_SYNCRATE_ULTRA2 0 #define AHC_SYNCRATE_ULTRA 2 #define AHC_SYNCRATE_FAST 5 static struct aic7xxx_syncrate { /* Rates in Ultra mode have bit 8 of sxfr set */ #define ULTRA_SXFR 0x100 int sxfr_ultra2; int sxfr; unsigned char period; const char *rate[2]; } aic7xxx_syncrates[] = { { 0x13, 0x000, 10, {"40.0", "80.0"} }, { 0x14, 0x000, 11, {"33.0", "66.6"} }, { 0x15, 0x100, 12, {"20.0", "40.0"} }, { 0x16, 0x110, 15, {"16.0", "32.0"} }, { 0x17, 0x120, 18, {"13.4", "26.8"} }, { 0x18, 0x000, 25, {"10.0", "20.0"} }, { 0x19, 0x010, 31, {"8.0", "16.0"} }, { 0x1a, 0x020, 37, {"6.67", "13.3"} }, { 0x1b, 0x030, 43, {"5.7", "11.4"} }, { 0x10, 0x040, 50, {"5.0", "10.0"} }, { 0x00, 0x050, 56, {"4.4", "8.8" } }, { 0x00, 0x060, 62, {"4.0", "8.0" } }, { 0x00, 0x070, 68, {"3.6", "7.2" } }, { 0x00, 0x000, 0, {NULL, NULL} }, }; #define CTL_OF_SCB(scb) (((scb->hscb)->target_channel_lun >> 3) & 0x1), \ (((scb->hscb)->target_channel_lun >> 4) & 0xf), \ ((scb->hscb)->target_channel_lun & 0x07) #define CTL_OF_CMD(cmd) ((cmd->channel) & 0x01), \ ((cmd->target) & 0x0f), \ ((cmd->lun) & 0x07) #define TARGET_INDEX(cmd) ((cmd)->target | ((cmd)->channel << 3)) /* * A nice little define to make doing our printks a little easier */ #define WARN_LEAD KERN_WARNING "(scsi%d:%d:%d:%d) " #define INFO_LEAD KERN_INFO "(scsi%d:%d:%d:%d) " /* * XXX - these options apply unilaterally to _all_ 274x/284x/294x * cards in the system. This should be fixed. Exceptions to this * rule are noted in the comments. */ /* * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This * has no effect on any later resets that might occur due to things like * SCSI bus timeouts. */ static unsigned int aic7xxx_no_reset = 0; /* * Certain PCI motherboards will scan PCI devices from highest to lowest, * others scan from lowest to highest, and they tend to do all kinds of * strange things when they come into contact with PCI bridge chips. The * net result of all this is that the PCI card that is actually used to boot * the machine is very hard to detect. Most motherboards go from lowest * PCI slot number to highest, and the first SCSI controller found is the * one you boot from. The only exceptions to this are when a controller * has its BIOS disabled. So, we by default sort all of our SCSI controllers * from lowest PCI slot number to highest PCI slot number. We also force * all controllers with their BIOS disabled to the end of the list. This * works on *almost* all computers. Where it doesn't work, we have this * option. Setting this option to non-0 will reverse the order of the sort * to highest first, then lowest, but will still leave cards with their BIOS * disabled at the very end. That should fix everyone up unless there are * really strange cirumstances. */ static int aic7xxx_reverse_scan = 0; /* * Should we force EXTENDED translation on a controller. * 0 == Use whatever is in the SEEPROM or default to off * 1 == Use whatever is in the SEEPROM or default to on */ static unsigned int aic7xxx_extended = 0; /* * The IRQ trigger method used on EISA controllers. Does not effect PCI cards. * -1 = Use detected settings. * 0 = Force Edge triggered mode. * 1 = Force Level triggered mode. */ static int aic7xxx_irq_trigger = -1; /* * This variable is used to override the termination settings on a controller. * This should not be used under normal conditions. However, in the case * that a controller does not have a readable SEEPROM (so that we can't * read the SEEPROM settings directly) and that a controller has a buggered * version of the cable detection logic, this can be used to force the * correct termination. It is preferable to use the manual termination * settings in the BIOS if possible, but some motherboard controllers store * those settings in a format we can't read. In other cases, auto term * should also work, but the chipset was put together with no auto term * logic (common on motherboard controllers). In those cases, we have * 32 bits here to work with. That's good for 8 controllers/channels. The * bits are organized as 4 bits per channel, with scsi0 getting the lowest * 4 bits in the int. A 1 in a bit position indicates the termination setting * that corresponds to that bit should be enabled, a 0 is disabled. * It looks something like this: * * 0x0f = 1111-Single Ended Low Byte Termination on/off * ||\-Single Ended High Byte Termination on/off * |\-LVD Low Byte Termination on/off * \-LVD High Byte Termination on/off * * For non-Ultra2 controllers, the upper 2 bits are not important. So, to * enable both high byte and low byte termination on scsi0, I would need to * make sure that the override_term variable was set to 0x03 (bits 0011). * To make sure that all termination is enabled on an Ultra2 controller at * scsi2 and only high byte termination on scsi1 and high and low byte * termination on scsi0, I would set override_term=0xf23 (bits 1111 0010 0011) * * For the most part, users should never have to use this, that's why I * left it fairly cryptic instead of easy to understand. If you need it, * most likely someone will be telling you what your's needs to be set to. */ static int aic7xxx_override_term = -1; /* * Certain motherboard chipset controllers tend to screw * up the polarity of the term enable output pin. Use this variable * to force the correct polarity for your system. This is a bitfield variable * similar to the previous one, but this one has one bit per channel instead * of four. * 0 = Force the setting to active low. * 1 = Force setting to active high. * Most Adaptec cards are active high, several motherboards are active low. * To force a 2940 card at SCSI 0 to active high and a motherboard 7895 * controller at scsi1 and scsi2 to active low, and a 2910 card at scsi3 * to active high, you would need to set stpwlev=0x9 (bits 1001). * * People shouldn't need to use this, but if you are experiencing lots of * SCSI timeout problems, this may help. There is one sure way to test what * this option needs to be. Using a boot floppy to boot the system, configure * your system to enable all SCSI termination (in the Adaptec SCSI BIOS) and * if needed then also pass a value to override_term to make sure that the * driver is enabling SCSI termination, then set this variable to either 0 * or 1. When the driver boots, make sure there are *NO* SCSI cables * connected to your controller. If it finds and inits the controller * without problem, then the setting you passed to stpwlev was correct. If * the driver goes into a reset loop and hangs the system, then you need the * other setting for this variable. If neither setting lets the machine * boot then you have definite termination problems that may not be fixable. */ static int aic7xxx_stpwlev = -1; /* * Set this to non-0 in order to force the driver to panic the kernel * and print out debugging info on a SCSI abort or reset cycle. */ static int aic7xxx_panic_on_abort = 0; /* * PCI bus parity checking of the Adaptec controllers. This is somewhat * dubious at best. To my knowledge, this option has never actually * solved a PCI parity problem, but on certain machines with broken PCI * chipset configurations, it can generate tons of false error messages. * It's included in the driver for completeness. * 0 = Shut off PCI parity check * -1 = Normal polarity pci parity checking * 1 = reverse polarity pci parity checking * * NOTE: you can't actually pass -1 on the lilo prompt. So, to set this * variable to -1 you would actually want to simply pass the variable * name without a number. That will invert the 0 which will result in * -1. */ static int aic7xxx_pci_parity = 0; /* * Set this to any non-0 value to cause us to dump the contents of all * the card's registers in a hex dump format tailored to each model of * controller. * * NOTE: THE CONTROLLER IS LEFT IN AN UNUSEABLE STATE BY THIS OPTION. * YOU CANNOT BOOT UP WITH THIS OPTION, IT IS FOR DEBUGGING PURPOSES * ONLY */ static int aic7xxx_dump_card = 0; /* * Set this to a non-0 value to make us dump out the 32 bit instruction * registers on the card after completing the sequencer download. This * allows the actual sequencer download to be verified. It is possible * to use this option and still boot up and run your system. This is * only intended for debugging purposes. */ static int aic7xxx_dump_sequencer = 0; /* * Certain newer motherboards have put new PCI based devices into the * IO spaces that used to typically be occupied by VLB or EISA cards. * This overlap can cause these newer motherboards to lock up when scanned * for older EISA and VLB devices. Setting this option to non-0 will * cause the driver to skip scanning for any VLB or EISA controllers and * only support the PCI controllers. NOTE: this means that if the kernel * os compiled with PCI support disabled, then setting this to non-0 * would result in never finding any devices :) */ static int aic7xxx_no_probe = 0; /* * So that insmod can find the variable and make it point to something */ #ifdef MODULE static char * aic7xxx = NULL; #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,18) MODULE_PARM(aic7xxx, "s"); #endif /* * Just in case someone uses commas to separate items on the insmod * command line, we define a dummy buffer here to avoid having insmod * write wild stuff into our code segment */ static char dummy_buffer[60] = "Please don't trounce on me insmod!!\n"; #endif #define VERBOSE_NORMAL 0x0000 #define VERBOSE_NEGOTIATION 0x0001 #define VERBOSE_SEQINT 0x0002 #define VERBOSE_SCSIINT 0x0004 #define VERBOSE_PROBE 0x0008 #define VERBOSE_PROBE2 0x0010 #define VERBOSE_NEGOTIATION2 0x0020 #define VERBOSE_MINOR_ERROR 0x0040 #define VERBOSE_TRACING 0x0080 #define VERBOSE_ABORT 0x0f00 #define VERBOSE_ABORT_MID 0x0100 #define VERBOSE_ABORT_FIND 0x0200 #define VERBOSE_ABORT_PROCESS 0x0400 #define VERBOSE_ABORT_RETURN 0x0800 #define VERBOSE_RESET 0xf000 #define VERBOSE_RESET_MID 0x1000 #define VERBOSE_RESET_FIND 0x2000 #define VERBOSE_RESET_PROCESS 0x4000 #define VERBOSE_RESET_RETURN 0x8000 static int aic7xxx_verbose = VERBOSE_NORMAL | VERBOSE_NEGOTIATION | VERBOSE_PROBE; /* verbose messages */ /**************************************************************************** * * We're going to start putting in function declarations so that order of * functions is no longer important. As needed, they are added here. * ***************************************************************************/ static void aic7xxx_panic_abort(struct aic7xxx_host *p, Scsi_Cmnd *cmd); static void aic7xxx_print_card(struct aic7xxx_host *p); static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p); static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded); #ifdef AIC7XXX_VERBOSE_DEBUGGING static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer); #endif /**************************************************************************** * * These functions are now used. They happen to be wrapped in useless * inb/outb port read/writes around the real reads and writes because it * seems that certain very fast CPUs have a problem dealing with us when * going at full speed. * ***************************************************************************/ #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,0) static inline void mdelay(int milliseconds) { int i; for(i=0; i= 0L); } static inline int timer_pending(struct timer_list *timer) { return( timer->prev != NULL ); } #define PCI_DEVICE_ID_ADAPTEC_1480A 0x6075 #endif static inline unsigned char aic_inb(struct aic7xxx_host *p, long port) { #ifdef MMAPIO unsigned char x; if(p->maddr) { x = p->maddr[port]; } else { x = inb(p->base + port); } mb(); return(x); #else return(inb(p->base + port)); #endif } static inline void aic_outb(struct aic7xxx_host *p, unsigned char val, long port) { #ifdef MMAPIO if(p->maddr) { p->maddr[port] = val; } else { outb(val, p->base + port); } mb(); #else outb(val, p->base + port); #endif } /*+F************************************************************************* * Function: * aic7xxx_setup * * Description: * Handle Linux boot parameters. This routine allows for assigning a value * to a parameter with a ':' between the parameter and the value. * ie. aic7xxx=unpause:0x0A,extended *-F*************************************************************************/ void aic7xxx_setup(char *s, int *dummy) { int i, n; char *p; char *end; static struct { const char *name; unsigned int *flag; } options[] = { { "extended", &aic7xxx_extended }, { "no_reset", &aic7xxx_no_reset }, { "irq_trigger", &aic7xxx_irq_trigger }, { "verbose", &aic7xxx_verbose }, { "reverse_scan",&aic7xxx_reverse_scan }, { "override_term", &aic7xxx_override_term }, { "stpwlev", &aic7xxx_stpwlev }, { "no_probe", &aic7xxx_no_probe }, { "panic_on_abort", &aic7xxx_panic_on_abort }, { "pci_parity", &aic7xxx_pci_parity }, { "dump_card", &aic7xxx_dump_card }, { "dump_sequencer", &aic7xxx_dump_sequencer }, { "tag_info", NULL } }; end = strchr(s, '\0'); for (p = strtok(s, ",."); p; p = strtok(NULL, ",.")) { for (i = 0; i < NUMBER(options); i++) { n = strlen(options[i].name); if (!strncmp(options[i].name, p, n)) { if (!strncmp(p, "tag_info", n)) { if (p[n] == ':') { char *base; char *tok, *tok_end, *tok_end2; char tok_list[] = { '.', ',', '{', '}', '\0' }; int i, instance = -1, device = -1; unsigned char done = FALSE; base = p; tok = base + n + 1; /* Forward us just past the ':' */ tok_end = strchr(tok, '\0'); if (tok_end < end) *tok_end = ','; while(!done) { switch(*tok) { case '{': if (instance == -1) instance = 0; else if (device == -1) device = 0; tok++; break; case '}': if (device != -1) device = -1; else if (instance != -1) instance = -1; tok++; break; case ',': case '.': if (instance == -1) done = TRUE; else if (device >= 0) device++; else if (instance >= 0) instance++; if ( (device >= MAX_TARGETS) || (instance >= NUMBER(aic7xxx_tag_info)) ) done = TRUE; tok++; if (!done) { base = tok; } break; case '\0': done = TRUE; break; default: done = TRUE; tok_end = strchr(tok, '\0'); for(i=0; tok_list[i]; i++) { tok_end2 = strchr(tok, tok_list[i]); if ( (tok_end2) && (tok_end2 < tok_end) ) { tok_end = tok_end2; done = FALSE; } } if ( (instance >= 0) && (device >= 0) && (instance < NUMBER(aic7xxx_tag_info)) && (device < MAX_TARGETS) ) aic7xxx_tag_info[instance].tag_commands[device] = simple_strtoul(tok, NULL, 0) & 0xff; tok = tok_end; break; } } while((p != base) && (p != NULL)) p = strtok(NULL, ",."); } } else if (p[n] == ':') { *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); } else if (!strncmp(p, "verbose", n)) { *(options[i].flag) = 0xff09; } else { *(options[i].flag) = ~(*(options[i].flag)); } } } } } /*+F************************************************************************* * Function: * pause_sequencer * * Description: * Pause the sequencer and wait for it to actually stop - this * is important since the sequencer can disable pausing for critical * sections. *-F*************************************************************************/ static inline void pause_sequencer(struct aic7xxx_host *p) { aic_outb(p, p->pause, HCNTRL); while ((aic_inb(p, HCNTRL) & PAUSE) == 0) { ; } } /*+F************************************************************************* * Function: * unpause_sequencer * * Description: * Unpause the sequencer. Unremarkable, yet done often enough to * warrant an easy way to do it. *-F*************************************************************************/ static inline void unpause_sequencer(struct aic7xxx_host *p, int unpause_always) { if (unpause_always || ( !(aic_inb(p, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) && !(p->flags & AHC_HANDLING_REQINITS) ) ) { aic_outb(p, p->unpause, HCNTRL); } } /*+F************************************************************************* * Function: * restart_sequencer * * Description: * Restart the sequencer program from address zero. This assumes * that the sequencer is already paused. *-F*************************************************************************/ static inline void restart_sequencer(struct aic7xxx_host *p) { aic_outb(p, 0, SEQADDR0); aic_outb(p, 0, SEQADDR1); aic_outb(p, FASTMODE, SEQCTL); } /* * We include the aic7xxx_seq.c file here so that the other defines have * already been made, and so that it comes before the code that actually * downloads the instructions (since we don't typically use function * prototype, our code has to be ordered that way, it's a left-over from * the original driver days.....I should fix it some time DL). */ #include "aic7xxx_seq.c" /*+F************************************************************************* * Function: * aic7xxx_check_patch * * Description: * See if the next patch to download should be downloaded. *-F*************************************************************************/ static int aic7xxx_check_patch(struct aic7xxx_host *p, struct sequencer_patch **start_patch, int start_instr, int *skip_addr) { struct sequencer_patch *cur_patch; struct sequencer_patch *last_patch; int num_patches; num_patches = sizeof(sequencer_patches)/sizeof(struct sequencer_patch); last_patch = &sequencer_patches[num_patches]; cur_patch = *start_patch; while ((cur_patch < last_patch) && (start_instr == cur_patch->begin)) { if (cur_patch->patch_func(p) == 0) { /* * Start rejecting code. */ *skip_addr = start_instr + cur_patch->skip_instr; cur_patch += cur_patch->skip_patch; } else { /* * Found an OK patch. Advance the patch pointer to the next patch * and wait for our instruction pointer to get here. */ cur_patch++; } } *start_patch = cur_patch; if (start_instr < *skip_addr) /* * Still skipping */ return (0); return(1); } /*+F************************************************************************* * Function: * aic7xxx_download_instr * * Description: * Find the next patch to download. *-F*************************************************************************/ static void aic7xxx_download_instr(struct aic7xxx_host *p, int instrptr, unsigned char *dconsts) { union ins_formats instr; struct ins_format1 *fmt1_ins; struct ins_format3 *fmt3_ins; unsigned char opcode; instr = *(union ins_formats*) &seqprog[instrptr * 4]; instr.integer = le32_to_cpu(instr.integer); fmt1_ins = &instr.format1; fmt3_ins = NULL; /* Pull the opcode */ opcode = instr.format1.opcode; switch (opcode) { case AIC_OP_JMP: case AIC_OP_JC: case AIC_OP_JNC: case AIC_OP_CALL: case AIC_OP_JNE: case AIC_OP_JNZ: case AIC_OP_JE: case AIC_OP_JZ: { struct sequencer_patch *cur_patch; int address_offset; unsigned int address; int skip_addr; int i; fmt3_ins = &instr.format3; address_offset = 0; address = fmt3_ins->address; cur_patch = sequencer_patches; skip_addr = 0; for (i = 0; i < address;) { aic7xxx_check_patch(p, &cur_patch, i, &skip_addr); if (skip_addr > i) { int end_addr; end_addr = MIN(address, skip_addr); address_offset += end_addr - i; i = skip_addr; } else { i++; } } address -= address_offset; fmt3_ins->address = address; /* Fall Through to the next code section */ } case AIC_OP_OR: case AIC_OP_AND: case AIC_OP_XOR: case AIC_OP_ADD: case AIC_OP_ADC: case AIC_OP_BMOV: if (fmt1_ins->parity != 0) { fmt1_ins->immediate = dconsts[fmt1_ins->immediate]; } fmt1_ins->parity = 0; /* Fall Through to the next code section */ case AIC_OP_ROL: if ((p->features & AHC_ULTRA2) != 0) { int i, count; /* Calculate odd parity for the instruction */ for ( i=0, count=0; i < 31; i++) { unsigned int mask; mask = 0x01 << i; if ((instr.integer & mask) != 0) count++; } if (!(count & 0x01)) instr.format1.parity = 1; } else { if (fmt3_ins != NULL) { instr.integer = fmt3_ins->immediate | (fmt3_ins->source << 8) | (fmt3_ins->address << 16) | (fmt3_ins->opcode << 25); } else { instr.integer = fmt1_ins->immediate | (fmt1_ins->source << 8) | (fmt1_ins->destination << 16) | (fmt1_ins->ret << 24) | (fmt1_ins->opcode << 25); } } aic_outb(p, (instr.integer & 0xff), SEQRAM); aic_outb(p, ((instr.integer >> 8) & 0xff), SEQRAM); aic_outb(p, ((instr.integer >> 16) & 0xff), SEQRAM); aic_outb(p, ((instr.integer >> 24) & 0xff), SEQRAM); break; default: panic("aic7xxx: Unknown opcode encountered in sequencer program."); break; } } /*+F************************************************************************* * Function: * aic7xxx_loadseq * * Description: * Load the sequencer code into the controller memory. *-F*************************************************************************/ static void aic7xxx_loadseq(struct aic7xxx_host *p) { struct sequencer_patch *cur_patch; int i; int downloaded; int skip_addr; unsigned char download_consts[4] = {0, 0, 0, 0}; if (aic7xxx_verbose & VERBOSE_PROBE) { printk(KERN_INFO "(scsi%d) Downloading sequencer code...", p->host_no); } #if 0 download_consts[TMODE_NUMCMDS] = p->num_targetcmds; #endif download_consts[TMODE_NUMCMDS] = 0; cur_patch = &sequencer_patches[0]; downloaded = 0; skip_addr = 0; aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL); aic_outb(p, 0, SEQADDR0); aic_outb(p, 0, SEQADDR1); for (i = 0; i < sizeof(seqprog) / 4; i++) { if (aic7xxx_check_patch(p, &cur_patch, i, &skip_addr) == 0) { /* Skip this instruction for this configuration. */ continue; } aic7xxx_download_instr(p, i, &download_consts[0]); downloaded++; } aic_outb(p, 0, SEQADDR0); aic_outb(p, 0, SEQADDR1); aic_outb(p, FASTMODE | FAILDIS, SEQCTL); unpause_sequencer(p, TRUE); mdelay(1); pause_sequencer(p); aic_outb(p, FASTMODE, SEQCTL); if (aic7xxx_verbose & VERBOSE_PROBE) { printk(" %d instructions downloaded\n", downloaded); } if (aic7xxx_dump_sequencer) aic7xxx_print_sequencer(p, downloaded); } /*+F************************************************************************* * Function: * aic7xxx_print_sequencer * * Description: * Print the contents of the sequencer memory to the screen. *-F*************************************************************************/ static void aic7xxx_print_sequencer(struct aic7xxx_host *p, int downloaded) { int i, k, temp; aic_outb(p, PERRORDIS|LOADRAM|FAILDIS|FASTMODE, SEQCTL); aic_outb(p, 0, SEQADDR0); aic_outb(p, 0, SEQADDR1); k = 0; for (i=0; i < downloaded; i++) { if ( k == 0 ) printk("%03x: ", i); temp = aic_inb(p, SEQRAM); temp |= (aic_inb(p, SEQRAM) << 8); temp |= (aic_inb(p, SEQRAM) << 16); temp |= (aic_inb(p, SEQRAM) << 24); printk("%08x", temp); if ( ++k == 8 ) { printk("\n"); k = 0; } else printk(" "); } aic_outb(p, 0, SEQADDR0); aic_outb(p, 0, SEQADDR1); aic_outb(p, FASTMODE | FAILDIS, SEQCTL); unpause_sequencer(p, TRUE); mdelay(1); pause_sequencer(p); aic_outb(p, FASTMODE, SEQCTL); printk("\n"); } /*+F************************************************************************* * Function: * aic7xxx_delay * * Description: * Delay for specified amount of time. We use mdelay because the timer * interrupt is not guaranteed to be enabled. This will cause an * infinite loop since jiffies (clock ticks) is not updated. *-F*************************************************************************/ static void aic7xxx_delay(int seconds) { mdelay(seconds * 1000); } /*+F************************************************************************* * Function: * aic7xxx_info * * Description: * Return a string describing the driver. *-F*************************************************************************/ const char * aic7xxx_info(struct Scsi_Host *dooh) { static char buffer[256]; char *bp; struct aic7xxx_host *p; bp = &buffer[0]; p = (struct aic7xxx_host *)dooh->hostdata; memset(bp, 0, sizeof(buffer)); strcpy(bp, "Adaptec AHA274x/284x/294x (EISA/VLB/PCI-Fast SCSI) "); strcat(bp, AIC7XXX_C_VERSION); strcat(bp, "/"); strcat(bp, AIC7XXX_H_VERSION); strcat(bp, "\n"); strcat(bp, " <"); strcat(bp, board_names[p->board_name_index]); strcat(bp, ">"); return(bp); } /*+F************************************************************************* * Function: * aic7xxx_find_syncrate * * Description: * Look up the valid period to SCSIRATE conversion in our table *-F*************************************************************************/ static struct aic7xxx_syncrate * aic7xxx_find_syncrate(struct aic7xxx_host *p, unsigned int *period, unsigned int maxsync) { struct aic7xxx_syncrate *syncrate; syncrate = &aic7xxx_syncrates[maxsync]; while ( (syncrate->rate[0] != NULL) && (!(p->features & AHC_ULTRA2) || syncrate->sxfr_ultra2) ) { if ( *period <= syncrate->period ) { /* * When responding to a target that requests sync, the requested rate * may fall between two rates that we can output, but still be a rate * that we can receive. Because of this, we want to respond with the * same rate that it sent to us even if the persiod we use to send * data to it is lower. Only lower the response period if we must. */ if(syncrate == &aic7xxx_syncrates[maxsync]) { *period = syncrate->period; } break; } syncrate++; } if ( (*period == 0) || (syncrate->rate[0] == NULL) || ((p->features & AHC_ULTRA2) && (syncrate->sxfr_ultra2 == 0)) ) { /* * Use async transfers for this target */ *period = 0; syncrate = NULL; } return (syncrate); } /*+F************************************************************************* * Function: * aic7xxx_find_period * * Description: * Look up the valid SCSIRATE to period conversion in our table *-F*************************************************************************/ static unsigned int aic7xxx_find_period(struct aic7xxx_host *p, unsigned int scsirate, unsigned int maxsync) { struct aic7xxx_syncrate *syncrate; if ((p->features & AHC_ULTRA2) != 0) { scsirate &= SXFR_ULTRA2; } else { scsirate &= SXFR; } syncrate = &aic7xxx_syncrates[maxsync]; while (syncrate->rate[0] != NULL) { if ((p->features & AHC_ULTRA2) != 0) { if (syncrate->sxfr_ultra2 == 0) break; else if (scsirate == syncrate->sxfr_ultra2) return (syncrate->period); } else if (scsirate == (syncrate->sxfr & ~ULTRA_SXFR)) { return (syncrate->period); } syncrate++; } return (0); /* async */ } /*+F************************************************************************* * Function: * aic7xxx_validate_offset * * Description: * Set a valid offset value for a particular card in use and transfer * settings in use. *-F*************************************************************************/ static void aic7xxx_validate_offset(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate, unsigned int *offset, int wide) { unsigned int maxoffset; /* Limit offset to what the card (and device) can do */ if (syncrate == NULL) { maxoffset = 0; } else if (p->features & AHC_ULTRA2) { maxoffset = MAX_OFFSET_ULTRA2; } else { if (wide) maxoffset = MAX_OFFSET_16BIT; else maxoffset = MAX_OFFSET_8BIT; } *offset = MIN(*offset, maxoffset); } /*+F************************************************************************* * Function: * aic7xxx_set_syncrate * * Description: * Set the actual syncrate down in the card and in our host structs *-F*************************************************************************/ static void aic7xxx_set_syncrate(struct aic7xxx_host *p, struct aic7xxx_syncrate *syncrate, int target, int channel, unsigned int period, unsigned int offset, unsigned int type) { unsigned char tindex; unsigned short target_mask; unsigned char lun; unsigned int old_period, old_offset; tindex = target | (channel << 3); target_mask = 0x01 << tindex; lun = aic_inb(p, SCB_TCL) & 0x07; if (syncrate == NULL) { period = 0; offset = 0; } old_period = p->transinfo[tindex].cur_period; old_offset = p->transinfo[tindex].cur_offset; if (type & AHC_TRANS_CUR) { unsigned int scsirate; scsirate = aic_inb(p, TARG_SCSIRATE + tindex); if (p->features & AHC_ULTRA2) { scsirate &= ~SXFR_ULTRA2; if (syncrate != NULL) { scsirate |= syncrate->sxfr_ultra2; } if (type & AHC_TRANS_ACTIVE) { aic_outb(p, offset, SCSIOFFSET); } aic_outb(p, offset, TARG_OFFSET + tindex); } else /* Not an Ultra2 controller */ { scsirate &= ~(SXFR|SOFS); p->ultraenb &= ~target_mask; if (syncrate != NULL) { if (syncrate->sxfr & ULTRA_SXFR) { p->ultraenb |= target_mask; } scsirate |= (syncrate->sxfr & SXFR); scsirate |= (offset & SOFS); } if (type & AHC_TRANS_ACTIVE) { unsigned char sxfrctl0; sxfrctl0 = aic_inb(p, SXFRCTL0); sxfrctl0 &= ~FAST20; if (p->ultraenb & target_mask) sxfrctl0 |= FAST20; aic_outb(p, sxfrctl0, SXFRCTL0); } aic_outb(p, p->ultraenb & 0xff, ULTRA_ENB); aic_outb(p, (p->ultraenb >> 8) & 0xff, ULTRA_ENB + 1 ); } if (type & AHC_TRANS_ACTIVE) { aic_outb(p, scsirate, SCSIRATE); } aic_outb(p, scsirate, TARG_SCSIRATE + tindex); p->transinfo[tindex].cur_period = period; p->transinfo[tindex].cur_offset = offset; if ( !(type & AHC_TRANS_QUITE) && (aic7xxx_verbose & VERBOSE_NEGOTIATION) && (p->dev_flags[tindex] & DEVICE_PRINT_SDTR) ) { if (offset) { int rate_mod = (scsirate & WIDEXFER) ? 1 : 0; printk(INFO_LEAD "Synchronous at %s Mbyte/sec, " "offset %d.\n", p->host_no, channel, target, lun, syncrate->rate[rate_mod], offset); } else { printk(INFO_LEAD "Using asynchronous transfers.\n", p->host_no, channel, target, lun); } p->dev_flags[tindex] &= ~DEVICE_PRINT_SDTR; } } if (type & AHC_TRANS_GOAL) { p->transinfo[tindex].goal_period = period; p->transinfo[tindex].goal_offset = offset; } if (type & AHC_TRANS_USER) { p->transinfo[tindex].user_period = period; p->transinfo[tindex].user_offset = offset; } } /*+F************************************************************************* * Function: * aic7xxx_set_width * * Description: * Set the actual width down in the card and in our host structs *-F*************************************************************************/ static void aic7xxx_set_width(struct aic7xxx_host *p, int target, int channel, int lun, unsigned int width, unsigned int type) { unsigned char tindex; unsigned short target_mask; unsigned int old_width, new_offset; tindex = target | (channel << 3); target_mask = 1 << tindex; old_width = p->transinfo[tindex].cur_width; if (p->features & AHC_ULTRA2) new_offset = MAX_OFFSET_ULTRA2; else if (width == MSG_EXT_WDTR_BUS_16_BIT) new_offset = MAX_OFFSET_16BIT; else new_offset = MAX_OFFSET_8BIT; if (type & AHC_TRANS_CUR) { unsigned char scsirate; scsirate = aic_inb(p, TARG_SCSIRATE + tindex); scsirate &= ~WIDEXFER; if (width == MSG_EXT_WDTR_BUS_16_BIT) scsirate |= WIDEXFER; aic_outb(p, scsirate, TARG_SCSIRATE + tindex); if (type & AHC_TRANS_ACTIVE) aic_outb(p, scsirate, SCSIRATE); p->transinfo[tindex].cur_width = width; if ((aic7xxx_verbose & VERBOSE_NEGOTIATION2) && (p->dev_flags[tindex] & DEVICE_PRINT_WDTR)) { printk(INFO_LEAD "Using %s transfers\n", p->host_no, channel, target, lun, (scsirate & WIDEXFER) ? "Wide(16bit)" : "Narrow(8bit)" ); p->dev_flags[tindex] &= ~DEVICE_PRINT_WDTR; } } if (type & AHC_TRANS_GOAL) p->transinfo[tindex].goal_width = width; if (type & AHC_TRANS_USER) p->transinfo[tindex].user_width = width; /* * Having just set the width, the SDTR should come next, and we need a valid * offset for the SDTR. So, we make sure we put a valid one in here now as * the goal_offset. */ if (p->transinfo[tindex].goal_offset) p->transinfo[tindex].goal_offset = new_offset; } /*+F************************************************************************* * Function: * scbq_init * * Description: * SCB queue initialization. * *-F*************************************************************************/ static void scbq_init(volatile scb_queue_type *queue) { queue->head = NULL; queue->tail = NULL; } /*+F************************************************************************* * Function: * scbq_insert_head * * Description: * Add an SCB to the head of the list. * *-F*************************************************************************/ static inline void scbq_insert_head(volatile scb_queue_type *queue, struct aic7xxx_scb *scb) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags; #endif DRIVER_LOCK scb->q_next = queue->head; queue->head = scb; if (queue->tail == NULL) /* If list was empty, update tail. */ queue->tail = queue->head; DRIVER_UNLOCK } /*+F************************************************************************* * Function: * scbq_remove_head * * Description: * Remove an SCB from the head of the list. * *-F*************************************************************************/ static inline struct aic7xxx_scb * scbq_remove_head(volatile scb_queue_type *queue) { struct aic7xxx_scb * scbp; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags; #endif DRIVER_LOCK scbp = queue->head; if (queue->head != NULL) queue->head = queue->head->q_next; if (queue->head == NULL) /* If list is now empty, update tail. */ queue->tail = NULL; DRIVER_UNLOCK return(scbp); } /*+F************************************************************************* * Function: * scbq_remove * * Description: * Removes an SCB from the list. * *-F*************************************************************************/ static inline void scbq_remove(volatile scb_queue_type *queue, struct aic7xxx_scb *scb) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags; #endif DRIVER_LOCK if (queue->head == scb) { /* At beginning of queue, remove from head. */ scbq_remove_head(queue); } else { struct aic7xxx_scb *curscb = queue->head; /* * Search until the next scb is the one we're looking for, or * we run out of queue. */ while ((curscb != NULL) && (curscb->q_next != scb)) { curscb = curscb->q_next; } if (curscb != NULL) { /* Found it. */ curscb->q_next = scb->q_next; if (scb->q_next == NULL) { /* Update the tail when removing the tail. */ queue->tail = curscb; } } } DRIVER_UNLOCK } /*+F************************************************************************* * Function: * scbq_insert_tail * * Description: * Add an SCB at the tail of the list. * *-F*************************************************************************/ static inline void scbq_insert_tail(volatile scb_queue_type *queue, struct aic7xxx_scb *scb) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags; #endif DRIVER_LOCK scb->q_next = NULL; if (queue->tail != NULL) /* Add the scb at the end of the list. */ queue->tail->q_next = scb; queue->tail = scb; /* Update the tail. */ if (queue->head == NULL) /* If list was empty, update head. */ queue->head = queue->tail; DRIVER_UNLOCK } /*+F************************************************************************* * Function: * aic7xxx_match_scb * * Description: * Checks to see if an scb matches the target/channel as specified. * If target is ALL_TARGETS (-1), then we're looking for any device * on the specified channel; this happens when a channel is going * to be reset and all devices on that channel must be aborted. *-F*************************************************************************/ static int aic7xxx_match_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb, int target, int channel, int lun, unsigned char tag) { int targ = (scb->hscb->target_channel_lun >> 4) & 0x0F; int chan = (scb->hscb->target_channel_lun >> 3) & 0x01; int slun = scb->hscb->target_channel_lun & 0x07; int match; match = ((chan == channel) || (channel == ALL_CHANNELS)); if (match != 0) match = ((targ == target) || (target == ALL_TARGETS)); if (match != 0) match = ((lun == slun) || (lun == ALL_LUNS)); if (match != 0) match = ((tag == scb->hscb->tag) || (tag == SCB_LIST_NULL)); if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS)) { printk(KERN_INFO "(scsi%d:%d:%d:%d:tag%d) %s search criteria" " (scsi%d:%d:%d:%d:tag%d)\n", p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, (match) ? "matches" : "doesn't match", p->host_no, channel, target, lun, tag); } return (match); } /*+F************************************************************************* * Function: * aic7xxx_add_curscb_to_free_list * * Description: * Adds the current scb (in SCBPTR) to the list of free SCBs. *-F*************************************************************************/ static void aic7xxx_add_curscb_to_free_list(struct aic7xxx_host *p) { /* * Invalidate the tag so that aic7xxx_find_scb doesn't think * it's active */ aic_outb(p, SCB_LIST_NULL, SCB_TAG); aic_outb(p, 0, SCB_CONTROL); aic_outb(p, aic_inb(p, FREE_SCBH), SCB_NEXT); aic_outb(p, aic_inb(p, SCBPTR), FREE_SCBH); } /*+F************************************************************************* * Function: * aic7xxx_rem_scb_from_disc_list * * Description: * Removes the current SCB from the disconnected list and adds it * to the free list. *-F*************************************************************************/ static unsigned char aic7xxx_rem_scb_from_disc_list(struct aic7xxx_host *p, unsigned char scbptr) { unsigned char next; unsigned char prev; aic_outb(p, scbptr, SCBPTR); next = aic_inb(p, SCB_NEXT); prev = aic_inb(p, SCB_PREV); aic7xxx_add_curscb_to_free_list(p); if (prev != SCB_LIST_NULL) { aic_outb(p, prev, SCBPTR); aic_outb(p, next, SCB_NEXT); } else { aic_outb(p, next, DISCONNECTED_SCBH); } if (next != SCB_LIST_NULL) { aic_outb(p, next, SCBPTR); aic_outb(p, prev, SCB_PREV); } return next; } /*+F************************************************************************* * Function: * aic7xxx_busy_target * * Description: * Set the specified target busy. *-F*************************************************************************/ static inline void aic7xxx_busy_target(struct aic7xxx_host *p, struct aic7xxx_scb *scb) { p->untagged_scbs[scb->hscb->target_channel_lun] = scb->hscb->tag; } /*+F************************************************************************* * Function: * aic7xxx_index_busy_target * * Description: * Returns the index of the busy target, and optionally sets the * target inactive. *-F*************************************************************************/ static inline unsigned char aic7xxx_index_busy_target(struct aic7xxx_host *p, unsigned char tcl, int unbusy) { unsigned char busy_scbid; busy_scbid = p->untagged_scbs[tcl]; if (unbusy) { p->untagged_scbs[tcl] = SCB_LIST_NULL; } return (busy_scbid); } /*+F************************************************************************* * Function: * aic7xxx_find_scb * * Description: * Look through the SCB array of the card and attempt to find the * hardware SCB that corresponds to the passed in SCB. Return * SCB_LIST_NULL if unsuccessful. This routine assumes that the * card is already paused. *-F*************************************************************************/ static unsigned char aic7xxx_find_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb) { unsigned char saved_scbptr; unsigned char curindex; saved_scbptr = aic_inb(p, SCBPTR); curindex = 0; for (curindex = 0; curindex < p->scb_data->maxhscbs; curindex++) { aic_outb(p, curindex, SCBPTR); if (aic_inb(p, SCB_TAG) == scb->hscb->tag) { break; } } aic_outb(p, saved_scbptr, SCBPTR); if (curindex >= p->scb_data->maxhscbs) { curindex = SCB_LIST_NULL; } return (curindex); } /*+F************************************************************************* * Function: * aic7xxx_allocate_scb * * Description: * Get an SCB from the free list or by allocating a new one. *-F*************************************************************************/ static int aic7xxx_allocate_scb(struct aic7xxx_host *p) { struct aic7xxx_scb *scbp = NULL; int scb_size = sizeof(struct aic7xxx_scb) + sizeof (struct hw_scatterlist) * AIC7XXX_MAX_SG; int i; int step = PAGE_SIZE / 1024; unsigned long scb_count = 0; struct hw_scatterlist *hsgp; struct aic7xxx_scb *scb_ap; unsigned long temp; if (p->scb_data->numscbs < p->scb_data->maxscbs) { /* * Calculate the optimal number of SCBs to allocate. * * NOTE: This formula works because the sizeof(sg_array) is always * 1024. Therefore, scb_size * i would always be > PAGE_SIZE * * (i/step). The (i-1) allows the left hand side of the equation * to grow into the right hand side to a point of near perfect * efficiency since scb_size * (i -1) is growing slightly faster * than the right hand side. If the number of SG array elements * is changed, this function may not be near so efficient any more. */ for ( i=step;; i *= 2 ) { if ( (scb_size * (i-1)) >= ( (PAGE_SIZE * (i/step)) - 64 ) ) { i /= 2; break; } } scb_count = MIN( (i-1), p->scb_data->maxscbs - p->scb_data->numscbs); scb_ap = (struct aic7xxx_scb *)kmalloc(scb_size * scb_count, GFP_ATOMIC); if (scb_ap != NULL) { #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) { if (p->scb_data->numscbs == 0) printk(INFO_LEAD "Allocating initial %ld SCB structures.\n", p->host_no, -1, -1, -1, scb_count); else printk(INFO_LEAD "Allocating %ld additional SCB structures.\n", p->host_no, -1, -1, -1, scb_count); } #endif memset(scb_ap, 0, scb_count * scb_size); temp = (unsigned long) &scb_ap[scb_count]; temp += 1023; temp &= ~1023; hsgp = (struct hw_scatterlist *)temp; for (i=0; i < scb_count; i++) { scbp = &scb_ap[i]; scbp->hscb = &p->scb_data->hscbs[p->scb_data->numscbs]; scbp->sg_list = &hsgp[i * AIC7XXX_MAX_SG]; memset(scbp->hscb, 0, sizeof(struct aic7xxx_hwscb)); scbp->hscb->tag = p->scb_data->numscbs; /* * Place in the scb array; never is removed */ p->scb_data->scb_array[p->scb_data->numscbs++] = scbp; scbq_insert_head(&p->scb_data->free_scbs, scbp); } scbp->kmalloc_ptr = scb_ap; } else { return(0); } } return(scb_count); } /*+F************************************************************************* * Function: * aic7xxx_queue_cmd_complete * * Description: * Due to race conditions present in the SCSI subsystem, it is easier * to queue completed commands, then call scsi_done() on them when * we're finished. This function queues the completed commands. *-F*************************************************************************/ static void aic7xxx_queue_cmd_complete(struct aic7xxx_host *p, Scsi_Cmnd *cmd) { cmd->host_scribble = (char *)p->completeq.head; p->completeq.head = cmd; } /*+F************************************************************************* * Function: * aic7xxx_done_cmds_complete * * Description: * Process the completed command queue. *-F*************************************************************************/ static void aic7xxx_done_cmds_complete(struct aic7xxx_host *p) { Scsi_Cmnd *cmd; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags = 0; #endif DRIVER_LOCK while (p->completeq.head != NULL) { cmd = p->completeq.head; p->completeq.head = (Scsi_Cmnd *)cmd->host_scribble; cmd->host_scribble = NULL; cmd->scsi_done(cmd); } DRIVER_UNLOCK } /*+F************************************************************************* * Function: * aic7xxx_free_scb * * Description: * Free the scb and insert into the free scb list. *-F*************************************************************************/ static void aic7xxx_free_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb) { scb->flags = SCB_FREE; scb->cmd = NULL; scb->sg_count = 0; scb->sg_length = 0; scb->tag_action = 0; scb->hscb->control = 0; scb->hscb->target_status = 0; scb->hscb->target_channel_lun = SCB_LIST_NULL; scbq_insert_head(&p->scb_data->free_scbs, scb); } /*+F************************************************************************* * Function: * aic7xxx_done * * Description: * Calls the higher level scsi done function and frees the scb. *-F*************************************************************************/ static void aic7xxx_done(struct aic7xxx_host *p, struct aic7xxx_scb *scb) { Scsi_Cmnd *cmd = scb->cmd; int tindex = TARGET_INDEX(cmd); struct aic7xxx_scb *scbp; unsigned char queue_depth; if (scb->flags & SCB_RECOVERY_SCB) { p->flags &= ~AHC_ABORT_PENDING; } if (scb->flags & SCB_RESET) { cmd->result = (DID_RESET << 16) | (cmd->result & 0xffff); } else if (scb->flags & SCB_ABORT) { cmd->result = (DID_RESET << 16) | (cmd->result & 0xffff); } else if (!(p->dev_flags[tindex] & DEVICE_SCANNED)) { if ( (cmd->cmnd[0] == INQUIRY) && (cmd->result == DID_OK) ) { char *buffer; p->dev_flags[tindex] |= DEVICE_PRESENT; if(cmd->use_sg) { struct scatterlist *sg; sg = (struct scatterlist *)cmd->request_buffer; buffer = (char *)sg[0].address; } else { buffer = (char *)cmd->request_buffer; } #define WIDE_INQUIRY_BITS 0x60 #define SYNC_INQUIRY_BITS 0x10 if ( (buffer[7] & WIDE_INQUIRY_BITS) && (p->features & AHC_WIDE) ) { p->needwdtr |= (1<needwdtr_copy |= (1<flags & AHC_SEEPROM_FOUND) && (p->transinfo[tindex].user_width != MSG_EXT_WDTR_BUS_16_BIT) ) p->transinfo[tindex].goal_width = MSG_EXT_WDTR_BUS_8_BIT; else p->transinfo[tindex].goal_width = MSG_EXT_WDTR_BUS_16_BIT; } else { p->needwdtr &= ~(1<needwdtr_copy &= ~(1<target, cmd->channel, cmd->lun, MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE | AHC_TRANS_GOAL | AHC_TRANS_CUR) ); unpause_sequencer(p, FALSE); } if (buffer[7] & SYNC_INQUIRY_BITS) { p->needsdtr |= (1<needsdtr_copy |= (1<flags & AHC_SEEPROM_FOUND) { p->transinfo[tindex].goal_period = p->transinfo[tindex].user_period; p->transinfo[tindex].goal_offset = p->transinfo[tindex].user_offset; } else { if (p->features & AHC_ULTRA2) { p->transinfo[tindex].goal_period = aic7xxx_syncrates[AHC_SYNCRATE_ULTRA2].period; } else if (p->features & AHC_ULTRA) { p->transinfo[tindex].goal_period = aic7xxx_syncrates[AHC_SYNCRATE_ULTRA].period; } else { p->transinfo[tindex].goal_period = aic7xxx_syncrates[AHC_SYNCRATE_FAST].period; } if (p->features & AHC_ULTRA2) p->transinfo[tindex].goal_offset = MAX_OFFSET_ULTRA2; else if (p->transinfo[tindex].goal_width == MSG_EXT_WDTR_BUS_16_BIT) p->transinfo[tindex].goal_offset = MAX_OFFSET_16BIT; else p->transinfo[tindex].goal_offset = MAX_OFFSET_8BIT; } } else { p->needsdtr &= ~(1<needsdtr_copy &= ~(1<transinfo[tindex].goal_period = 0; p->transinfo[tindex].goal_offset = 0; } p->dev_flags[tindex] |= DEVICE_SCANNED; p->dev_flags[tindex] |= DEVICE_PRINT_WDTR | DEVICE_PRINT_SDTR; #undef WIDE_INQUIRY_BITS #undef SYNC_INQUIRY_BITS } } else if ((scb->flags & (SCB_MSGOUT_WDTR | SCB_MSGOUT_SDTR)) != 0) { unsigned short mask; int message_error = FALSE; mask = 0x01 << tindex; /* * Check to see if we get an invalid message or a message error * after failing to negotiate a wide or sync transfer message. */ if ((scb->flags & SCB_SENSE) && ((scb->cmd->sense_buffer[12] == 0x43) || /* INVALID_MESSAGE */ (scb->cmd->sense_buffer[12] == 0x49))) /* MESSAGE_ERROR */ { message_error = TRUE; } if (scb->flags & SCB_MSGOUT_WDTR) { p->wdtr_pending &= ~mask; if (message_error) { if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) && (p->dev_flags[tindex] & DEVICE_PRINT_WDTR) ) { printk(INFO_LEAD "Device failed to complete Wide Negotiation " "processing and\n", p->host_no, CTL_OF_SCB(scb)); printk(INFO_LEAD "returned a sense error code for invalid message, " "disabling future\n", p->host_no, CTL_OF_SCB(scb)); printk(INFO_LEAD "Wide negotiation to this device.\n", p->host_no, CTL_OF_SCB(scb)); p->dev_flags[tindex] &= ~DEVICE_PRINT_WDTR; } p->needwdtr &= ~mask; p->needwdtr_copy &= ~mask; } } if (scb->flags & SCB_MSGOUT_SDTR) { p->sdtr_pending &= ~mask; if (message_error) { if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) && (p->dev_flags[tindex] & DEVICE_PRINT_SDTR) ) { printk(INFO_LEAD "Device failed to complete Sync Negotiation " "processing and\n", p->host_no, CTL_OF_SCB(scb)); printk(INFO_LEAD "returned a sense error code for invalid message, " "disabling future\n", p->host_no, CTL_OF_SCB(scb)); printk(INFO_LEAD "Sync negotiation to this device.\n", p->host_no, CTL_OF_SCB(scb)); p->dev_flags[tindex] &= ~DEVICE_PRINT_SDTR; } p->needsdtr &= ~mask; p->needsdtr_copy &= ~mask; } } } queue_depth = p->dev_temp_queue_depth[tindex]; if (queue_depth >= p->dev_active_cmds[tindex]) { scbp = scbq_remove_head(&p->delayed_scbs[tindex]); if (scbp) { if (queue_depth == 1) { /* * Give extra preference to untagged devices, such as CD-R devices * This makes it more likely that a drive *won't* stuff up while * waiting on data at a critical time, such as CD-R writing and * audio CD ripping operations. Should also benefit tape drives. */ scbq_insert_head(&p->waiting_scbs, scbp); } else { scbq_insert_tail(&p->waiting_scbs, scbp); } #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Moving SCB from delayed to waiting queue.\n", p->host_no, CTL_OF_SCB(scbp)); #endif if (queue_depth > p->dev_active_cmds[tindex]) { scbp = scbq_remove_head(&p->delayed_scbs[tindex]); if (scbp) scbq_insert_tail(&p->waiting_scbs, scbp); } } } if ( !(scb->tag_action) && (p->tagenable & (1<dev_temp_queue_depth[tindex] = p->dev_max_queue_depth[tindex]; } p->dev_active_cmds[tindex]--; p->activescbs--; /* * If this was an untagged I/O, unbusy the target so the sequencer won't * mistake things later */ if (aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun, FALSE) == scb->hscb->tag) { aic7xxx_index_busy_target(p, scb->hscb->target_channel_lun, TRUE); } { int actual; /* * XXX: we should actually know how much actually transferred * XXX: for each command, but apparently that's too difficult. * * We set a lower limit of 512 bytes on the transfer length. We * ignore anything less than this because we don't have a real * reason to count it. Read/Writes to tapes are usually about 20K * and disks are a minimum of 512 bytes unless you want to count * non-read/write commands (such as TEST_UNIT_READY) which we don't */ actual = scb->sg_length; if ((actual >= 512) && (((cmd->result >> 16) & 0xf) == DID_OK)) { struct aic7xxx_xferstats *sp; #ifdef AIC7XXX_PROC_STATS long *ptr; int x; #endif /* AIC7XXX_PROC_STATS */ sp = &p->stats[TARGET_INDEX(cmd)]; /* * For block devices, cmd->request.cmd is always == either READ or * WRITE. For character devices, this isn't always set properly, so * we check data_cmnd[0]. This catches the conditions for st.c, but * I'm still not sure if request.cmd is valid for sg devices. */ if ( (cmd->request.cmd == WRITE) || (cmd->data_cmnd[0] == WRITE_6) || (cmd->data_cmnd[0] == WRITE_FILEMARKS) ) { sp->w_total++; #ifdef AIC7XXX_VERBOSE_DEBUGGING if ( (sp->w_total > 16) && (aic7xxx_verbose > 0xffff) ) aic7xxx_verbose &= 0xffff; #endif #ifdef AIC7XXX_PROC_STATS ptr = sp->w_bins; #endif /* AIC7XXX_PROC_STATS */ } else { sp->r_total++; #ifdef AIC7XXX_VERBOSE_DEBUGGING if ( (sp->r_total > 16) && (aic7xxx_verbose > 0xffff) ) aic7xxx_verbose &= 0xffff; #endif #ifdef AIC7XXX_PROC_STATS ptr = sp->r_bins; #endif /* AIC7XXX_PROC_STATS */ } #ifdef AIC7XXX_PROC_STATS x = -10; while(actual) { actual >>= 1; x++; } if (x < 0) { ptr[0]++; } else if (x > 7) { ptr[7]++; } else { ptr[x]++; } #endif /* AIC7XXX_PROC_STATS */ } } aic7xxx_free_scb(p, scb); aic7xxx_queue_cmd_complete(p, cmd); } /*+F************************************************************************* * Function: * aic7xxx_run_done_queue * * Description: * Calls the aic7xxx_done() for the Scsi_Cmnd of each scb in the * aborted list, and adds each scb to the free list. If complete * is TRUE, we also process the commands complete list. *-F*************************************************************************/ static void aic7xxx_run_done_queue(struct aic7xxx_host *p, /*complete*/ int complete) { struct aic7xxx_scb *scb; int i, found = 0; for (i = 0; i < p->scb_data->numscbs; i++) { scb = p->scb_data->scb_array[i]; if (scb->flags & SCB_QUEUED_FOR_DONE) { if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS)) printk(INFO_LEAD "Aborting scb %d\n", p->host_no, CTL_OF_SCB(scb), scb->hscb->tag); found++; aic7xxx_done(p, scb); } } if (aic7xxx_verbose & (VERBOSE_ABORT_RETURN | VERBOSE_RESET_RETURN)) { printk(INFO_LEAD "%d commands found and queued for " "completion.\n", p->host_no, -1, -1, -1, found); } if (complete) { aic7xxx_done_cmds_complete(p); } } /*+F************************************************************************* * Function: * aic7xxx_abort_waiting_scb * * Description: * Manipulate the waiting for selection list and return the * scb that follows the one that we remove. *-F*************************************************************************/ static unsigned char aic7xxx_abort_waiting_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb, unsigned char scbpos, unsigned char prev) { unsigned char curscb, next; /* * Select the SCB we want to abort and pull the next pointer out of it. */ curscb = aic_inb(p, SCBPTR); aic_outb(p, scbpos, SCBPTR); next = aic_inb(p, SCB_NEXT); aic7xxx_add_curscb_to_free_list(p); /* * Update the waiting list */ if (prev == SCB_LIST_NULL) { /* * First in the list */ aic_outb(p, next, WAITING_SCBH); } else { /* * Select the scb that pointed to us and update its next pointer. */ aic_outb(p, prev, SCBPTR); aic_outb(p, next, SCB_NEXT); } /* * Point us back at the original scb position and inform the SCSI * system that the command has been aborted. */ aic_outb(p, curscb, SCBPTR); return (next); } /*+F************************************************************************* * Function: * aic7xxx_search_qinfifo * * Description: * Search the queue-in FIFO for matching SCBs and conditionally * requeue. Returns the number of matching SCBs. *-F*************************************************************************/ static int aic7xxx_search_qinfifo(struct aic7xxx_host *p, int target, int channel, int lun, unsigned char tag, int flags, int requeue, volatile scb_queue_type *queue) { int found; unsigned char qinpos, qintail; struct aic7xxx_scb *scbp; found = 0; qinpos = aic_inb(p, QINPOS); qintail = p->qinfifonext; p->qinfifonext = qinpos; while (qinpos != qintail) { scbp = p->scb_data->scb_array[p->qinfifo[qinpos++]]; if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag)) { /* * We found an scb that needs to be removed. */ if (requeue && (queue != NULL)) { if (scbp->flags & SCB_WAITINGQ) { scbq_remove(queue, scbp); scbq_remove(&p->waiting_scbs, scbp); scbq_remove(&p->delayed_scbs[TARGET_INDEX(scbp->cmd)], scbp); p->dev_active_cmds[TARGET_INDEX(scbp->cmd)]++; p->activescbs++; } scbq_insert_tail(queue, scbp); p->dev_active_cmds[TARGET_INDEX(scbp->cmd)]--; p->activescbs--; scbp->flags |= SCB_WAITINGQ; if ( !(scbp->tag_action & TAG_ENB) ) { aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun, TRUE); } } else if (requeue) { p->qinfifo[p->qinfifonext++] = scbp->hscb->tag; } else { /* * Preserve any SCB_RECOVERY_SCB flags on this scb then set the * flags we were called with, presumeably so aic7xxx_run_done_queue * can find this scb */ scbp->flags = flags | (scbp->flags & SCB_RECOVERY_SCB); if (aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun, FALSE) == scbp->hscb->tag) { aic7xxx_index_busy_target(p, scbp->hscb->target_channel_lun, TRUE); } } found++; } else { p->qinfifo[p->qinfifonext++] = scbp->hscb->tag; } } /* * Now that we've done the work, clear out any left over commands in the * qinfifo and update the KERNEL_QINPOS down on the card. * * NOTE: This routine expect the sequencer to already be paused when * it is run....make sure it's that way! */ qinpos = p->qinfifonext; while(qinpos != qintail) { p->qinfifo[qinpos++] = SCB_LIST_NULL; } if (p->features & AHC_QUEUE_REGS) aic_outb(p, p->qinfifonext, HNSCB_QOFF); else aic_outb(p, p->qinfifonext, KERNEL_QINPOS); return (found); } /*+F************************************************************************* * Function: * aic7xxx_scb_on_qoutfifo * * Description: * Is the scb that was passed to us currently on the qoutfifo? *-F*************************************************************************/ static int aic7xxx_scb_on_qoutfifo(struct aic7xxx_host *p, struct aic7xxx_scb *scb) { int i=0; while(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] != SCB_LIST_NULL) { if(p->qoutfifo[(p->qoutfifonext + i) & 0xff ] == scb->hscb->tag) return TRUE; else i++; } return FALSE; } /*+F************************************************************************* * Function: * aic7xxx_reset_device * * Description: * The device at the given target/channel has been reset. Abort * all active and queued scbs for that target/channel. This function * need not worry about linked next pointers because if was a MSG_ABORT_TAG * then we had a tagged command (no linked next), if it was MSG_ABORT or * MSG_BUS_DEV_RESET then the device won't know about any commands any more * and no busy commands will exist, and if it was a bus reset, then nothing * knows about any linked next commands any more. In all cases, we don't * need to worry about the linked next or busy scb, we just need to clear * them. *-F*************************************************************************/ static void aic7xxx_reset_device(struct aic7xxx_host *p, int target, int channel, int lun, unsigned char tag) { struct aic7xxx_scb *scbp; unsigned char active_scb, tcl; int i = 0, j, init_lists = FALSE; /* * Restore this when we're done */ active_scb = aic_inb(p, SCBPTR); if (aic7xxx_verbose & (VERBOSE_RESET_PROCESS | VERBOSE_ABORT_PROCESS)) printk(INFO_LEAD "Reset device, active_scb %d\n", p->host_no, channel, target, lun, active_scb); /* * Deal with the busy target and linked next issues. */ { int min_target, max_target; struct aic7xxx_scb *scbp, *prev_scbp; /* Make all targets 'relative' to bus A. */ if (target == ALL_TARGETS) { switch (channel) { case 0: min_target = 0; max_target = (p->features & AHC_WIDE) ? 15 : 7; break; case 1: min_target = 8; max_target = 15; break; case ALL_CHANNELS: default: min_target = 0; max_target = (p->features & (AHC_TWIN|AHC_WIDE)) ? 15 : 7; break; } } else { min_target = target | (channel << 3); max_target = min_target; } for (i = min_target; i <= max_target; i++) { if ( i == p->scsi_id ) { continue; } if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS)) printk(INFO_LEAD "Cleaning up status information " "and delayed_scbs.\n", p->host_no, channel, i, lun); p->dev_flags[i] &= ~BUS_DEVICE_RESET_PENDING; if ( tag == SCB_LIST_NULL ) { p->dev_flags[i] |= DEVICE_PRINT_WDTR | DEVICE_PRINT_SDTR | DEVICE_RESET_DELAY; p->dev_expires[i] = jiffies + (4 * HZ); p->dev_timer_active |= (0x01 << i); p->dev_last_queue_full_count[i] = 0; p->dev_last_queue_full[i] = 0; p->dev_temp_queue_depth[i] = p->dev_max_queue_depth[i]; } for(j=0; jdelayed_scbs[i].head; while ( (scbp != NULL) && (j++ <= (p->scb_data->numscbs + 1)) ) { prev_scbp = scbp; scbp = scbp->q_next; if ( prev_scbp == scbp ) { if (aic7xxx_verbose & (VERBOSE_ABORT | VERBOSE_RESET)) printk(WARN_LEAD "Yikes!! scb->q_next == scb " "in the delayed_scbs queue!\n", p->host_no, channel, i, lun); scbp = NULL; prev_scbp->q_next = NULL; p->delayed_scbs[i].tail = prev_scbp; } if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag)) { scbq_remove(&p->delayed_scbs[i], prev_scbp); if (prev_scbp->flags & SCB_WAITINGQ) { p->dev_active_cmds[i]++; p->activescbs++; } prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ); prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE; } } if ( j > (p->scb_data->maxscbs + 1) ) { if (aic7xxx_verbose & (VERBOSE_ABORT | VERBOSE_RESET)) printk(WARN_LEAD "Yikes!! There's a loop in the " "delayed_scbs queue!\n", p->host_no, channel, i, lun); scbq_init(&p->delayed_scbs[i]); } if ( !(p->dev_timer_active & (0x01 << MAX_TARGETS)) || time_after_eq(p->dev_timer.expires, p->dev_expires[i]) ) { del_timer(&p->dev_timer); p->dev_timer.expires = p->dev_expires[i]; add_timer(&p->dev_timer); p->dev_timer_active |= (0x01 << MAX_TARGETS); } } } if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS)) printk(INFO_LEAD "Cleaning QINFIFO.\n", p->host_no, channel, target, lun ); aic7xxx_search_qinfifo(p, target, channel, lun, tag, SCB_RESET | SCB_QUEUED_FOR_DONE, /* requeue */ FALSE, NULL); /* * Search the waiting_scbs queue for matches, this catches any SCB_QUEUED * ABORT/RESET commands. */ if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS)) printk(INFO_LEAD "Cleaning waiting_scbs.\n", p->host_no, channel, target, lun ); { struct aic7xxx_scb *scbp, *prev_scbp; j = 0; prev_scbp = NULL; scbp = p->waiting_scbs.head; while ( (scbp != NULL) && (j++ <= (p->scb_data->numscbs + 1)) ) { prev_scbp = scbp; scbp = scbp->q_next; if ( prev_scbp == scbp ) { if (aic7xxx_verbose & (VERBOSE_ABORT | VERBOSE_RESET)) printk(WARN_LEAD "Yikes!! scb->q_next == scb " "in the waiting_scbs queue!\n", p->host_no, CTL_OF_SCB(scbp)); scbp = NULL; prev_scbp->q_next = NULL; p->waiting_scbs.tail = prev_scbp; } if (aic7xxx_match_scb(p, prev_scbp, target, channel, lun, tag)) { scbq_remove(&p->waiting_scbs, prev_scbp); if (prev_scbp->flags & SCB_WAITINGQ) { p->dev_active_cmds[TARGET_INDEX(prev_scbp->cmd)]++; p->activescbs++; } prev_scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ); prev_scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE; } } if ( j > (p->scb_data->maxscbs + 1) ) { if (aic7xxx_verbose & (VERBOSE_ABORT | VERBOSE_RESET)) printk(WARN_LEAD "Yikes!! There's a loop in the " "waiting_scbs queue!\n", p->host_no, channel, target, lun); scbq_init(&p->waiting_scbs); } } /* * Search waiting for selection list. */ if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS)) printk(INFO_LEAD "Cleaning waiting for selection " "list.\n", p->host_no, channel, target, lun); { unsigned char next, prev, scb_index; next = aic_inb(p, WAITING_SCBH); /* Start at head of list. */ prev = SCB_LIST_NULL; j = 0; while ( (next != SCB_LIST_NULL) && (j++ <= (p->scb_data->maxscbs + 1)) ) { aic_outb(p, next, SCBPTR); scb_index = aic_inb(p, SCB_TAG); if (scb_index >= p->scb_data->numscbs) { /* * No aic7xxx_verbose check here.....we want to see this since it * means either the kernel driver or the sequencer screwed things up */ printk(WARN_LEAD "Waiting List inconsistency; SCB index=%d, " "numscbs=%d\n", p->host_no, channel, target, lun, scb_index, p->scb_data->numscbs); next = aic_inb(p, SCB_NEXT); aic7xxx_add_curscb_to_free_list(p); } else { scbp = p->scb_data->scb_array[scb_index]; if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag)) { next = aic7xxx_abort_waiting_scb(p, scbp, next, prev); if (scbp->flags & SCB_WAITINGQ) { p->dev_active_cmds[TARGET_INDEX(scbp->cmd)]++; p->activescbs++; } scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ); scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE; if (prev == SCB_LIST_NULL) { /* * This is either the first scb on the waiting list, or we * have already yanked the first and haven't left any behind. * Either way, we need to turn off the selection hardware if * it isn't already off. */ aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ); aic_outb(p, CLRSELTIMEO, CLRSINT1); } } else { prev = next; next = aic_inb(p, SCB_NEXT); } } } if ( j > (p->scb_data->maxscbs + 1) ) { printk(WARN_LEAD "Yikes!! There is a loop in the waiting for " "selection list!\n", p->host_no, channel, target, lun); init_lists = TRUE; } } /* * Go through disconnected list and remove any entries we have queued * for completion, zeroing their control byte too. */ if (aic7xxx_verbose & (VERBOSE_ABORT_PROCESS | VERBOSE_RESET_PROCESS)) printk(INFO_LEAD "Cleaning disconnected scbs " "list.\n", p->host_no, channel, target, lun); if (p->flags & AHC_PAGESCBS) { unsigned char next, prev, scb_index; next = aic_inb(p, DISCONNECTED_SCBH); prev = SCB_LIST_NULL; j = 0; while ( (next != SCB_LIST_NULL) && (j++ <= (p->scb_data->maxscbs + 1)) ) { aic_outb(p, next, SCBPTR); scb_index = aic_inb(p, SCB_TAG); if (scb_index > p->scb_data->numscbs) { printk(WARN_LEAD "Disconnected List inconsistency; SCB index=%d, " "numscbs=%d\n", p->host_no, channel, target, lun, scb_index, p->scb_data->numscbs); next = aic7xxx_rem_scb_from_disc_list(p, next); } else { scbp = p->scb_data->scb_array[scb_index]; if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag)) { next = aic7xxx_rem_scb_from_disc_list(p, next); if (scbp->flags & SCB_WAITINGQ) { p->dev_active_cmds[TARGET_INDEX(scbp->cmd)]++; p->activescbs++; } scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ); scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE; scbp->hscb->control = 0; } else { prev = next; next = aic_inb(p, SCB_NEXT); } } } if ( j > (p->scb_data->maxscbs + 1) ) { printk(WARN_LEAD "Yikes!! There is a loop in the disconnected list!\n", p->host_no, channel, target, lun); init_lists = TRUE; } } /* * Walk the free list making sure no entries on the free list have * a valid SCB_TAG value or SCB_CONTROL byte. */ if (p->flags & AHC_PAGESCBS) { unsigned char next; j = 0; next = aic_inb(p, FREE_SCBH); if ( (next >= p->scb_data->maxhscbs) && (next != SCB_LIST_NULL) ) { printk(WARN_LEAD "Bogus FREE_SCBH!.\n", p->host_no, channel, target, lun); init_lists = TRUE; next = SCB_LIST_NULL; } while ( (next != SCB_LIST_NULL) && (j++ <= (p->scb_data->maxscbs + 1)) ) { aic_outb(p, next, SCBPTR); if (aic_inb(p, SCB_TAG) < p->scb_data->numscbs) { printk(WARN_LEAD "Free list inconsistency!.\n", p->host_no, channel, target, lun); init_lists = TRUE; next = SCB_LIST_NULL; } else { aic_outb(p, SCB_LIST_NULL, SCB_TAG); aic_outb(p, 0, SCB_CONTROL); next = aic_inb(p, SCB_NEXT); } } if ( j > (p->scb_data->maxscbs + 1) ) { printk(WARN_LEAD "Yikes!! There is a loop in the free list!\n", p->host_no, channel, target, lun); init_lists = TRUE; } } /* * Go through the hardware SCB array looking for commands that * were active but not on any list. */ if (init_lists) { aic_outb(p, SCB_LIST_NULL, FREE_SCBH); aic_outb(p, SCB_LIST_NULL, WAITING_SCBH); aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH); } for (i = p->scb_data->maxhscbs - 1; i >= 0; i--) { unsigned char scbid; aic_outb(p, i, SCBPTR); if (init_lists) { aic_outb(p, SCB_LIST_NULL, SCB_TAG); aic_outb(p, SCB_LIST_NULL, SCB_NEXT); aic_outb(p, SCB_LIST_NULL, SCB_PREV); aic_outb(p, 0, SCB_CONTROL); aic7xxx_add_curscb_to_free_list(p); } else { scbid = aic_inb(p, SCB_TAG); if (scbid < p->scb_data->numscbs) { scbp = p->scb_data->scb_array[scbid]; if (aic7xxx_match_scb(p, scbp, target, channel, lun, tag)) { aic_outb(p, 0, SCB_CONTROL); aic_outb(p, SCB_LIST_NULL, SCB_TAG); aic7xxx_add_curscb_to_free_list(p); } } } } /* * Go through the entire SCB array now and look for commands for * for this target that are stillactive. These are other (most likely * tagged) commands that were disconnected when the reset occurred. * Any commands we find here we know this about, it wasn't on any queue, * it wasn't in the qinfifo, it wasn't in the disconnected or waiting * lists, so it really must have been a paged out SCB. In that case, * we shouldn't need to bother with updating any counters, just mark * the correct flags and go on. */ for (i = 0; i < p->scb_data->numscbs; i++) { scbp = p->scb_data->scb_array[i]; if ((scbp->flags & SCB_ACTIVE) && aic7xxx_match_scb(p, scbp, target, channel, lun, tag) && !aic7xxx_scb_on_qoutfifo(p, scbp)) { if (scbp->flags & SCB_WAITINGQ) { scbq_remove(&p->waiting_scbs, scbp); scbq_remove(&p->delayed_scbs[TARGET_INDEX(scbp->cmd)], scbp); p->dev_active_cmds[TARGET_INDEX(scbp->cmd)]++; p->activescbs++; } scbp->flags |= SCB_RESET | SCB_QUEUED_FOR_DONE; scbp->flags &= ~(SCB_ACTIVE | SCB_WAITINGQ); } } aic_outb(p, active_scb, SCBPTR); } /*+F************************************************************************* * Function: * aic7xxx_clear_intstat * * Description: * Clears the interrupt status. *-F*************************************************************************/ static void aic7xxx_clear_intstat(struct aic7xxx_host *p) { /* Clear any interrupt conditions this may have caused. */ aic_outb(p, CLRSELDO | CLRSELDI | CLRSELINGO, CLRSINT0); aic_outb(p, CLRSELTIMEO | CLRATNO | CLRSCSIRSTI | CLRBUSFREE | CLRSCSIPERR | CLRPHASECHG | CLRREQINIT, CLRSINT1); aic_outb(p, CLRSCSIINT | CLRSEQINT | CLRBRKADRINT | CLRPARERR, CLRINT); } /*+F************************************************************************* * Function: * aic7xxx_reset_current_bus * * Description: * Reset the current SCSI bus. *-F*************************************************************************/ static void aic7xxx_reset_current_bus(struct aic7xxx_host *p) { /* Disable reset interrupts. */ aic_outb(p, aic_inb(p, SIMODE1) & ~ENSCSIRST, SIMODE1); /* Turn off the bus' current operations, after all, we shouldn't have any * valid commands left to cause a RSELI and SELO once we've tossed the * bus away with this reset, so we might as well shut down the sequencer * until the bus is restarted as oppossed to saving the current settings * and restoring them (which makes no sense to me). */ /* Turn on the bus reset. */ aic_outb(p, aic_inb(p, SCSISEQ) | SCSIRSTO, SCSISEQ); while ( (aic_inb(p, SCSISEQ) & SCSIRSTO) == 0) mdelay(5); mdelay(10); /* Turn off the bus reset. */ aic_outb(p, 0, SCSISEQ); mdelay(5); aic7xxx_clear_intstat(p); /* Re-enable reset interrupts. */ aic_outb(p, aic_inb(p, SIMODE1) | ENSCSIRST, SIMODE1); } /*+F************************************************************************* * Function: * aic7xxx_reset_channel * * Description: * Reset the channel. *-F*************************************************************************/ static void aic7xxx_reset_channel(struct aic7xxx_host *p, int channel, int initiate_reset) { unsigned long offset_min, offset_max; unsigned char sblkctl; int cur_channel; if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Reset channel called, %s initiate reset.\n", p->host_no, channel, -1, -1, (initiate_reset==TRUE) ? "will" : "won't" ); if (channel == 1) { p->needsdtr |= (p->needsdtr_copy & 0xFF00); p->sdtr_pending &= 0x00FF; offset_min = 8; offset_max = 16; } else { if (p->features & AHC_WIDE) { p->needsdtr = p->needsdtr_copy; p->needwdtr = p->needwdtr_copy; p->sdtr_pending = 0x0; p->wdtr_pending = 0x0; offset_min = 0; offset_max = 16; } else { /* Channel A */ p->needsdtr |= (p->needsdtr_copy & 0x00FF); p->sdtr_pending &= 0xFF00; offset_min = 0; offset_max = 8; } } while (offset_min < offset_max) { /* * Revert to async/narrow transfers until we renegotiate. */ aic_outb(p, 0, TARG_SCSIRATE + offset_min); if (p->features & AHC_ULTRA2) { aic_outb(p, 0, TARG_OFFSET + offset_min); } offset_min++; } /* * Reset the bus and unpause/restart the controller */ sblkctl = aic_inb(p, SBLKCTL); if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 ) cur_channel = (sblkctl & SELBUSB) >> 3; else cur_channel = 0; if ( (cur_channel != channel) && (p->features & AHC_TWIN) ) { /* * Case 1: Command for another bus is active */ if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Stealthily resetting idle channel.\n", p->host_no, channel, -1, -1); /* * Stealthily reset the other bus without upsetting the current bus. */ aic_outb(p, sblkctl ^ SELBUSB, SBLKCTL); aic_outb(p, aic_inb(p, SIMODE1) & ~ENBUSFREE, SIMODE1); if (initiate_reset) { aic7xxx_reset_current_bus(p); } aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ); aic7xxx_clear_intstat(p); aic_outb(p, sblkctl, SBLKCTL); } else { /* * Case 2: A command from this bus is active or we're idle. */ if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Resetting currently active channel.\n", p->host_no, channel, -1, -1); aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT), SIMODE1); p->flags &= ~AHC_HANDLING_REQINITS; p->msg_type = MSG_TYPE_NONE; p->msg_len = 0; if (initiate_reset) { aic7xxx_reset_current_bus(p); } aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ); aic7xxx_clear_intstat(p); } if (aic7xxx_verbose & VERBOSE_RESET_RETURN) printk(INFO_LEAD "Channel reset\n", p->host_no, channel, -1, -1); /* * Clean up all the state information for the pending transactions * on this bus. */ aic7xxx_reset_device(p, ALL_TARGETS, channel, ALL_LUNS, SCB_LIST_NULL); if ( !(p->features & AHC_TWIN) ) { restart_sequencer(p); } return; } /*+F************************************************************************* * Function: * aic7xxx_run_waiting_queues * * Description: * Scan the awaiting_scbs queue downloading and starting as many * scbs as we can. *-F*************************************************************************/ static void aic7xxx_run_waiting_queues(struct aic7xxx_host *p) { struct aic7xxx_scb *scb; int tindex; int sent; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags = 0; #endif if (p->waiting_scbs.head == NULL) return; sent = 0; /* * First handle SCBs that are waiting but have been assigned a slot. */ DRIVER_LOCK while ((scb = scbq_remove_head(&p->waiting_scbs)) != NULL) { tindex = TARGET_INDEX(scb->cmd); if ( !scb->tag_action && (p->tagenable & (1<dev_temp_queue_depth[tindex] = 1; } if ( (p->dev_active_cmds[tindex] >= p->dev_temp_queue_depth[tindex]) || (p->dev_flags[tindex] & (DEVICE_RESET_DELAY|DEVICE_WAS_BUSY)) || (p->flags & AHC_RESET_DELAY) ) { scbq_insert_tail(&p->delayed_scbs[tindex], scb); } else { scb->flags &= ~SCB_WAITINGQ; p->dev_active_cmds[tindex]++; p->activescbs++; if ( !(scb->tag_action) ) { aic7xxx_busy_target(p, scb); } p->qinfifo[p->qinfifonext++] = scb->hscb->tag; sent++; } } if (sent) { if (p->features & AHC_QUEUE_REGS) aic_outb(p, p->qinfifonext, HNSCB_QOFF); else { pause_sequencer(p); aic_outb(p, p->qinfifonext, KERNEL_QINPOS); unpause_sequencer(p, FALSE); } if (p->activescbs > p->max_activescbs) p->max_activescbs = p->activescbs; } DRIVER_UNLOCK } #ifdef CONFIG_PCI #define DPE 0x80 #define SSE 0x40 #define RMA 0x20 #define RTA 0x10 #define STA 0x08 #define DPR 0x01 /*+F************************************************************************* * Function: * aic7xxx_pci_intr * * Description: * Check the scsi card for PCI errors and clear the interrupt * * NOTE: If you don't have this function and a 2940 card encounters * a PCI error condition, the machine will end up locked as the * interrupt handler gets slammed with non-stop PCI error interrupts *-F*************************************************************************/ static void aic7xxx_pci_intr(struct aic7xxx_host *p) { unsigned char status1; #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) pci_read_config_byte(p->pdev, PCI_STATUS + 1, &status1); #else pcibios_read_config_byte(p->pci_bus, p->pci_device_fn, PCI_STATUS + 1, &status1); #endif if ( (status1 & DPE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ) printk(WARN_LEAD "Data Parity Error during PCI address or PCI write" "phase.\n", p->host_no, -1, -1, -1); if ( (status1 & SSE) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ) printk(WARN_LEAD "Signal System Error Detected\n", p->host_no, -1, -1, -1); if ( (status1 & RMA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ) printk(WARN_LEAD "Received a PCI Master Abort\n", p->host_no, -1, -1, -1); if ( (status1 & RTA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ) printk(WARN_LEAD "Received a PCI Target Abort\n", p->host_no, -1, -1, -1); if ( (status1 & STA) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ) printk(WARN_LEAD "Signaled a PCI Target Abort\n", p->host_no, -1, -1, -1); if ( (status1 & DPR) && (aic7xxx_verbose & VERBOSE_MINOR_ERROR) ) printk(WARN_LEAD "Data Parity Error has been reported via PCI pin " "PERR#\n", p->host_no, -1, -1, -1); #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) pci_write_config_byte(p->pdev, PCI_STATUS + 1, status1); #else pcibios_write_config_byte(p->pci_bus, p->pci_device_fn, PCI_STATUS + 1, status1); #endif if (status1 & (DPR|RMA|RTA)) aic_outb(p, CLRPARERR, CLRINT); if ( (aic7xxx_panic_on_abort) && (p->spurious_int > 500) ) aic7xxx_panic_abort(p, NULL); } #endif /* CONFIG_PCI */ /*+F************************************************************************* * Function: * aic7xxx_timer * * Description: * Take expired extries off of delayed queues and place on waiting queue * then run waiting queue to start commands. ***************************************************************************/ static void aic7xxx_timer(struct aic7xxx_host *p) { int i, j; unsigned long cpu_flags = 0; struct aic7xxx_scb *scb; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) DRIVER_LOCK #else spin_lock_irqsave(&io_request_lock, cpu_flags); #endif p->dev_timer_active &= ~(0x01 << MAX_TARGETS); if ( (p->dev_timer_active & (0x01 << p->scsi_id)) && time_after_eq(jiffies, p->dev_expires[p->scsi_id]) ) { p->flags &= ~AHC_RESET_DELAY; p->dev_timer_active &= ~(0x01 << p->scsi_id); } for(i=0; iscsi_id) && (p->dev_timer_active & (0x01 << i)) && time_after_eq(jiffies, p->dev_expires[i]) ) { p->dev_timer_active &= ~(0x01 << i); p->dev_flags[i] &= ~(DEVICE_RESET_DELAY|DEVICE_WAS_BUSY); p->dev_temp_queue_depth[i] = p->dev_max_queue_depth[i]; j = 0; while ( ((scb = scbq_remove_head(&p->delayed_scbs[i])) != NULL) && (j++ < p->scb_data->numscbs) ) { scbq_insert_tail(&p->waiting_scbs, scb); } if (j == p->scb_data->numscbs) { printk(INFO_LEAD "timer: Yikes, loop in delayed_scbs list.\n", p->host_no, 0, i, -1); scbq_init(&p->delayed_scbs[i]); scbq_init(&p->waiting_scbs); /* * Well, things are screwed now, wait for a reset to clean the junk * out. */ } } else if ( p->dev_timer_active & (0x01 << i) ) { if ( p->dev_timer_active & (0x01 << MAX_TARGETS) ) { if ( time_after_eq(p->dev_timer.expires, p->dev_expires[i]) ) { p->dev_timer.expires = p->dev_expires[i]; } } else { p->dev_timer.expires = p->dev_expires[i]; p->dev_timer_active |= (0x01 << MAX_TARGETS); } } } if ( p->dev_timer_active & (0x01 << MAX_TARGETS) ) { add_timer(&p->dev_timer); } aic7xxx_run_waiting_queues(p); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) DRIVER_UNLOCK #else spin_unlock_irqrestore(&io_request_lock, cpu_flags); #endif } /*+F************************************************************************* * Function: * aic7xxx_construct_sdtr * * Description: * Constucts a synchronous data transfer message in the message * buffer on the sequencer. *-F*************************************************************************/ static void aic7xxx_construct_sdtr(struct aic7xxx_host *p, unsigned char period, unsigned char offset) { p->msg_buf[p->msg_index++] = MSG_EXTENDED; p->msg_buf[p->msg_index++] = MSG_EXT_SDTR_LEN; p->msg_buf[p->msg_index++] = MSG_EXT_SDTR; p->msg_buf[p->msg_index++] = period; p->msg_buf[p->msg_index++] = offset; p->msg_len += 5; } /*+F************************************************************************* * Function: * aic7xxx_construct_wdtr * * Description: * Constucts a wide data transfer message in the message buffer * on the sequencer. *-F*************************************************************************/ static void aic7xxx_construct_wdtr(struct aic7xxx_host *p, unsigned char bus_width) { p->msg_buf[p->msg_index++] = MSG_EXTENDED; p->msg_buf[p->msg_index++] = MSG_EXT_WDTR_LEN; p->msg_buf[p->msg_index++] = MSG_EXT_WDTR; p->msg_buf[p->msg_index++] = bus_width; p->msg_len += 4; } /*+F************************************************************************* * Function: * aic7xxx_calc_residual * * Description: * Calculate the residual data not yet transferred. *-F*************************************************************************/ static void aic7xxx_calculate_residual (struct aic7xxx_host *p, struct aic7xxx_scb *scb) { struct aic7xxx_hwscb *hscb; Scsi_Cmnd *cmd; int actual, i; cmd = scb->cmd; hscb = scb->hscb; /* * Don't destroy valid residual information with * residual coming from a check sense operation. */ if (((scb->hscb->control & DISCONNECTED) == 0) && (scb->flags & SCB_SENSE) == 0) { /* * We had an underflow. At this time, there's only * one other driver that bothers to check for this, * and cmd->underflow seems to be set rather half- * heartedly in the higher-level SCSI code. */ actual = scb->sg_length; for (i=1; i < hscb->residual_SG_segment_count; i++) { actual -= scb->sg_list[scb->sg_count - i].length; } actual -= (hscb->residual_data_count[2] << 16) | (hscb->residual_data_count[1] << 8) | hscb->residual_data_count[0]; if (actual < cmd->underflow) { if (aic7xxx_verbose & VERBOSE_MINOR_ERROR) printk(INFO_LEAD "Underflow - Wanted %u, %s %u, residual SG " "count %d.\n", p->host_no, CTL_OF_SCB(scb), cmd->underflow, (cmd->request.cmd == WRITE) ? "wrote" : "read", actual, hscb->residual_SG_segment_count); aic7xxx_error(cmd) = DID_RETRY_COMMAND; aic7xxx_status(cmd) = hscb->target_status; } } /* * Clean out the residual information in the SCB for the * next consumer. */ hscb->residual_data_count[2] = 0; hscb->residual_data_count[1] = 0; hscb->residual_data_count[0] = 0; hscb->residual_SG_segment_count = 0; } /*+F************************************************************************* * Function: * aic7xxx_handle_device_reset * * Description: * Interrupt handler for sequencer interrupts (SEQINT). *-F*************************************************************************/ static void aic7xxx_handle_device_reset(struct aic7xxx_host *p, int target, int channel) { unsigned short targ_mask; unsigned char tindex = target; tindex |= ((channel & 0x01) << 3); targ_mask = (0x01 << tindex); /* * Go back to async/narrow transfers and renegotiate. */ p->needsdtr |= (p->needsdtr_copy & targ_mask); p->needwdtr |= (p->needwdtr_copy & targ_mask); p->sdtr_pending &= ~targ_mask; p->wdtr_pending &= ~targ_mask; aic_outb(p, 0, TARG_SCSIRATE + tindex); if (p->features & AHC_ULTRA2) aic_outb(p, 0, TARG_OFFSET + tindex); aic7xxx_reset_device(p, target, channel, ALL_LUNS, SCB_LIST_NULL); if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Bus Device Reset delivered.\n", p->host_no, channel, target, -1); aic7xxx_run_done_queue(p, /*complete*/ FALSE); } /*+F************************************************************************* * Function: * aic7xxx_handle_seqint * * Description: * Interrupt handler for sequencer interrupts (SEQINT). *-F*************************************************************************/ static void aic7xxx_handle_seqint(struct aic7xxx_host *p, unsigned char intstat) { struct aic7xxx_scb *scb; unsigned short target_mask; unsigned char target, lun, tindex; unsigned char queue_flag = FALSE; char channel; target = ((aic_inb(p, SAVED_TCL) >> 4) & 0x0f); if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 ) channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3; else channel = 0; tindex = target + (channel << 3); lun = aic_inb(p, SAVED_TCL) & 0x07; target_mask = (0x01 << tindex); /* * Go ahead and clear the SEQINT now, that avoids any interrupt race * conditions later on in case we enable some other interrupt. */ aic_outb(p, CLRSEQINT, CLRINT); switch (intstat & SEQINT_MASK) { case NO_MATCH: { aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ); printk(WARN_LEAD "No active SCB for reconnecting target - Issuing " "BUS DEVICE RESET.\n", p->host_no, channel, target, lun); printk(WARN_LEAD " SAVED_TCL=0x%x, ARG_1=0x%x, SEQADDR=0x%x\n", p->host_no, channel, target, lun, aic_inb(p, SAVED_TCL), aic_inb(p, ARG_1), (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0)); } break; case SEND_REJECT: { if (aic7xxx_verbose & VERBOSE_MINOR_ERROR) printk(INFO_LEAD "Rejecting unknown message (0x%x) received from " "target, SEQ_FLAGS=0x%x\n", p->host_no, channel, target, lun, aic_inb(p, ACCUM), aic_inb(p, SEQ_FLAGS)); } break; case NO_IDENT: { /* * The reconnecting target either did not send an identify * message, or did, but we didn't find an SCB to match and * before it could respond to our ATN/abort, it hit a dataphase. * The only safe thing to do is to blow it away with a bus * reset. */ if (aic7xxx_verbose & (VERBOSE_SEQINT | VERBOSE_RESET_MID)) printk(INFO_LEAD "Target did not send an IDENTIFY message; " "LASTPHASE 0x%x, SAVED_TCL 0x%x\n", p->host_no, channel, target, lun, aic_inb(p, LASTPHASE), aic_inb(p, SAVED_TCL)); aic7xxx_reset_channel(p, channel, /*initiate reset*/ TRUE); aic7xxx_run_done_queue(p, FALSE); } break; case BAD_PHASE: if (aic_inb(p, LASTPHASE) == P_BUSFREE) { if (aic7xxx_verbose & VERBOSE_SEQINT) printk(INFO_LEAD "Missed busfree.\n", p->host_no, channel, target, lun); restart_sequencer(p); } else { if (aic7xxx_verbose & VERBOSE_SEQINT) printk(INFO_LEAD "Unknown scsi bus phase, continuing\n", p->host_no, channel, target, lun); } break; case EXTENDED_MSG: { p->msg_type = MSG_TYPE_INITIATOR_MSGIN; p->msg_len = 0; p->msg_index = 0; #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Enabling REQINITs for MSG_IN\n", p->host_no, channel, target, lun); #endif /* * To actually receive the message, simply turn on * REQINIT interrupts and let our interrupt handler * do the rest (REQINIT should already be true). */ p->flags |= AHC_HANDLING_REQINITS; aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1); /* * We don't want the sequencer unpaused yet so we return early */ return; } case REJECT_MSG: { /* * What we care about here is if we had an outstanding SDTR * or WDTR message for this target. If we did, this is a * signal that the target is refusing negotiation. */ unsigned char scb_index; unsigned char last_msg; scb_index = aic_inb(p, SCB_TAG); scb = p->scb_data->scb_array[scb_index]; last_msg = aic_inb(p, LAST_MSG); if ( (last_msg == MSG_IDENTIFYFLAG) && (scb->tag_action) && !(scb->flags & SCB_MSGOUT_BITS) ) { if (scb->tag_action == MSG_ORDERED_Q_TAG) { /* * OK...the device seems able to accept tagged commands, but * not ordered tag commands, only simple tag commands. So, we * disable ordered tag commands and go on with life just like * normal. */ p->orderedtag &= ~target_mask; scb->tag_action = MSG_SIMPLE_Q_TAG; scb->hscb->control &= ~SCB_TAG_TYPE; scb->hscb->control |= MSG_SIMPLE_Q_TAG; aic_outb(p, scb->hscb->control, SCB_CONTROL); /* * OK..we set the tag type to simple tag command, now we re-assert * ATNO and hope this will take us into the identify phase again * so we can resend the tag type and info to the device. */ aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT); aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO); } else if (scb->tag_action == MSG_SIMPLE_Q_TAG) { unsigned char i, reset = 0; struct aic7xxx_scb *scbp; int old_verbose; /* * Hmmmm....the device is flaking out on tagged commands. The * bad thing is that we already have tagged commands enabled in * the device struct in the mid level code. We also have a queue * set according to the tagged queue depth. Gonna have to live * with it by controlling our queue depth internally and making * sure we don't set the tagged command flag any more. */ p->tagenable &= ~target_mask; p->orderedtag &= ~target_mask; p->dev_max_queue_depth[tindex] = p->dev_temp_queue_depth[tindex] = 1; /* * We set this command up as a bus device reset. However, we have * to clear the tag type as it's causing us problems. We shouldnt * have to worry about any other commands being active, since if * the device is refusing tagged commands, this should be the * first tagged command sent to the device, however, we do have * to worry about any other tagged commands that may already be * in the qinfifo. The easiest way to do this, is to issue a BDR, * send all the commands back to the mid level code, then let them * come back and get rebuilt as untagged commands. */ scb->tag_action = 0; scb->hscb->control &= ~(TAG_ENB | SCB_TAG_TYPE); aic_outb(p, scb->hscb->control, SCB_CONTROL); old_verbose = aic7xxx_verbose; aic7xxx_verbose &= ~(VERBOSE_RESET|VERBOSE_ABORT); for (i=0; i!=p->scb_data->numscbs; i++) { scbp = p->scb_data->scb_array[i]; if ((scbp->flags & SCB_ACTIVE) && (scbp != scb)) { if (aic7xxx_match_scb(p, scbp, target, channel, lun, i)) { aic7xxx_reset_device(p, target, channel, lun, i); reset++; } aic7xxx_run_done_queue(p, FALSE); } } aic7xxx_verbose = old_verbose; /* * Wait until after the for loop to set the busy index since * aic7xxx_reset_device will clear the busy index during its * operation. */ aic7xxx_busy_target(p, scb); printk(INFO_LEAD "Device is refusing tagged commands, using " "untagged I/O.\n", p->host_no, channel, target, lun); aic_outb(p, MSG_IDENTIFYFLAG, MSG_OUT); aic_outb(p, aic_inb(p, SCSISIGI) | ATNO, SCSISIGO); } } else if (scb->flags & SCB_MSGOUT_WDTR) { /* * note 8bit xfers and clear flag */ p->needwdtr &= ~target_mask; p->needwdtr_copy &= ~target_mask; p->wdtr_pending &= ~target_mask; scb->flags &= ~SCB_MSGOUT_BITS; aic7xxx_set_width(p, target, channel, lun, MSG_EXT_WDTR_BUS_8_BIT, (AHC_TRANS_ACTIVE|AHC_TRANS_GOAL|AHC_TRANS_CUR)); aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE); if ( (p->needsdtr_copy & target_mask) && !(p->sdtr_pending & target_mask) ) { p->sdtr_pending |= target_mask; scb->flags |= SCB_MSGOUT_SDTR; aic_outb(p, HOST_MSG, MSG_OUT); aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO); } } else if (scb->flags & SCB_MSGOUT_SDTR) { /* * note asynch xfers and clear flag */ p->needsdtr &= ~target_mask; p->needsdtr_copy &= ~target_mask; p->sdtr_pending &= ~target_mask; scb->flags &= ~SCB_MSGOUT_SDTR; aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, (AHC_TRANS_CUR|AHC_TRANS_ACTIVE|AHC_TRANS_GOAL)); } else if (aic7xxx_verbose & VERBOSE_SEQINT) { /* * Otherwise, we ignore it. */ printk(INFO_LEAD "Received MESSAGE_REJECT for unknown cause. " "Ignoring.\n", p->host_no, channel, target, lun); } } break; case BAD_STATUS: { unsigned char scb_index; struct aic7xxx_hwscb *hscb; Scsi_Cmnd *cmd; /* The sequencer will notify us when a command has an error that * would be of interest to the kernel. This allows us to leave * the sequencer running in the common case of command completes * without error. The sequencer will have DMA'd the SCB back * up to us, so we can reference the drivers SCB array. * * Set the default return value to 0 indicating not to send * sense. The sense code will change this if needed and this * reduces code duplication. */ aic_outb(p, 0, RETURN_1); scb_index = aic_inb(p, SCB_TAG); if (scb_index > p->scb_data->numscbs) { printk(WARN_LEAD "Invalid SCB during SEQINT 0x%02x, SCB_TAG %d.\n", p->host_no, channel, target, lun, intstat, scb_index); break; } scb = p->scb_data->scb_array[scb_index]; hscb = scb->hscb; if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL)) { printk(WARN_LEAD "Invalid SCB during SEQINT 0x%x, scb %d, flags 0x%x," " cmd 0x%lx.\n", p->host_no, channel, target, lun, intstat, scb_index, scb->flags, (unsigned long) scb->cmd); } else { cmd = scb->cmd; hscb->target_status = aic_inb(p, SCB_TARGET_STATUS); aic7xxx_status(cmd) = hscb->target_status; cmd->result = hscb->target_status; switch (status_byte(hscb->target_status)) { case GOOD: if (aic7xxx_verbose & VERBOSE_SEQINT) printk(INFO_LEAD "Interrupted for status of GOOD???\n", p->host_no, CTL_OF_SCB(scb)); break; case COMMAND_TERMINATED: case CHECK_CONDITION: if ( !(scb->flags & SCB_SENSE) ) { /* * XXX - How do we save the residual (if there is one). */ if ( hscb->residual_SG_segment_count != 0 ) aic7xxx_calculate_residual(p, scb); /* * Send a sense command to the requesting target. * XXX - revisit this and get rid of the memcopys. */ memcpy(&scb->sense_cmd[0], &generic_sense[0], sizeof(generic_sense)); scb->sense_cmd[1] = (cmd->lun << 5); scb->sense_cmd[4] = sizeof(cmd->sense_buffer); scb->sg_list[0].address = cpu_to_le32(VIRT_TO_BUS(&cmd->sense_buffer[0])); scb->sg_list[0].length = cpu_to_le32(sizeof(cmd->sense_buffer)); /* * XXX - We should allow disconnection, but can't as it * might allow overlapped tagged commands. */ /* hscb->control &= DISCENB; */ hscb->control = 0; hscb->target_status = 0; hscb->SG_list_pointer = cpu_to_le32(VIRT_TO_BUS(&scb->sg_list[0])); hscb->data_pointer = scb->sg_list[0].address; hscb->data_count = scb->sg_list[0].length; hscb->SCSI_cmd_pointer = cpu_to_le32(VIRT_TO_BUS(&scb->sense_cmd[0])); hscb->SCSI_cmd_length = COMMAND_SIZE(scb->sense_cmd[0]); hscb->residual_SG_segment_count = 0; hscb->residual_data_count[0] = 0; hscb->residual_data_count[1] = 0; hscb->residual_data_count[2] = 0; scb->sg_count = hscb->SG_segment_count = 1; scb->sg_length = sizeof(cmd->sense_buffer); scb->tag_action = 0; /* * This problem could be caused if the target has lost power * or found some other way to loose the negotiation settings, * so if needed, we'll re-negotiate while doing the sense cmd. * However, if this SCB already was attempting to negotiate, * then we assume this isn't the problem and skip this part. */ #ifdef AIC7XXX_FAKE_NEGOTIATION_CMDS if ( (scb->cmd->cmnd[0] != TEST_UNIT_READY) && (p->dev_flags[tindex] & DEVICE_SCANNED) && !(p->wdtr_pending & target_mask) && !(p->sdtr_pending & target_mask) ) { p->needwdtr |= (p->needwdtr_copy & target_mask); p->needsdtr |= (p->needsdtr_copy & target_mask); } else if ( (scb->cmd == p->dev_wdtr_cmnd[tindex]) || (scb->cmd == p->dev_sdtr_cmnd[tindex]) ) { /* * This is already a negotiation command, so we must have * already done either WDTR or SDTR (or maybe both). So * we simply check sdtr_pending and needsdtr to see if we * should throw out SDTR on this command. * * Note: Don't check the needsdtr_copy here, instead just * check to see if WDTR wiped out our SDTR and set needsdtr. * Even if WDTR did wipe out SDTR and set needsdtr, if * parse_msg() then turned around and started our SDTR * in back to back fasion, then conclusion of that should * have negated any needsdtr setting. That's why we only * check needsdtr and sdtr_pending. */ scb->flags &= ~SCB_MSGOUT_BITS; if ( (scb->cmd == p->dev_wdtr_cmnd[tindex]) && !(p->sdtr_pending & target_mask) && (p->needsdtr & target_mask) ) { p->sdtr_pending |= target_mask; hscb->control |= MK_MESSAGE; scb->flags |= SCB_MSGOUT_SDTR; } /* * This is the important part though. We are getting sense * info back from this device. It's going into a fake * command. We need to put that into the real command * instead so that the mid level SCSI code can act upon it. * So, when we set up these fake commands, the next pointer * is used to point to the real command. Use that to change * the address of our sense_buffer[] to the real command. * However, don't do this if the real command is also a * TEST_UNIT_READY as it will most likely pull down its own * SENSE information anyway. */ if (cmd->next->cmnd[0] != TEST_UNIT_READY) { scb->sg_list[0].address = cpu_to_le32(VIRT_TO_BUS(&cmd->next->sense_buffer[0])); hscb->data_pointer = scb->sg_list[0].address; } } #else if ( (scb->cmd->cmnd[0] != TEST_UNIT_READY) && !(scb->flags & SCB_MSGOUT_BITS) && (scb->cmd->lun == 0) && (p->dev_flags[TARGET_INDEX(scb->cmd)] & DEVICE_SCANNED) ) { if ( (p->needwdtr_copy & target_mask) && !(p->wdtr_pending & target_mask) && !(p->sdtr_pending & target_mask) ) { p->needwdtr |= target_mask; p->wdtr_pending |= target_mask; hscb->control |= MK_MESSAGE; scb->flags |= SCB_MSGOUT_WDTR; } if ( p->needsdtr_copy & target_mask ) { p->needsdtr |= target_mask; if ( !(p->wdtr_pending & target_mask) && !(p->sdtr_pending & target_mask) ) { p->sdtr_pending |= target_mask; hscb->control |= MK_MESSAGE; scb->flags |= SCB_MSGOUT_SDTR; } } } else scb->flags &= ~SCB_MSGOUT_BITS; #endif /* AIC7XXX_FAKE_NEGOTIATION_CMDS */ scb->flags |= SCB_SENSE; /* * Ensure the target is busy since this will be an * an untagged request. */ #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) { if (scb->flags & SCB_MSGOUT_BITS) printk(INFO_LEAD "Requesting SENSE with %s\n", p->host_no, CTL_OF_SCB(scb), (scb->flags & SCB_MSGOUT_SDTR) ? "SDTR" : "WDTR"); else printk(INFO_LEAD "Requesting SENSE, no MSG\n", p->host_no, CTL_OF_SCB(scb)); } #endif aic7xxx_busy_target(p, scb); aic_outb(p, SEND_SENSE, RETURN_1); aic7xxx_error(cmd) = DID_OK; break; } /* first time sense, no errors */ aic7xxx_error(cmd) = DID_OK; scb->flags &= ~SCB_SENSE; break; case QUEUE_FULL: queue_flag = TRUE; /* Mark that this is a QUEUE_FULL and */ case BUSY: /* drop through to here */ { struct aic7xxx_scb *next_scbp, *prev_scbp; unsigned char active_hscb, next_hscb, prev_hscb, scb_index; /* * We have to look three places for queued commands: * 1: QINFIFO * 2: p->waiting_scbs queue * 3: WAITING_SCBS list on card (for commands that are started * but haven't yet made it to the device) */ aic7xxx_search_qinfifo(p, target, channel, lun, SCB_LIST_NULL, 0, TRUE, &p->delayed_scbs[tindex]); next_scbp = p->waiting_scbs.head; while ( next_scbp != NULL ) { prev_scbp = next_scbp; next_scbp = next_scbp->q_next; if ( aic7xxx_match_scb(p, prev_scbp, target, channel, lun, SCB_LIST_NULL) ) { scbq_remove(&p->waiting_scbs, prev_scbp); scbq_insert_tail(&p->delayed_scbs[tindex], prev_scbp); } } next_scbp = NULL; active_hscb = aic_inb(p, SCBPTR); prev_hscb = next_hscb = scb_index = SCB_LIST_NULL; next_hscb = aic_inb(p, WAITING_SCBH); while (next_hscb != SCB_LIST_NULL) { aic_outb(p, next_hscb, SCBPTR); scb_index = aic_inb(p, SCB_TAG); if (scb_index < p->scb_data->numscbs) { next_scbp = p->scb_data->scb_array[scb_index]; if (aic7xxx_match_scb(p, next_scbp, target, channel, lun, SCB_LIST_NULL) ) { if (next_scbp->flags & SCB_WAITINGQ) { p->dev_active_cmds[tindex]++; p->activescbs--; scbq_remove(&p->delayed_scbs[tindex], next_scbp); scbq_remove(&p->waiting_scbs, next_scbp); } scbq_insert_head(&p->delayed_scbs[tindex], next_scbp); next_scbp->flags |= SCB_WAITINGQ; p->dev_active_cmds[tindex]--; p->activescbs--; next_hscb = aic_inb(p, SCB_NEXT); aic_outb(p, 0, SCB_CONTROL); aic_outb(p, SCB_LIST_NULL, SCB_TAG); aic7xxx_add_curscb_to_free_list(p); if (prev_hscb == SCB_LIST_NULL) { /* We were first on the list, * so we kill the selection * hardware. Let the sequencer * re-init the hardware itself */ aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ); aic_outb(p, CLRSELTIMEO, CLRSINT1); aic_outb(p, next_hscb, WAITING_SCBH); } else { aic_outb(p, prev_hscb, SCBPTR); aic_outb(p, next_hscb, SCB_NEXT); } } else { prev_hscb = next_hscb; next_hscb = aic_inb(p, SCB_NEXT); } } /* scb_index >= p->scb_data->numscbs */ } aic_outb(p, active_hscb, SCBPTR); if (scb->flags & SCB_WAITINGQ) { scbq_remove(&p->delayed_scbs[tindex], scb); scbq_remove(&p->waiting_scbs, scb); p->dev_active_cmds[tindex]++; p->activescbs++; } scbq_insert_head(&p->delayed_scbs[tindex], scb); p->dev_active_cmds[tindex]--; p->activescbs--; scb->flags |= SCB_WAITINGQ | SCB_WAS_BUSY; if ( !(p->dev_timer_active & (0x01 << tindex)) ) { p->dev_timer_active |= (0x01 << tindex); if ( p->dev_active_cmds[tindex] ) { p->dev_expires[tindex] = jiffies + HZ; } else { p->dev_expires[tindex] = jiffies + (HZ / 10); } if ( !(p->dev_timer_active & (0x01 << MAX_TARGETS)) ) { p->dev_timer.expires = p->dev_expires[tindex]; p->dev_timer_active |= (0x01 << MAX_TARGETS); add_timer(&p->dev_timer); } else if ( time_after_eq(p->dev_timer.expires, p->dev_expires[tindex]) ) { del_timer(&p->dev_timer); p->dev_timer.expires = p->dev_expires[tindex]; add_timer(&p->dev_timer); } } #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose & VERBOSE_MINOR_ERROR) { if (queue_flag) printk(INFO_LEAD "Queue full received; queue depth %d, " "active %d\n", p->host_no, CTL_OF_SCB(scb), p->dev_max_queue_depth[tindex], p->dev_active_cmds[tindex]); else printk(INFO_LEAD "Target busy\n", p->host_no, CTL_OF_SCB(scb)); } #endif if (queue_flag) { p->dev_temp_queue_depth[tindex] = p->dev_active_cmds[tindex]; if ( p->dev_last_queue_full[tindex] != p->dev_active_cmds[tindex] ) { p->dev_last_queue_full[tindex] = p->dev_active_cmds[tindex]; p->dev_last_queue_full_count[tindex] = 0; } else { p->dev_last_queue_full_count[tindex]++; } if ( (p->dev_last_queue_full_count[tindex] > 14) && (p->dev_active_cmds[tindex] > 4) ) { if (aic7xxx_verbose & VERBOSE_NEGOTIATION2) printk(INFO_LEAD "Queue depth reduced to %d\n", p->host_no, CTL_OF_SCB(scb), p->dev_active_cmds[tindex]); p->dev_max_queue_depth[tindex] = p->dev_active_cmds[tindex]; p->dev_last_queue_full[tindex] = 0; p->dev_last_queue_full_count[tindex] = 0; } else { p->dev_flags[tindex] |= DEVICE_WAS_BUSY; } } break; } default: if (aic7xxx_verbose & VERBOSE_SEQINT) printk(INFO_LEAD "Unexpected target status 0x%x.\n", p->host_no, CTL_OF_SCB(scb), scb->hscb->target_status); if (!aic7xxx_error(cmd)) { aic7xxx_error(cmd) = DID_RETRY_COMMAND; } break; } /* end switch */ } /* end else of */ } break; case AWAITING_MSG: { unsigned char scb_index, msg_out; scb_index = aic_inb(p, SCB_TAG); msg_out = aic_inb(p, MSG_OUT); scb = p->scb_data->scb_array[scb_index]; p->msg_index = p->msg_len = 0; /* * This SCB had a MK_MESSAGE set in its control byte informing * the sequencer that we wanted to send a special message to * this target. */ if ( !(scb->flags & SCB_DEVICE_RESET) && (aic_inb(p, MSG_OUT) == MSG_IDENTIFYFLAG) && (scb->hscb->control & TAG_ENB) ) { p->msg_buf[p->msg_index++] = scb->tag_action; p->msg_buf[p->msg_index++] = scb->hscb->tag; p->msg_len += 2; } if (scb->flags & SCB_DEVICE_RESET) { p->msg_buf[p->msg_index++] = MSG_BUS_DEV_RESET; p->msg_len++; if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Bus device reset mailed.\n", p->host_no, CTL_OF_SCB(scb)); } else if (scb->flags & SCB_ABORT) { if (scb->tag_action) { p->msg_buf[p->msg_index++] = MSG_ABORT_TAG; } else { p->msg_buf[p->msg_index++] = MSG_ABORT; } p->msg_len++; if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "Abort message mailed.\n", p->host_no, CTL_OF_SCB(scb)); } else if (scb->flags & SCB_MSGOUT_WDTR) { #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Sending WDTR message.\n", p->host_no, CTL_OF_SCB(scb)); #endif aic7xxx_construct_wdtr(p, p->transinfo[TARGET_INDEX(scb->cmd)].goal_width); } else if (scb->flags & SCB_MSGOUT_SDTR) { unsigned int max_sync, period; /* * We need to set an accurate goal_offset instead of * the ridiculously high one we default to. We should * now know if we are wide. Plus, the WDTR code will * set our goal_offset for us as well. */ if (p->transinfo[tindex].goal_offset) { if (p->features & AHC_ULTRA2) p->transinfo[tindex].goal_offset = MAX_OFFSET_ULTRA2; else if (p->transinfo[tindex].cur_width == MSG_EXT_WDTR_BUS_16_BIT) p->transinfo[tindex].goal_offset = MAX_OFFSET_16BIT; else p->transinfo[tindex].goal_offset = MAX_OFFSET_8BIT; } /* * Now that the device is selected, use the bits in SBLKCTL and * SSTAT2 to determine the max sync rate for this device. */ if (p->features & AHC_ULTRA2) { if ( (aic_inb(p, SBLKCTL) & ENAB40) && !(aic_inb(p, SSTAT2) & EXP_ACTIVE) ) { max_sync = AHC_SYNCRATE_ULTRA2; } else { max_sync = AHC_SYNCRATE_ULTRA; } } else if (p->features & AHC_ULTRA) { max_sync = AHC_SYNCRATE_ULTRA; } else { max_sync = AHC_SYNCRATE_FAST; } period = p->transinfo[tindex].goal_period; aic7xxx_find_syncrate(p, &period, max_sync); #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Sending SDTR %d/%d message.\n", p->host_no, CTL_OF_SCB(scb), p->transinfo[tindex].goal_period, p->transinfo[tindex].goal_offset); #endif aic7xxx_construct_sdtr(p, period, p->transinfo[tindex].goal_offset); } else { sti(); panic("aic7xxx: AWAITING_MSG for an SCB that does " "not have a waiting message.\n"); } /* * We've set everything up to send our message, now to actually do * so we need to enable reqinit interrupts and let the interrupt * handler do the rest. We don't want to unpause the sequencer yet * though so we'll return early. We also have to make sure that * we clear the SEQINT *BEFORE* we set the REQINIT handler active * or else it's possible on VLB cards to loose the first REQINIT * interrupt. Edge triggered EISA cards could also loose this * interrupt, although PCI and level triggered cards should not * have this problem since they continually interrupt the kernel * until we take care of the situation. */ scb->flags |= SCB_MSGOUT_SENT; p->msg_index = 0; p->msg_type = MSG_TYPE_INITIATOR_MSGOUT; p->flags |= AHC_HANDLING_REQINITS; aic_outb(p, aic_inb(p, SIMODE1) | ENREQINIT, SIMODE1); return; } break; case DATA_OVERRUN: { unsigned char scb_index = aic_inb(p, SCB_TAG); unsigned char lastphase = aic_inb(p, LASTPHASE); unsigned int i; scb = (p->scb_data->scb_array[scb_index]); /* * XXX - What do we really want to do on an overrun? The * mid-level SCSI code should handle this, but for now, * we'll just indicate that the command should retried. * If we retrieved sense info on this target, then the * base SENSE info should have been saved prior to the * overrun error. In that case, we return DID_OK and let * the mid level code pick up on the sense info. Otherwise * we return DID_ERROR so the command will get retried. */ if ( !(scb->flags & SCB_SENSE) ) { printk(WARN_LEAD "Data overrun detected in %s phase, tag %d;\n", p->host_no, CTL_OF_SCB(scb), (lastphase == P_DATAIN) ? "Data-In" : "Data-Out", scb->hscb->tag); printk(KERN_WARNING " %s seen Data Phase. Length=%d, NumSGs=%d.\n", (aic_inb(p, SEQ_FLAGS) & DPHASE) ? "Have" : "Haven't", scb->sg_length, scb->sg_count); for (i = 0; i < scb->sg_count; i++) { printk(KERN_WARNING " sg[%d] - Addr 0x%x : Length %d\n", i, le32_to_cpu(scb->sg_list[i].address), le32_to_cpu(scb->sg_list[i].length) ); } aic7xxx_error(scb->cmd) = DID_ERROR; } else printk(INFO_LEAD "Data Overrun during SEND_SENSE operation.\n", p->host_no, CTL_OF_SCB(scb)); } break; #if AIC7XXX_NOT_YET case TRACEPOINT: { printk(INFO_LEAD "Tracepoint #1 reached.\n", p->host_no, channel, target, lun); } break; case TRACEPOINT2: { printk(INFO_LEAD "Tracepoint #2 reached.\n", p->host_no, channel, target, lun); } break; /* XXX Fill these in later */ case MSG_BUFFER_BUSY: printk("aic7xxx: Message buffer busy.\n"); break; case MSGIN_PHASEMIS: printk("aic7xxx: Message-in phasemis.\n"); break; #endif default: /* unknown */ printk(WARN_LEAD "Unknown SEQINT, INTSTAT 0x%x, SCSISIGI 0x%x.\n", p->host_no, channel, target, lun, intstat, aic_inb(p, SCSISIGI)); break; } /* * Clear the sequencer interrupt and unpause the sequencer. */ unpause_sequencer(p, /* unpause always */ TRUE); } /*+F************************************************************************* * Function: * aic7xxx_parse_msg * * Description: * Parses incoming messages into actions on behalf of * aic7xxx_handle_reqinit *_F*************************************************************************/ static int aic7xxx_parse_msg(struct aic7xxx_host *p, struct aic7xxx_scb *scb) { int reject, reply, done; unsigned char target_scsirate, tindex; unsigned short target_mask; unsigned char target, channel, lun; target = scb->cmd->target; channel = scb->cmd->channel; lun = scb->cmd->lun; reply = reject = done = FALSE; tindex = TARGET_INDEX(scb->cmd); target_scsirate = aic_inb(p, TARG_SCSIRATE + tindex); target_mask = (0x01 << tindex); /* * Parse as much of the message as is availible, * rejecting it if we don't support it. When * the entire message is availible and has been * handled, return TRUE indicating that we have * parsed an entire message. */ if (p->msg_buf[0] != MSG_EXTENDED) { reject = TRUE; } /* * Just accept the length byte outright and perform * more checking once we know the message type. */ if ( !reject && (p->msg_len > 2) ) { switch(p->msg_buf[2]) { case MSG_EXT_SDTR: { unsigned int period, offset; unsigned char maxsync, saved_offset; struct aic7xxx_syncrate *syncrate; if (p->msg_buf[1] != MSG_EXT_SDTR_LEN) { reject = TRUE; break; } if (p->msg_len < (MSG_EXT_SDTR_LEN + 2)) { break; } period = p->msg_buf[3]; saved_offset = offset = p->msg_buf[4]; if (p->features & AHC_ULTRA2) { if ( (aic_inb(p, SBLKCTL) & ENAB40) && !(aic_inb(p, SSTAT2) & EXP_ACTIVE) ) { maxsync = AHC_SYNCRATE_ULTRA2; } else { maxsync = AHC_SYNCRATE_ULTRA; } } else if (p->features & AHC_ULTRA) { maxsync = AHC_SYNCRATE_ULTRA; } else { maxsync = AHC_SYNCRATE_FAST; } /* * We might have a device that is starting negotiation with us * before we can start up negotiation with it....be prepared to * have a device ask for a higher speed then we want to give it * in that case */ if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) != (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR) ) { if (!(p->dev_flags[tindex] & DEVICE_SCANNED)) { /* * Not only is the device starting this up, but it also hasn't * been scanned yet, so this would likely be our TUR or our * INQUIRY command at scan time, so we need to use the * settings from the SEEPROM if they existed. Of course, even * if we didn't find a SEEPROM, we stuffed default values into * the user settings anyway, so use those in all cases. */ p->transinfo[tindex].goal_period = p->transinfo[tindex].user_period; p->transinfo[tindex].goal_offset = p->transinfo[tindex].user_offset; p->needsdtr_copy |= target_mask; } if ( !p->transinfo[tindex].goal_offset ) period = 255; if ( p->transinfo[tindex].goal_period > period ) period = p->transinfo[tindex].goal_period; } syncrate = aic7xxx_find_syncrate(p, &period, maxsync); aic7xxx_validate_offset(p, syncrate, &offset, target_scsirate & WIDEXFER); aic7xxx_set_syncrate(p, syncrate, target, channel, period, offset, AHC_TRANS_ACTIVE|AHC_TRANS_CUR); /* * Did we drop to async? If so, are we sending a reply? If we are, * then we have to make sure that the reply value reflects the proper * settings so we need to set the goal values according to what * we need to send. */ if ( (offset == 0) || (offset != saved_offset) || ((scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) != (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR) ) ) { aic7xxx_set_syncrate(p, syncrate, target, channel, period, offset, AHC_TRANS_GOAL|AHC_TRANS_QUITE); if ( offset == 0 ) { p->needsdtr_copy &= ~target_mask; } } /* * Did we start this, if not, or if we went to low and had to * go async, then send an SDTR back to the target */ p->needsdtr &= ~target_mask; p->sdtr_pending &= ~target_mask; if ( ((scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) == (SCB_MSGOUT_SENT|SCB_MSGOUT_SDTR)) && (offset == saved_offset) ) { scb->flags &= ~SCB_MSGOUT_BITS; } else { scb->flags &= ~SCB_MSGOUT_BITS; scb->flags |= SCB_MSGOUT_SDTR; aic_outb(p, HOST_MSG, MSG_OUT); aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO); } done = TRUE; break; } case MSG_EXT_WDTR: { unsigned char bus_width; if (p->msg_buf[1] != MSG_EXT_WDTR_LEN) { reject = TRUE; break; } if (p->msg_len < (MSG_EXT_WDTR_LEN + 2)) { break; } bus_width = p->msg_buf[3]; if ( (scb->flags & (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR)) == (SCB_MSGOUT_SENT|SCB_MSGOUT_WDTR) ) { switch(bus_width) { default: { reject = TRUE; if ( (aic7xxx_verbose & VERBOSE_NEGOTIATION2) && ((p->dev_flags[tindex] & DEVICE_PRINT_WDTR) || (aic7xxx_verbose > 0xffff)) ) { printk(INFO_LEAD "Requesting %d bit transfers, rejecting.\n", p->host_no, CTL_OF_SCB(scb), 8 * (0x01 << bus_width)); p->dev_flags[tindex] &= ~DEVICE_PRINT_WDTR; } } /* We fall through on purpose */ case MSG_EXT_WDTR_BUS_8_BIT: { bus_width = MSG_EXT_WDTR_BUS_8_BIT; p->needwdtr_copy &= ~target_mask; break; } case MSG_EXT_WDTR_BUS_16_BIT: { break; } } scb->flags &= ~SCB_MSGOUT_BITS; p->wdtr_pending &= ~target_mask; p->needwdtr &= ~target_mask; } else { scb->flags &= ~SCB_MSGOUT_BITS; scb->flags |= SCB_MSGOUT_WDTR; reply = TRUE; if ( !(p->dev_flags[tindex] & DEVICE_SCANNED) ) { /* * Well, we now know the WDTR and SYNC caps of this device since * it contacted us first, mark it as such and copy the user stuff * over to the goal stuff. */ p->transinfo[tindex].goal_period = p->transinfo[tindex].user_period; p->transinfo[tindex].goal_offset = p->transinfo[tindex].user_offset; p->transinfo[tindex].goal_width = p->transinfo[tindex].user_width; p->needwdtr_copy |= target_mask; p->needsdtr_copy |= target_mask; } switch(bus_width) { default: { if ( (p->features & AHC_WIDE) && (p->transinfo[tindex].goal_width == MSG_EXT_WDTR_BUS_16_BIT) ) { bus_width = MSG_EXT_WDTR_BUS_16_BIT; break; } } /* Fall through if we aren't a wide card */ case MSG_EXT_WDTR_BUS_8_BIT: { p->needwdtr_copy &= ~target_mask; bus_width = MSG_EXT_WDTR_BUS_8_BIT; aic7xxx_set_width(p, target, channel, lun, bus_width, AHC_TRANS_GOAL|AHC_TRANS_QUITE); break; } } p->needwdtr &= ~target_mask; p->wdtr_pending &= ~target_mask; aic_outb(p, HOST_MSG, MSG_OUT); aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO); } aic7xxx_set_width(p, target, channel, lun, bus_width, AHC_TRANS_ACTIVE|AHC_TRANS_CUR); /* * By virtue of the SCSI spec, a WDTR message negates any existing * SDTR negotiations. So, even if needsdtr isn't marked for this * device, we still have to do a new SDTR message if the device * supports SDTR at all. Therefore, we check needsdtr_copy instead * of needstr. */ aic7xxx_set_syncrate(p, NULL, target, channel, 0, 0, AHC_TRANS_ACTIVE|AHC_TRANS_CUR|AHC_TRANS_QUITE); if ( (p->needsdtr_copy & target_mask) && !(p->sdtr_pending & target_mask)) { p->needsdtr |= target_mask; if ( !reject && !reply ) { scb->flags &= ~SCB_MSGOUT_WDTR; if (p->transinfo[tindex].goal_period) { p->sdtr_pending |= target_mask; scb->flags |= SCB_MSGOUT_SDTR; aic_outb(p, HOST_MSG, MSG_OUT); aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO); } } } done = TRUE; break; } default: { reject = TRUE; break; } } /* end of switch(p->msg_type) */ } /* end of if (!reject && (p->msg_len > 2)) */ if (reject) { aic_outb(p, MSG_MESSAGE_REJECT, MSG_OUT); aic_outb(p, aic_inb(p, SCSISIGO) | ATNO, SCSISIGO); done = TRUE; } return(done); } /*+F************************************************************************* * Function: * aic7xxx_handle_reqinit * * Description: * Interrupt handler for REQINIT interrupts (used to transfer messages to * and from devices). *_F*************************************************************************/ static void aic7xxx_handle_reqinit(struct aic7xxx_host *p, struct aic7xxx_scb *scb) { unsigned char lastbyte; unsigned char phasemis; int done = FALSE; switch(p->msg_type) { case MSG_TYPE_INITIATOR_MSGOUT: { if (p->msg_len == 0) panic("aic7xxx: REQINIT with no active message!\n"); lastbyte = (p->msg_index == (p->msg_len - 1)); phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK) != P_MESGOUT; if (lastbyte || phasemis) { /* Time to end the message */ p->msg_len = 0; p->msg_type = MSG_TYPE_NONE; /* * NOTE-TO-MYSELF: If you clear the REQINIT after you * disable REQINITs, then cases of REJECT_MSG stop working * and hang the bus */ aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1); aic_outb(p, CLRSCSIINT, CLRINT); p->flags &= ~AHC_HANDLING_REQINITS; if (phasemis == 0) { aic_outb(p, p->msg_buf[p->msg_index], SINDEX); aic_outb(p, 0, RETURN_1); #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Completed sending of REQINIT message.\n", p->host_no, CTL_OF_SCB(scb)); #endif } else { aic_outb(p, MSGOUT_PHASEMIS, RETURN_1); #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "PHASEMIS while sending REQINIT message.\n", p->host_no, CTL_OF_SCB(scb)); #endif } unpause_sequencer(p, TRUE); } else { /* * Present the byte on the bus (clearing REQINIT) but don't * unpause the sequencer. */ aic_outb(p, CLRREQINIT, CLRSINT1); aic_outb(p, CLRSCSIINT, CLRINT); aic_outb(p, p->msg_buf[p->msg_index++], SCSIDATL); } break; } case MSG_TYPE_INITIATOR_MSGIN: { phasemis = ( aic_inb(p, SCSISIGI) & PHASE_MASK ) != P_MESGIN; if (phasemis == 0) { p->msg_len++; /* Pull the byte in without acking it */ p->msg_buf[p->msg_index] = aic_inb(p, SCSIBUSL); done = aic7xxx_parse_msg(p, scb); /* Ack the byte */ aic_outb(p, CLRREQINIT, CLRSINT1); aic_outb(p, CLRSCSIINT, CLRINT); aic_inb(p, SCSIDATL); p->msg_index++; } if (phasemis || done) { #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) { if (phasemis) printk(INFO_LEAD "PHASEMIS while receiving REQINIT message.\n", p->host_no, CTL_OF_SCB(scb)); else printk(INFO_LEAD "Completed receipt of REQINIT message.\n", p->host_no, CTL_OF_SCB(scb)); } #endif /* Time to end our message session */ p->msg_len = 0; p->msg_type = MSG_TYPE_NONE; aic_outb(p, aic_inb(p, SIMODE1) & ~ENREQINIT, SIMODE1); aic_outb(p, CLRSCSIINT, CLRINT); p->flags &= ~AHC_HANDLING_REQINITS; unpause_sequencer(p, TRUE); } break; } default: { panic("aic7xxx: Unknown REQINIT message type.\n"); break; } } /* End of switch(p->msg_type) */ } /*+F************************************************************************* * Function: * aic7xxx_handle_scsiint * * Description: * Interrupt handler for SCSI interrupts (SCSIINT). *-F*************************************************************************/ static void aic7xxx_handle_scsiint(struct aic7xxx_host *p, unsigned char intstat) { unsigned char scb_index; unsigned char status; struct aic7xxx_scb *scb; scb_index = aic_inb(p, SCB_TAG); status = aic_inb(p, SSTAT1); if (scb_index < p->scb_data->numscbs) { scb = p->scb_data->scb_array[scb_index]; if ((scb->flags & SCB_ACTIVE) == 0) { scb = NULL; } } else { scb = NULL; } if ((status & SCSIRSTI) != 0) { int channel; if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 ) channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3; else channel = 0; if (aic7xxx_verbose & VERBOSE_RESET) printk(WARN_LEAD "Someone else reset the channel!!\n", p->host_no, channel, -1, -1); /* * Go through and abort all commands for the channel, but do not * reset the channel again. */ aic7xxx_reset_channel(p, channel, /* Initiate Reset */ FALSE); aic7xxx_run_done_queue(p, FALSE); scb = NULL; } else if ( ((status & BUSFREE) != 0) && ((status & SELTO) == 0) ) { /* * First look at what phase we were last in. If it's message-out, * chances are pretty good that the bus free was in response to * one of our abort requests. */ unsigned char lastphase = aic_inb(p, LASTPHASE); unsigned char saved_tcl = aic_inb(p, SAVED_TCL); unsigned char target = (saved_tcl >> 4) & 0x0F; int channel; int printerror = TRUE; if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 ) channel = (aic_inb(p, SBLKCTL) & SELBUSB) >> 3; else channel = 0; aic_outb(p, aic_inb(p, SCSISEQ) & (ENSELI|ENRSELI|ENAUTOATNP), SCSISEQ); if (lastphase == P_MESGOUT) { unsigned char message; message = aic_inb(p, SINDEX); if ((message == MSG_ABORT) || (message == MSG_ABORT_TAG)) { if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "SCB %d abort delivered.\n", p->host_no, CTL_OF_SCB(scb), scb->hscb->tag); aic7xxx_reset_device(p, target, channel, ALL_LUNS, (message == MSG_ABORT) ? SCB_LIST_NULL : scb->hscb->tag ); aic7xxx_run_done_queue(p, FALSE); scb = NULL; printerror = 0; } else if (message == MSG_BUS_DEV_RESET) { aic7xxx_handle_device_reset(p, target, channel); scb = NULL; printerror = 0; } } if (printerror != 0) { if (scb != NULL) { unsigned char tag; if ((scb->hscb->control & TAG_ENB) != 0) { tag = scb->hscb->tag; } else { tag = SCB_LIST_NULL; } aic7xxx_reset_device(p, target, channel, ALL_LUNS, tag); aic7xxx_run_done_queue(p, FALSE); } printk(INFO_LEAD "Unexpected busfree, LASTPHASE = 0x%x, " "SEQADDR = 0x%x\n", p->host_no, channel, target, -1, lastphase, (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0)); scb = NULL; } aic_outb(p, MSG_NOOP, MSG_OUT); aic_outb(p, aic_inb(p, SIMODE1) & ~(ENBUSFREE|ENREQINIT), SIMODE1); p->flags &= ~AHC_HANDLING_REQINITS; aic_outb(p, CLRBUSFREE, CLRSINT1); aic_outb(p, CLRSCSIINT, CLRINT); restart_sequencer(p); unpause_sequencer(p, TRUE); } else if ((status & SELTO) != 0) { unsigned char scbptr; unsigned char nextscb; Scsi_Cmnd *cmd; scbptr = aic_inb(p, WAITING_SCBH); if (scbptr > p->scb_data->maxhscbs) { /* * I'm still trying to track down exactly how this happens, but until * I find it, this code will make sure we aren't passing bogus values * into the SCBPTR register, even if that register will just wrap * things around, we still don't like having out of range variables. * * NOTE: Don't check the aic7xxx_verbose variable, I want this message * to always be displayed. */ printk(INFO_LEAD "Invalid WAITING_SCBH value %d, improvising.\n", p->host_no, -1, -1, -1, scbptr); if (p->scb_data->maxhscbs > 4) scbptr &= (p->scb_data->maxhscbs - 1); else scbptr &= 0x03; } aic_outb(p, scbptr, SCBPTR); scb_index = aic_inb(p, SCB_TAG); scb = NULL; if (scb_index < p->scb_data->numscbs) { scb = p->scb_data->scb_array[scb_index]; if ((scb->flags & SCB_ACTIVE) == 0) { scb = NULL; } } if (scb == NULL) { printk(WARN_LEAD "Referenced SCB %d not valid during SELTO.\n", p->host_no, -1, -1, -1, scb_index); printk(KERN_WARNING " SCSISEQ = 0x%x SEQADDR = 0x%x SSTAT0 = 0x%x " "SSTAT1 = 0x%x\n", aic_inb(p, SCSISEQ), aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8), aic_inb(p, SSTAT0), aic_inb(p, SSTAT1)); if (aic7xxx_panic_on_abort) aic7xxx_panic_abort(p, NULL); } else { cmd = scb->cmd; cmd->result = (DID_TIME_OUT << 16); /* * Clear out this hardware SCB */ aic_outb(p, 0, SCB_CONTROL); /* * Clear out a few values in the card that are in an undetermined * state. */ aic_outb(p, MSG_NOOP, MSG_OUT); /* * Shift the waiting for selection queue forward */ nextscb = aic_inb(p, SCB_NEXT); aic_outb(p, nextscb, WAITING_SCBH); /* * Put this SCB back on the free list. */ aic7xxx_add_curscb_to_free_list(p); #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Selection Timeout.\n", p->host_no, CTL_OF_SCB(scb)); #endif if (scb->flags & SCB_QUEUED_ABORT) { /* * We know that this particular SCB had to be the queued abort since * the disconnected SCB would have gotten a reconnect instead. * What we need to do then is to let the command timeout again so * we get a reset since this abort just failed. */ cmd->result = 0; scb = NULL; } } /* * Restarting the sequencer will stop the selection and make sure devices * are allowed to reselect in. */ aic_outb(p, 0, SCSISEQ); aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1); p->flags &= ~AHC_HANDLING_REQINITS; aic_outb(p, CLRSELTIMEO | CLRBUSFREE, CLRSINT1); aic_outb(p, CLRSCSIINT, CLRINT); restart_sequencer(p); unpause_sequencer(p, TRUE); } else if (scb == NULL) { printk(WARN_LEAD "aic7xxx_isr - referenced scb not valid " "during scsiint 0x%x scb(%d)\n" " SIMODE0 0x%x, SIMODE1 0x%x, SSTAT0 0x%x, SEQADDR 0x%x\n", p->host_no, -1, -1, -1, status, scb_index, aic_inb(p, SIMODE0), aic_inb(p, SIMODE1), aic_inb(p, SSTAT0), (aic_inb(p, SEQADDR1) << 8) | aic_inb(p, SEQADDR0)); /* * Turn off the interrupt and set status to zero, so that it * falls through the rest of the SCSIINT code. */ aic_outb(p, status, CLRSINT1); aic_outb(p, CLRSCSIINT, CLRINT); unpause_sequencer(p, /* unpause always */ TRUE); scb = NULL; } else if (status & SCSIPERR) { /* * Determine the bus phase and queue an appropriate message. */ char *phase; Scsi_Cmnd *cmd; unsigned char mesg_out = MSG_NOOP; unsigned char lastphase = aic_inb(p, LASTPHASE); cmd = scb->cmd; switch (lastphase) { case P_DATAOUT: phase = "Data-Out"; break; case P_DATAIN: phase = "Data-In"; mesg_out = MSG_INITIATOR_DET_ERR; break; case P_COMMAND: phase = "Command"; break; case P_MESGOUT: phase = "Message-Out"; break; case P_STATUS: phase = "Status"; mesg_out = MSG_INITIATOR_DET_ERR; break; case P_MESGIN: phase = "Message-In"; mesg_out = MSG_PARITY_ERROR; break; default: phase = "unknown"; break; } /* * A parity error has occurred during a data * transfer phase. Flag it and continue. */ printk(WARN_LEAD "Parity error during %s phase.\n", p->host_no, CTL_OF_SCB(scb), phase); /* * We've set the hardware to assert ATN if we get a parity * error on "in" phases, so all we need to do is stuff the * message buffer with the appropriate message. "In" phases * have set mesg_out to something other than MSG_NOP. */ if (mesg_out != MSG_NOOP) { aic_outb(p, mesg_out, MSG_OUT); scb = NULL; } aic_outb(p, CLRSCSIPERR, CLRSINT1); aic_outb(p, CLRSCSIINT, CLRINT); unpause_sequencer(p, /* unpause_always */ TRUE); } else if ( (status & REQINIT) && (p->flags & AHC_HANDLING_REQINITS) ) { #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Handling REQINIT, SSTAT1=0x%x.\n", p->host_no, CTL_OF_SCB(scb), aic_inb(p, SSTAT1)); #endif aic7xxx_handle_reqinit(p, scb); return; } else { /* * We don't know what's going on. Turn off the * interrupt source and try to continue. */ if (aic7xxx_verbose & VERBOSE_SCSIINT) printk(INFO_LEAD "Unknown SCSIINT status, SSTAT1(0x%x).\n", p->host_no, -1, -1, -1, status); aic_outb(p, status, CLRSINT1); aic_outb(p, CLRSCSIINT, CLRINT); unpause_sequencer(p, /* unpause always */ TRUE); scb = NULL; } if (scb != NULL) { aic7xxx_done(p, scb); } } #ifdef AIC7XXX_VERBOSE_DEBUGGING static void aic7xxx_check_scbs(struct aic7xxx_host *p, char *buffer) { unsigned char saved_scbptr, free_scbh, dis_scbh, wait_scbh, temp; int i, bogus, lost; static unsigned char scb_status[AIC7XXX_MAXSCB]; #define SCB_NO_LIST 0 #define SCB_FREE_LIST 1 #define SCB_WAITING_LIST 2 #define SCB_DISCONNECTED_LIST 4 #define SCB_CURRENTLY_ACTIVE 8 /* * Note, these checks will fail on a regular basis once the machine moves * beyond the bus scan phase. The problem is race conditions concerning * the scbs and where they are linked in. When you have 30 or so commands * outstanding on the bus, and run this twice with every interrupt, the * chances get pretty good that you'll catch the sequencer with an SCB * only partially linked in. Therefore, once we pass the scan phase * of the bus, we really should disable this function. */ bogus = FALSE; memset(&scb_status[0], 0, sizeof(scb_status)); pause_sequencer(p); saved_scbptr = aic_inb(p, SCBPTR); if (saved_scbptr >= p->scb_data->maxhscbs) { printk("Bogus SCBPTR %d\n", saved_scbptr); bogus = TRUE; } scb_status[saved_scbptr] = SCB_CURRENTLY_ACTIVE; free_scbh = aic_inb(p, FREE_SCBH); if ( (free_scbh != SCB_LIST_NULL) && (free_scbh >= p->scb_data->maxhscbs) ) { printk("Bogus FREE_SCBH %d\n", free_scbh); bogus = TRUE; } else { temp = free_scbh; while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) ) { if(scb_status[temp] & 0x07) { printk("HSCB %d on multiple lists, status 0x%02x", temp, scb_status[temp] | SCB_FREE_LIST); bogus = TRUE; } scb_status[temp] |= SCB_FREE_LIST; aic_outb(p, temp, SCBPTR); temp = aic_inb(p, SCB_NEXT); } } dis_scbh = aic_inb(p, DISCONNECTED_SCBH); if ( (dis_scbh != SCB_LIST_NULL) && (dis_scbh >= p->scb_data->maxhscbs) ) { printk("Bogus DISCONNECTED_SCBH %d\n", dis_scbh); bogus = TRUE; } else { temp = dis_scbh; while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) ) { if(scb_status[temp] & 0x07) { printk("HSCB %d on multiple lists, status 0x%02x", temp, scb_status[temp] | SCB_DISCONNECTED_LIST); bogus = TRUE; } scb_status[temp] |= SCB_DISCONNECTED_LIST; aic_outb(p, temp, SCBPTR); temp = aic_inb(p, SCB_NEXT); } } wait_scbh = aic_inb(p, WAITING_SCBH); if ( (wait_scbh != SCB_LIST_NULL) && (wait_scbh >= p->scb_data->maxhscbs) ) { printk("Bogus WAITING_SCBH %d\n", wait_scbh); bogus = TRUE; } else { temp = wait_scbh; while( (temp != SCB_LIST_NULL) && (temp < p->scb_data->maxhscbs) ) { if(scb_status[temp] & 0x07) { printk("HSCB %d on multiple lists, status 0x%02x", temp, scb_status[temp] | SCB_WAITING_LIST); bogus = TRUE; } scb_status[temp] |= SCB_WAITING_LIST; aic_outb(p, temp, SCBPTR); temp = aic_inb(p, SCB_NEXT); } } lost=0; for(i=0; i < p->scb_data->maxhscbs; i++) { aic_outb(p, i, SCBPTR); temp = aic_inb(p, SCB_NEXT); if ( ((temp != SCB_LIST_NULL) && (temp >= p->scb_data->maxhscbs)) ) { printk("HSCB %d bad, SCB_NEXT invalid(%d).\n", i, temp); bogus = TRUE; } if ( temp == i ) { printk("HSCB %d bad, SCB_NEXT points to self.\n", i); bogus = TRUE; } temp = aic_inb(p, SCB_PREV); if ((temp != SCB_LIST_NULL) && (temp >= p->scb_data->maxhscbs)) { printk("HSCB %d bad, SCB_PREV invalid(%d).\n", i, temp); bogus = TRUE; } if (scb_status[i] == 0) lost++; if (lost > 1) { printk("Too many lost scbs.\n"); bogus=TRUE; } } aic_outb(p, saved_scbptr, SCBPTR); unpause_sequencer(p, FALSE); if (bogus) { printk("Bogus parameters found in card SCB array structures.\n"); printk("%s\n", buffer); aic7xxx_panic_abort(p, NULL); } return; } #endif /*+F************************************************************************* * Function: * aic7xxx_isr * * Description: * SCSI controller interrupt handler. *-F*************************************************************************/ static void aic7xxx_isr(int irq, void *dev_id, struct pt_regs *regs) { struct aic7xxx_host *p; unsigned char intstat; p = (struct aic7xxx_host *)dev_id; /* * Just a few sanity checks. Make sure that we have an int pending. * Also, if PCI, then we are going to check for a PCI bus error status * should we get too many spurious interrupts. */ if (!((intstat = aic_inb(p, INTSTAT)) & INT_PEND)) { #ifdef CONFIG_PCI if ( (p->chip & AHC_PCI) && (p->spurious_int > 500) && !(p->flags & AHC_HANDLING_REQINITS) ) { if ( aic_inb(p, ERROR) & PCIERRSTAT ) { aic7xxx_pci_intr(p); } p->spurious_int = 0; } else if ( !(p->flags & AHC_HANDLING_REQINITS) ) { p->spurious_int++; } #endif return; } p->spurious_int = 0; /* * Keep track of interrupts for /proc/scsi */ p->isr_count++; #ifdef AIC7XXX_VERBOSE_DEBUGGING if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) && (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) ) aic7xxx_check_scbs(p, "Bogus settings at start of interrupt."); #endif /* * Handle all the interrupt sources - especially for SCSI * interrupts, we won't get a second chance at them. */ if (intstat & CMDCMPLT) { struct aic7xxx_scb *scb = NULL; Scsi_Cmnd *cmd; unsigned char scb_index; #ifdef AIC7XXX_VERBOSE_DEBUGGING if(aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Command Complete Int.\n", p->host_no, -1, -1, -1); #endif /* * Clear interrupt status before running the completion loop. * This eliminates a race condition whereby a command could * complete between the last check of qoutfifo and the * CLRCMDINT statement. This would result in us thinking the * qoutfifo was empty when it wasn't, and in actuality be a lost * completion interrupt. With multiple devices or tagged queueing * this could be very bad if we caught all but the last completion * and no more are imediately sent. */ aic_outb(p, CLRCMDINT, CLRINT); /* * The sequencer will continue running when it * issues this interrupt. There may be >1 commands * finished, so loop until we've processed them all. */ while (p->qoutfifo[p->qoutfifonext] != SCB_LIST_NULL) { scb_index = p->qoutfifo[p->qoutfifonext]; p->qoutfifo[p->qoutfifonext++] = SCB_LIST_NULL; if ( scb_index >= p->scb_data->numscbs ) scb = NULL; else scb = p->scb_data->scb_array[scb_index]; if (scb == NULL) { printk(WARN_LEAD "CMDCMPLT with invalid SCB index %d\n", p->host_no, -1, -1, -1, scb_index); continue; } else if (!(scb->flags & SCB_ACTIVE) || (scb->cmd == NULL)) { printk(WARN_LEAD "CMDCMPLT without command for SCB %d, SCB flags " "0x%x, cmd 0x%lx\n", p->host_no, -1, -1, -1, scb_index, scb->flags, (unsigned long) scb->cmd); continue; } else if (scb->flags & SCB_QUEUED_ABORT) { pause_sequencer(p); if ( ((aic_inb(p, LASTPHASE) & PHASE_MASK) != P_BUSFREE) && (aic_inb(p, SCB_TAG) == scb->hscb->tag) ) { unpause_sequencer(p, FALSE); continue; } aic7xxx_reset_device(p, scb->cmd->target, scb->cmd->channel, scb->cmd->lun, scb->hscb->tag); scb->flags &= ~(SCB_QUEUED_FOR_DONE | SCB_RESET | SCB_ABORT | SCB_QUEUED_ABORT); unpause_sequencer(p, FALSE); } else if (scb->flags & SCB_ABORT) { /* * We started to abort this, but it completed on us, let it * through as successful */ scb->flags &= ~(SCB_ABORT|SCB_RESET); } switch (status_byte(scb->hscb->target_status)) { case QUEUE_FULL: case BUSY: scb->hscb->target_status = 0; scb->cmd->result = 0; aic7xxx_error(scb->cmd) = DID_OK; break; default: cmd = scb->cmd; if (scb->hscb->residual_SG_segment_count != 0) { aic7xxx_calculate_residual(p, scb); } cmd->result |= (aic7xxx_error(cmd) << 16); aic7xxx_done(p, scb); break; } } } if (intstat & BRKADRINT) { int i; unsigned char errno = aic_inb(p, ERROR); printk(KERN_ERR "(scsi%d) BRKADRINT error(0x%x):\n", p->host_no, errno); for (i = 0; i < NUMBER(hard_error); i++) { if (errno & hard_error[i].errno) { printk(KERN_ERR " %s\n", hard_error[i].errmesg); } } printk(KERN_ERR "(scsi%d) SEQADDR=0x%x\n", p->host_no, (((aic_inb(p, SEQADDR1) << 8) & 0x100) | aic_inb(p, SEQADDR0))); if (aic7xxx_panic_on_abort) aic7xxx_panic_abort(p, NULL); #ifdef CONFIG_PCI if (errno & PCIERRSTAT) aic7xxx_pci_intr(p); #endif if (errno & (SQPARERR | ILLOPCODE | ILLSADDR)) { sti(); panic("aic7xxx: unrecoverable BRKADRINT.\n"); } if (errno & ILLHADDR) { printk(KERN_ERR "(scsi%d) BUG! Driver accessed chip without first " "pausing controller!\n", p->host_no); } #ifdef AIC7XXX_VERBOSE_DEBUGGING if (errno & DPARERR) { if (aic_inb(p, DMAPARAMS) & DIRECTION) printk("(scsi%d) while DMAing SCB from host to card.\n", p->host_no); else printk("(scsi%d) while DMAing SCB from card to host.\n", p->host_no); } #endif aic_outb(p, CLRPARERR | CLRBRKADRINT, CLRINT); unpause_sequencer(p, FALSE); } if (intstat & SEQINT) { aic7xxx_handle_seqint(p, intstat); } if (intstat & SCSIINT) { aic7xxx_handle_scsiint(p, intstat); } #ifdef AIC7XXX_VERBOSE_DEBUGGING if ( (p->isr_count < 16) && (aic7xxx_verbose > 0xffff) && (aic7xxx_panic_on_abort) && (p->flags & AHC_PAGESCBS) ) aic7xxx_check_scbs(p, "Bogus settings at end of interrupt."); #endif } /*+F************************************************************************* * Function: * do_aic7xxx_isr * * Description: * This is a gross hack to solve a problem in linux kernels 2.1.85 and * above. Please, children, do not try this at home, and if you ever see * anything like it, please inform the Gross Hack Police immediately *-F*************************************************************************/ static void do_aic7xxx_isr(int irq, void *dev_id, struct pt_regs *regs) { unsigned long cpu_flags; struct aic7xxx_host *p; p = (struct aic7xxx_host *)dev_id; if(!p) return; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,95) spin_lock_irqsave(&io_request_lock, cpu_flags); if(test_and_set_bit(AHC_IN_ISR_BIT, &p->flags)) { return; } do { aic7xxx_isr(irq, dev_id, regs); } while ( (aic_inb(p, INTSTAT) & INT_PEND) ); aic7xxx_done_cmds_complete(p); aic7xxx_run_waiting_queues(p); clear_bit(AHC_IN_ISR_BIT, &p->flags); spin_unlock_irqrestore(&io_request_lock, cpu_flags); #else if(set_bit(AHC_IN_ISR_BIT, (int *)&p->flags)) { return; } DRIVER_LOCK do { aic7xxx_isr(irq, dev_id, regs); } while ( (aic_inb(p, INTSTAT) & INT_PEND) ); DRIVER_UNLOCK aic7xxx_done_cmds_complete(p); aic7xxx_run_waiting_queues(p); clear_bit(AHC_IN_ISR_BIT, (int *)&p->flags); #endif } /*+F************************************************************************* * Function: * aic7xxx_device_queue_depth * * Description: * Determines the queue depth for a given device. There are two ways * a queue depth can be obtained for a tagged queueing device. One * way is the default queue depth which is determined by whether * AIC7XXX_CMDS_PER_DEVICE is defined. If it is defined, then it is used * as the default queue depth. Otherwise, we use either 4 or 8 as the * default queue depth (dependent on the number of hardware SCBs). * The other way we determine queue depth is through the use of the * aic7xxx_tag_info array which is enabled by defining * AIC7XXX_TAGGED_QUEUEING_BY_DEVICE. This array can be initialized * with queue depths for individual devices. It also allows tagged * queueing to be [en|dis]abled for a specific adapter. *-F*************************************************************************/ static void aic7xxx_device_queue_depth(struct aic7xxx_host *p, Scsi_Device *device) { int default_depth = 3; unsigned char tindex; unsigned short target_mask; tindex = device->id | (device->channel << 3); target_mask = (1 << tindex); device->queue_depth = default_depth; p->dev_temp_queue_depth[tindex] = 1; p->dev_max_queue_depth[tindex] = 1; p->tagenable &= ~target_mask; if (device->tagged_supported) { int tag_enabled = TRUE; default_depth = AIC7XXX_CMDS_PER_DEVICE; if (!(p->discenable & target_mask)) { if (aic7xxx_verbose & VERBOSE_NEGOTIATION2) printk(INFO_LEAD "Disconnection disabled, unable to " "enable tagged queueing.\n", p->host_no, device->channel, device->id, device->lun); } else { if (p->instance >= NUMBER(aic7xxx_tag_info)) { static int print_warning = TRUE; if(print_warning) { printk(KERN_INFO "aic7xxx: WARNING, insufficient tag_info instances for" " installed controllers.\n"); printk(KERN_INFO "aic7xxx: Please update the aic7xxx_tag_info array in" " the aic7xxx.c source file.\n"); print_warning = FALSE; } device->queue_depth = default_depth; } else { if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 255) { tag_enabled = FALSE; device->queue_depth = 3; /* Tagged queueing is disabled. */ } else if (aic7xxx_tag_info[p->instance].tag_commands[tindex] == 0) { device->queue_depth = default_depth; } else { device->queue_depth = aic7xxx_tag_info[p->instance].tag_commands[tindex]; } } if ((device->tagged_queue == 0) && tag_enabled) { if (aic7xxx_verbose & VERBOSE_NEGOTIATION2) { printk(INFO_LEAD "Enabled tagged queuing, queue depth %d.\n", p->host_no, device->channel, device->id, device->lun, device->queue_depth); } p->dev_max_queue_depth[tindex] = device->queue_depth; p->dev_temp_queue_depth[tindex] = device->queue_depth; p->tagenable |= target_mask; p->orderedtag |= target_mask; device->tagged_queue = 1; device->current_tag = SCB_LIST_NULL; } } } } /*+F************************************************************************* * Function: * aic7xxx_select_queue_depth * * Description: * Sets the queue depth for each SCSI device hanging off the input * host adapter. We use a queue depth of 2 for devices that do not * support tagged queueing. If AIC7XXX_CMDS_PER_LUN is defined, we * use that for tagged queueing devices; otherwise we use our own * algorithm for determining the queue depth based on the maximum * SCBs for the controller. *-F*************************************************************************/ static void aic7xxx_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs) { Scsi_Device *device; struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata; int scbnum; scbnum = 0; for (device = scsi_devs; device != NULL; device = device->next) { if (device->host == host) { aic7xxx_device_queue_depth(p, device); scbnum += device->queue_depth; } } while (scbnum > p->scb_data->numscbs) { /* * Pre-allocate the needed SCBs to get around the possibility of having * to allocate some when memory is more or less exhausted and we need * the SCB in order to perform a swap operation (possible deadlock) */ if ( aic7xxx_allocate_scb(p) == 0 ) return; } } /*+F************************************************************************* * Function: * aic7xxx_probe * * Description: * Probing for EISA boards: it looks like the first two bytes * are a manufacturer code - three characters, five bits each: * * BYTE 0 BYTE 1 BYTE 2 BYTE 3 * ?1111122 22233333 PPPPPPPP RRRRRRRR * * The characters are baselined off ASCII '@', so add that value * to each to get the real ASCII code for it. The next two bytes * appear to be a product and revision number, probably vendor- * specific. This is what is being searched for at each port, * and what should probably correspond to the ID= field in the * ECU's .cfg file for the card - if your card is not detected, * make sure your signature is listed in the array. * * The fourth byte's lowest bit seems to be an enabled/disabled * flag (rest of the bits are reserved?). * * NOTE: This function is only needed on Intel and Alpha platforms, * the other platforms we support don't have EISA/VLB busses. So, * we #ifdef this entire function to avoid compiler warnings about * an unused function. *-F*************************************************************************/ #if defined(__i386__) || defined(__alpha__) static int aic7xxx_probe(int slot, int base, ahc_flag_type *flags) { int i; unsigned char buf[4]; static struct { int n; unsigned char signature[sizeof(buf)]; ahc_chip type; int bios_disabled; } AIC7xxx[] = { { 4, { 0x04, 0x90, 0x77, 0x70 }, AHC_AIC7770|AHC_EISA, FALSE }, /* mb 7770 */ { 4, { 0x04, 0x90, 0x77, 0x71 }, AHC_AIC7770|AHC_EISA, FALSE }, /* host adapter 274x */ { 4, { 0x04, 0x90, 0x77, 0x56 }, AHC_AIC7770|AHC_VL, FALSE }, /* 284x BIOS enabled */ { 4, { 0x04, 0x90, 0x77, 0x57 }, AHC_AIC7770|AHC_VL, TRUE } /* 284x BIOS disabled */ }; /* * The VL-bus cards need to be primed by * writing before a signature check. */ for (i = 0; i < sizeof(buf); i++) { outb(0x80 + i, base); buf[i] = inb(base + i); } for (i = 0; i < NUMBER(AIC7xxx); i++) { /* * Signature match on enabled card? */ if (!memcmp(buf, AIC7xxx[i].signature, AIC7xxx[i].n)) { if (inb(base + 4) & 1) { if (AIC7xxx[i].bios_disabled) { *flags |= AHC_USEDEFAULTS; } else { *flags |= AHC_BIOS_ENABLED; } return (i); } printk("aic7xxx: " "disabled at slot %d, ignored.\n", slot); } } return (-1); } #endif /* (__i386__) || (__alpha__) */ /*+F************************************************************************* * Function: * read_2840_seeprom * * Description: * Reads the 2840 serial EEPROM and returns 1 if successful and 0 if * not successful. * * See read_seeprom (for the 2940) for the instruction set of the 93C46 * chip. * * The 2840 interface to the 93C46 serial EEPROM is through the * STATUS_2840 and SEECTL_2840 registers. The CS_2840, CK_2840, and * DO_2840 bits of the SEECTL_2840 register are connected to the chip * select, clock, and data out lines respectively of the serial EEPROM. * The DI_2840 bit of the STATUS_2840 is connected to the data in line * of the serial EEPROM. The EEPROM_TF bit of STATUS_2840 register is * useful in that it gives us an 800 nsec timer. After a read from the * SEECTL_2840 register the timing flag is cleared and goes high 800 nsec * later. *-F*************************************************************************/ static int read_284x_seeprom(struct aic7xxx_host *p, struct seeprom_config *sc) { int i = 0, k = 0; unsigned char temp; unsigned short checksum = 0; unsigned short *seeprom = (unsigned short *) sc; struct seeprom_cmd { unsigned char len; unsigned char bits[3]; }; struct seeprom_cmd seeprom_read = {3, {1, 1, 0}}; #define CLOCK_PULSE(p) \ while ((aic_inb(p, STATUS_2840) & EEPROM_TF) == 0) \ { \ ; /* Do nothing */ \ } \ (void) aic_inb(p, SEECTL_2840); /* * Read the first 32 registers of the seeprom. For the 2840, * the 93C46 SEEPROM is a 1024-bit device with 64 16-bit registers * but only the first 32 are used by Adaptec BIOS. The loop * will range from 0 to 31. */ for (k = 0; k < (sizeof(*sc) / 2); k++) { /* * Send chip select for one clock cycle. */ aic_outb(p, CK_2840 | CS_2840, SEECTL_2840); CLOCK_PULSE(p); /* * Now we're ready to send the read command followed by the * address of the 16-bit register we want to read. */ for (i = 0; i < seeprom_read.len; i++) { temp = CS_2840 | seeprom_read.bits[i]; aic_outb(p, temp, SEECTL_2840); CLOCK_PULSE(p); temp = temp ^ CK_2840; aic_outb(p, temp, SEECTL_2840); CLOCK_PULSE(p); } /* * Send the 6 bit address (MSB first, LSB last). */ for (i = 5; i >= 0; i--) { temp = k; temp = (temp >> i) & 1; /* Mask out all but lower bit. */ temp = CS_2840 | temp; aic_outb(p, temp, SEECTL_2840); CLOCK_PULSE(p); temp = temp ^ CK_2840; aic_outb(p, temp, SEECTL_2840); CLOCK_PULSE(p); } /* * Now read the 16 bit register. An initial 0 precedes the * register contents which begins with bit 15 (MSB) and ends * with bit 0 (LSB). The initial 0 will be shifted off the * top of our word as we let the loop run from 0 to 16. */ for (i = 0; i <= 16; i++) { temp = CS_2840; aic_outb(p, temp, SEECTL_2840); CLOCK_PULSE(p); temp = temp ^ CK_2840; seeprom[k] = (seeprom[k] << 1) | (aic_inb(p, STATUS_2840) & DI_2840); aic_outb(p, temp, SEECTL_2840); CLOCK_PULSE(p); } /* * The serial EEPROM has a checksum in the last word. Keep a * running checksum for all words read except for the last * word. We'll verify the checksum after all words have been * read. */ if (k < (sizeof(*sc) / 2) - 1) { checksum = checksum + seeprom[k]; } /* * Reset the chip select for the next command cycle. */ aic_outb(p, 0, SEECTL_2840); CLOCK_PULSE(p); aic_outb(p, CK_2840, SEECTL_2840); CLOCK_PULSE(p); aic_outb(p, 0, SEECTL_2840); CLOCK_PULSE(p); } #if 0 printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, sc->checksum); printk("Serial EEPROM:"); for (k = 0; k < (sizeof(*sc) / 2); k++) { if (((k % 8) == 0) && (k != 0)) { printk("\n "); } printk(" 0x%x", seeprom[k]); } printk("\n"); #endif if (checksum != sc->checksum) { printk("aic7xxx: SEEPROM checksum error, ignoring SEEPROM settings.\n"); return (0); } return (1); #undef CLOCK_PULSE } /*+F************************************************************************* * Function: * acquire_seeprom * * Description: * Acquires access to the memory port on PCI controllers. *-F*************************************************************************/ static int acquire_seeprom(struct aic7xxx_host *p) { int wait; /* * Request access of the memory port. When access is * granted, SEERDY will go high. We use a 1 second * timeout which should be near 1 second more than * is needed. Reason: after the 7870 chip reset, there * should be no contention. */ aic_outb(p, SEEMS, SEECTL); wait = 1000; /* 1000 msec = 1 second */ while ((wait > 0) && ((aic_inb(p, SEECTL) & SEERDY) == 0)) { wait--; mdelay(1); /* 1 msec */ } if ((aic_inb(p, SEECTL) & SEERDY) == 0) { aic_outb(p, 0, SEECTL); return (0); } return (1); } /*+F************************************************************************* * Function: * release_seeprom * * Description: * Releases access to the memory port on PCI controllers. *-F*************************************************************************/ static void release_seeprom(struct aic7xxx_host *p) { aic_outb(p, 0, SEECTL); } /*+F************************************************************************* * Function: * read_seeprom * * Description: * Reads the serial EEPROM and returns 1 if successful and 0 if * not successful. * * The instruction set of the 93C46/56/66 chips is as follows: * * Start OP * Function Bit Code Address Data Description * ------------------------------------------------------------------- * READ 1 10 A5 - A0 Reads data stored in memory, * starting at specified address * EWEN 1 00 11XXXX Write enable must precede * all programming modes * ERASE 1 11 A5 - A0 Erase register A5A4A3A2A1A0 * WRITE 1 01 A5 - A0 D15 - D0 Writes register * ERAL 1 00 10XXXX Erase all registers * WRAL 1 00 01XXXX D15 - D0 Writes to all registers * EWDS 1 00 00XXXX Disables all programming * instructions * *Note: A value of X for address is a don't care condition. * *Note: The 93C56 and 93C66 have 8 address bits. * * * The 93C46 has a four wire interface: clock, chip select, data in, and * data out. In order to perform one of the above functions, you need * to enable the chip select for a clock period (typically a minimum of * 1 usec, with the clock high and low a minimum of 750 and 250 nsec * respectively. While the chip select remains high, you can clock in * the instructions (above) starting with the start bit, followed by the * OP code, Address, and Data (if needed). For the READ instruction, the * requested 16-bit register contents is read from the data out line but * is preceded by an initial zero (leading 0, followed by 16-bits, MSB * first). The clock cycling from low to high initiates the next data * bit to be sent from the chip. * * The 78xx interface to the 93C46 serial EEPROM is through the SEECTL * register. After successful arbitration for the memory port, the * SEECS bit of the SEECTL register is connected to the chip select. * The SEECK, SEEDO, and SEEDI are connected to the clock, data out, * and data in lines respectively. The SEERDY bit of SEECTL is useful * in that it gives us an 800 nsec timer. After a write to the SEECTL * register, the SEERDY goes high 800 nsec later. The one exception * to this is when we first request access to the memory port. The * SEERDY goes high to signify that access has been granted and, for * this case, has no implied timing. *-F*************************************************************************/ static int read_seeprom(struct aic7xxx_host *p, int offset, unsigned short *scarray, unsigned int len, seeprom_chip_type chip) { int i = 0, k; unsigned char temp; unsigned short checksum = 0; struct seeprom_cmd { unsigned char len; unsigned char bits[3]; }; struct seeprom_cmd seeprom_read = {3, {1, 1, 0}}; #define CLOCK_PULSE(p) \ while ((aic_inb(p, SEECTL) & SEERDY) == 0) \ { \ ; /* Do nothing */ \ } /* * Request access of the memory port. */ if (acquire_seeprom(p) == 0) { return (0); } /* * Read 'len' registers of the seeprom. For the 7870, the 93C46 * SEEPROM is a 1024-bit device with 64 16-bit registers but only * the first 32 are used by Adaptec BIOS. Some adapters use the * 93C56 SEEPROM which is a 2048-bit device. The loop will range * from 0 to 'len' - 1. */ for (k = 0; k < len; k++) { /* * Send chip select for one clock cycle. */ aic_outb(p, SEEMS | SEECK | SEECS, SEECTL); CLOCK_PULSE(p); /* * Now we're ready to send the read command followed by the * address of the 16-bit register we want to read. */ for (i = 0; i < seeprom_read.len; i++) { temp = SEEMS | SEECS | (seeprom_read.bits[i] << 1); aic_outb(p, temp, SEECTL); CLOCK_PULSE(p); temp = temp ^ SEECK; aic_outb(p, temp, SEECTL); CLOCK_PULSE(p); } /* * Send the 6 or 8 bit address (MSB first, LSB last). */ for (i = ((int) chip - 1); i >= 0; i--) { temp = k + offset; temp = (temp >> i) & 1; /* Mask out all but lower bit. */ temp = SEEMS | SEECS | (temp << 1); aic_outb(p, temp, SEECTL); CLOCK_PULSE(p); temp = temp ^ SEECK; aic_outb(p, temp, SEECTL); CLOCK_PULSE(p); } /* * Now read the 16 bit register. An initial 0 precedes the * register contents which begins with bit 15 (MSB) and ends * with bit 0 (LSB). The initial 0 will be shifted off the * top of our word as we let the loop run from 0 to 16. */ for (i = 0; i <= 16; i++) { temp = SEEMS | SEECS; aic_outb(p, temp, SEECTL); CLOCK_PULSE(p); temp = temp ^ SEECK; scarray[k] = (scarray[k] << 1) | (aic_inb(p, SEECTL) & SEEDI); aic_outb(p, temp, SEECTL); CLOCK_PULSE(p); } /* * The serial EEPROM should have a checksum in the last word. * Keep a running checksum for all words read except for the * last word. We'll verify the checksum after all words have * been read. */ if (k < (len - 1)) { checksum = checksum + scarray[k]; } /* * Reset the chip select for the next command cycle. */ aic_outb(p, SEEMS, SEECTL); CLOCK_PULSE(p); aic_outb(p, SEEMS | SEECK, SEECTL); CLOCK_PULSE(p); aic_outb(p, SEEMS, SEECTL); CLOCK_PULSE(p); } /* * Release access to the memory port and the serial EEPROM. */ release_seeprom(p); #if 0 printk("Computed checksum 0x%x, checksum read 0x%x\n", checksum, scarray[len - 1]); printk("Serial EEPROM:"); for (k = 0; k < len; k++) { if (((k % 8) == 0) && (k != 0)) { printk("\n "); } printk(" 0x%x", scarray[k]); } printk("\n"); #endif if ( (checksum != scarray[len - 1]) || (checksum == 0) ) { return (0); } return (1); #undef CLOCK_PULSE } /*+F************************************************************************* * Function: * write_brdctl * * Description: * Writes a value to the BRDCTL register. *-F*************************************************************************/ static void write_brdctl(struct aic7xxx_host *p, unsigned char value) { unsigned char brdctl; if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) { brdctl = BRDSTB; if (p->flags & AHC_CHNLB) brdctl |= BRDCS; } else if (p->features & AHC_ULTRA2) brdctl = 0; else brdctl = BRDSTB | BRDCS; aic_outb(p, brdctl, BRDCTL); udelay(1); brdctl |= value; aic_outb(p, brdctl, BRDCTL); udelay(1); if (p->features & AHC_ULTRA2) brdctl |= BRDSTB_ULTRA2; else brdctl &= ~BRDSTB; aic_outb(p, brdctl, BRDCTL); udelay(1); if (p->features & AHC_ULTRA2) brdctl = 0; else brdctl &= ~BRDCS; aic_outb(p, brdctl, BRDCTL); udelay(1); } /*+F************************************************************************* * Function: * read_brdctl * * Description: * Reads the BRDCTL register. *-F*************************************************************************/ static unsigned char read_brdctl(struct aic7xxx_host *p) { unsigned char brdctl, value; if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) { brdctl = BRDRW; if (p->flags & AHC_CHNLB) brdctl |= BRDCS; } else if (p->features & AHC_ULTRA2) brdctl = BRDRW_ULTRA2; else brdctl = BRDRW | BRDCS; aic_outb(p, brdctl, BRDCTL); udelay(1); value = aic_inb(p, BRDCTL); aic_outb(p, 0, BRDCTL); udelay(1); return (value); } /*+F************************************************************************* * Function: * aic785x_cable_detect * * Description: * Detect the cables that are present on aic785x class controller chips *-F*************************************************************************/ static void aic785x_cable_detect(struct aic7xxx_host *p, int *int_50, int *ext_present, int *eeprom) { unsigned char brdctl; aic_outb(p, BRDRW | BRDCS, BRDCTL); udelay(1); aic_outb(p, 0, BRDCTL); udelay(1); brdctl = aic_inb(p, BRDCTL); udelay(1); *int_50 = !(brdctl & BRDDAT5); *ext_present = !(brdctl & BRDDAT6); *eeprom = (aic_inb(p, SPIOCAP) & EEPROM); } /*+F************************************************************************* * Function: * aic787x_cable_detect * * Description: * Detect the cables that are present on aic787x class controller chips * * NOTE: This functions assumes the SEEPROM will have already been aquired * prior to invocation of this function. *-F*************************************************************************/ static void aic787x_cable_detect(struct aic7xxx_host *p, int *int_50, int *int_68, int *ext_present, int *eeprom) { unsigned char brdctl; /* * First read the status of our cables. Set the rom bank to * 0 since the bank setting serves as a multiplexor for the * cable detection logic. BRDDAT5 controls the bank switch. */ write_brdctl(p, 0); /* * Now we read the state of the two internal connectors. BRDDAT6 * is internal 50, BRDDAT7 is internal 68. For each, the cable is * present if the bit is 0 */ brdctl = read_brdctl(p); *int_50 = !(brdctl & BRDDAT6); *int_68 = !(brdctl & BRDDAT7); /* * Set the bank bit in brdctl and then read the external cable state * and the EEPROM status */ write_brdctl(p, BRDDAT5); brdctl = read_brdctl(p); *ext_present = !(brdctl & BRDDAT6); *eeprom = !(brdctl & BRDDAT7); /* * We're done, the calling function will release the SEEPROM for us */ } /*+F************************************************************************* * Function: * aic787x_ultra2_term_detect * * Description: * Detect the termination settings present on ultra2 class controllers * * NOTE: This functions assumes the SEEPROM will have already been aquired * prior to invocation of this function. *-F*************************************************************************/ static void aic7xxx_ultra2_term_detect(struct aic7xxx_host *p, int *enableSE_low, int *enableSE_high, int *enableLVD_low, int *enableLVD_high, int *eprom_present) { unsigned char brdctl; brdctl = read_brdctl(p); *eprom_present = (brdctl & BRDDAT7); *enableSE_high = (brdctl & BRDDAT6); *enableSE_low = (brdctl & BRDDAT5); *enableLVD_high = (brdctl & BRDDAT4); *enableLVD_low = (brdctl & BRDDAT3); } /*+F************************************************************************* * Function: * configure_termination * * Description: * Configures the termination settings on PCI adapters that have * SEEPROMs available. *-F*************************************************************************/ static void configure_termination(struct aic7xxx_host *p) { int internal50_present = 0; int internal68_present = 0; int external_present = 0; int eprom_present = 0; int enableSE_low = 0; int enableSE_high = 0; int enableLVD_low = 0; int enableLVD_high = 0; unsigned char brddat = 0; unsigned char max_target = 0; unsigned char sxfrctl1 = aic_inb(p, SXFRCTL1); if (acquire_seeprom(p)) { if (p->features & (AHC_WIDE|AHC_TWIN)) max_target = 16; else max_target = 8; aic_outb(p, SEEMS | SEECS, SEECTL); sxfrctl1 &= ~STPWEN; if ( (p->adapter_control & CFAUTOTERM) || (p->features & AHC_ULTRA2) ) { if ( (p->adapter_control & CFAUTOTERM) && !(p->features & AHC_ULTRA2) ) { printk(KERN_INFO "(scsi%d) Warning - detected auto-termination\n", p->host_no); printk(KERN_INFO "(scsi%d) Please verify driver detected settings are " "correct.\n", p->host_no); printk(KERN_INFO "(scsi%d) If not, then please properly set the device " "termination\n", p->host_no); printk(KERN_INFO "(scsi%d) in the Adaptec SCSI BIOS by hitting CTRL-A " "when prompted\n", p->host_no); printk(KERN_INFO "(scsi%d) during machine bootup.\n", p->host_no); } /* Configure auto termination. */ if (p->features & AHC_ULTRA2) { if (aic7xxx_override_term == -1) aic7xxx_ultra2_term_detect(p, &enableSE_low, &enableSE_high, &enableLVD_low, &enableLVD_high, &eprom_present); if (!(p->adapter_control & CFSEAUTOTERM)) { enableSE_low = (p->adapter_control & CFSTERM); enableSE_high = (p->adapter_control & CFWSTERM); } if (!(p->adapter_control & CFAUTOTERM)) { enableLVD_low = enableLVD_high = (p->adapter_control & CFLVDSTERM); } internal50_present = 0; internal68_present = 1; external_present = 1; } else if ( (p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870 ) { aic787x_cable_detect(p, &internal50_present, &internal68_present, &external_present, &eprom_present); } else { aic785x_cable_detect(p, &internal50_present, &external_present, &eprom_present); } if (max_target <= 8) internal68_present = 0; if ( !(p->features & AHC_ULTRA2) ) { if (max_target > 8) { printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Int-68 %s, " "Ext-68 %s)\n", p->host_no, internal50_present ? "YES" : "NO", internal68_present ? "YES" : "NO", external_present ? "YES" : "NO"); } else { printk(KERN_INFO "(scsi%d) Cables present (Int-50 %s, Ext-50 %s)\n", p->host_no, internal50_present ? "YES" : "NO", external_present ? "YES" : "NO"); } } if (aic7xxx_verbose & VERBOSE_PROBE2) printk(KERN_INFO "(scsi%d) EEPROM %s present.\n", p->host_no, eprom_present ? "is" : "is not"); /* * Now set the termination based on what we found. BRDDAT6 * controls wide termination enable. * Flash Enable = BRDDAT7 * SE High Term Enable = BRDDAT6 * SE Low Term Enable = BRDDAT5 (7890) * LVD High Term Enable = BRDDAT4 (7890) */ if ( !(p->features & AHC_ULTRA2) && (internal50_present && internal68_present && external_present) ) { printk(KERN_INFO "(scsi%d) Illegal cable configuration!! Only two\n", p->host_no); printk(KERN_INFO "(scsi%d) connectors on the SCSI controller may be " "in use at a time!\n", p->host_no); /* * Force termination (low and high byte) on. This is safer than * leaving it completely off, especially since this message comes * most often from motherboard controllers that don't even have 3 * connectors, but instead are failing the cable detection. */ internal50_present = external_present = 0; enableSE_high = enableSE_low = 1; } if ((max_target > 8) && ((external_present == 0) || (internal68_present == 0) || (enableSE_high != 0))) { brddat |= BRDDAT6; p->flags |= AHC_TERM_ENB_SE_HIGH; if (aic7xxx_verbose & VERBOSE_PROBE2) printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n", p->host_no); } if ( (((internal50_present ? 1 : 0) + (internal68_present ? 1 : 0) + (external_present ? 1 : 0)) <= 1) || (enableSE_low != 0) ) { if (p->features & AHC_ULTRA2) brddat |= BRDDAT5; else sxfrctl1 |= STPWEN; p->flags |= AHC_TERM_ENB_SE_LOW; if (aic7xxx_verbose & VERBOSE_PROBE2) printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n", p->host_no); } if (enableLVD_low != 0) { sxfrctl1 |= STPWEN; p->flags |= AHC_TERM_ENB_LVD; if (aic7xxx_verbose & VERBOSE_PROBE2) printk(KERN_INFO "(scsi%d) LVD Low byte termination Enabled\n", p->host_no); } if (enableLVD_high != 0) { brddat |= BRDDAT4; if (aic7xxx_verbose & VERBOSE_PROBE2) printk(KERN_INFO "(scsi%d) LVD High byte termination Enabled\n", p->host_no); } } else { if (p->adapter_control & CFSTERM) { if (p->features & AHC_ULTRA2) brddat |= BRDDAT5; else sxfrctl1 |= STPWEN; if (aic7xxx_verbose & VERBOSE_PROBE2) printk(KERN_INFO "(scsi%d) SE Low byte termination Enabled\n", p->host_no); } if (p->adapter_control & CFWSTERM) { brddat |= BRDDAT6; if (aic7xxx_verbose & VERBOSE_PROBE2) printk(KERN_INFO "(scsi%d) SE High byte termination Enabled\n", p->host_no); } } write_brdctl(p, brddat); release_seeprom(p); aic_outb(p, sxfrctl1, SXFRCTL1); } } /*+F************************************************************************* * Function: * detect_maxscb * * Description: * Detects the maximum number of SCBs for the controller and returns * the count and a mask in p (p->maxscbs, p->qcntmask). *-F*************************************************************************/ static void detect_maxscb(struct aic7xxx_host *p) { int i; /* * It's possible that we've already done this for multichannel * adapters. */ if (p->scb_data->maxhscbs == 0) { /* * We haven't initialized the SCB settings yet. Walk the SCBs to * determince how many there are. */ aic_outb(p, 0, FREE_SCBH); for (i = 0; i < AIC7XXX_MAXSCB; i++) { aic_outb(p, i, SCBPTR); aic_outb(p, i, SCB_CONTROL); if (aic_inb(p, SCB_CONTROL) != i) break; aic_outb(p, 0, SCBPTR); if (aic_inb(p, SCB_CONTROL) != 0) break; aic_outb(p, i, SCBPTR); aic_outb(p, 0, SCB_CONTROL); /* Clear the control byte. */ aic_outb(p, i + 1, SCB_NEXT); /* Set the next pointer. */ aic_outb(p, i - 1, SCB_PREV); /* Set the prev pointer. */ aic_outb(p, SCB_LIST_NULL, SCB_TAG); /* Make the tag invalid. */ aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS); /* no busy untagged */ aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+1);/* targets active yet */ aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+2); aic_outb(p, SCB_LIST_NULL, SCB_BUSYTARGETS+3); } /* Make sure the last SCB terminates the free list. */ aic_outb(p, i - 1, SCBPTR); aic_outb(p, SCB_LIST_NULL, SCB_NEXT); /* Ensure we clear the first (0) SCBs control byte. */ aic_outb(p, 0, SCBPTR); aic_outb(p, 0, SCB_CONTROL); p->scb_data->maxhscbs = i; /* * Use direct indexing instead for speed */ if ( i == AIC7XXX_MAXSCB ) p->flags &= ~AHC_PAGESCBS; } } /*+F************************************************************************* * Function: * aic7xxx_register * * Description: * Register a Adaptec aic7xxx chip SCSI controller with the kernel. *-F*************************************************************************/ static int aic7xxx_register(Scsi_Host_Template *template, struct aic7xxx_host *p, int reset_delay) { int i, result; int max_targets; int found = 1; unsigned char term, scsi_conf; struct Scsi_Host *host; /* * Lock out other contenders for our i/o space. */ request_region(p->base, MAXREG - MINREG, "aic7xxx"); host = p->host; p->scb_data->maxscbs = AIC7XXX_MAXSCB; host->can_queue = AIC7XXX_MAXSCB; host->cmd_per_lun = 3; host->sg_tablesize = AIC7XXX_MAX_SG; host->select_queue_depths = aic7xxx_select_queue_depth; host->this_id = p->scsi_id; host->io_port = p->base; host->n_io_port = 0xFF; host->base = (unsigned char *) p->mbase; host->irq = p->irq; if (p->features & AHC_WIDE) { host->max_id = 16; } if (p->features & AHC_TWIN) { host->max_channel = 1; } p->host = host; p->host_no = host->host_no; host->unique_id = p->instance; p->isr_count = 0; p->next = NULL; p->completeq.head = NULL; p->completeq.tail = NULL; scbq_init(&p->scb_data->free_scbs); scbq_init(&p->waiting_scbs); init_timer(&p->dev_timer); p->dev_timer.data = (unsigned long)p; p->dev_timer.function = (void *)aic7xxx_timer; p->dev_timer_active = 0; for (i = 0; i < NUMBER(p->untagged_scbs); i++) { p->untagged_scbs[i] = SCB_LIST_NULL; p->qinfifo[i] = SCB_LIST_NULL; p->qoutfifo[i] = SCB_LIST_NULL; } /* * We currently have no commands of any type */ p->qinfifonext = 0; p->qoutfifonext = 0; for (i = 0; i < MAX_TARGETS; i++) { p->dev_commands_sent[i] = 0; p->dev_flags[i] = 0; p->dev_active_cmds[i] = 0; p->dev_last_queue_full[i] = 0; p->dev_last_queue_full_count[i] = 0; p->dev_max_queue_depth[i] = 1; p->dev_temp_queue_depth[i] = 1; p->dev_expires[i] = 0; scbq_init(&p->delayed_scbs[i]); } printk(KERN_INFO "(scsi%d) <%s> found at ", p->host_no, board_names[p->board_name_index]); switch(p->chip) { case (AHC_AIC7770|AHC_EISA): printk("EISA slot %d\n", p->pci_device_fn); break; case (AHC_AIC7770|AHC_VL): printk("VLB slot %d\n", p->pci_device_fn); break; default: printk("PCI %d/%d\n", PCI_SLOT(p->pci_device_fn), PCI_FUNC(p->pci_device_fn)); break; } if (p->features & AHC_TWIN) { printk(KERN_INFO "(scsi%d) Twin Channel, A SCSI ID %d, B SCSI ID %d, ", p->host_no, p->scsi_id, p->scsi_id_b); } else { char *channel; channel = ""; if ((p->flags & AHC_MULTI_CHANNEL) != 0) { channel = " A"; if ( (p->flags & (AHC_CHNLB|AHC_CHNLC)) != 0 ) { channel = (p->flags & AHC_CHNLB) ? " B" : " C"; } } if (p->features & AHC_WIDE) { printk(KERN_INFO "(scsi%d) Wide ", p->host_no); } else { printk(KERN_INFO "(scsi%d) Narrow ", p->host_no); } printk("Channel%s, SCSI ID=%d, ", channel, p->scsi_id); } aic_outb(p, 0, SEQ_FLAGS); detect_maxscb(p); printk("%d/%d SCBs\n", p->scb_data->maxhscbs, p->scb_data->maxscbs); if (aic7xxx_verbose & VERBOSE_PROBE2) { printk(KERN_INFO "(scsi%d) BIOS %sabled, IO Port 0x%lx, IRQ %d\n", p->host_no, (p->flags & AHC_BIOS_ENABLED) ? "en" : "dis", p->base, p->irq); printk(KERN_INFO "(scsi%d) IO Memory at 0x%lx, MMAP Memory at 0x%lx\n", p->host_no, p->mbase, (unsigned long)p->maddr); } #ifdef CONFIG_PCI /* * Now that we know our instance number, we can set the flags we need to * force termination if need be. */ if (aic7xxx_stpwlev != -1) { /* * This option only applies to PCI controllers. */ if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) { unsigned char devconfig; #if LINUX_KERNEL_VERSION > KERNEL_VERSION(2,1,92) pci_read_config_byte(p->pdev, DEVCONFIG, &devconfig); #else pcibios_read_config_byte(p->pci_bus, p->pci_device_fn, DEVCONFIG, &devconfig); #endif if ( (aic7xxx_stpwlev >> p->instance) & 0x01 ) { devconfig |= 0x02; if (aic7xxx_verbose & VERBOSE_PROBE2) printk("(scsi%d) Force setting STPWLEV bit\n", p->host_no); } else { devconfig &= ~0x02; if (aic7xxx_verbose & VERBOSE_PROBE2) printk("(scsi%d) Force clearing STPWLEV bit\n", p->host_no); } #if LINUX_KERNEL_VERSION > KERNEL_VERSION(2,1,92) pci_write_config_byte(p->pdev, DEVCONFIG, devconfig); #else pcibios_write_config_byte(p->pci_bus, p->pci_device_fn, DEVCONFIG, devconfig); #endif } } #endif /* * That took care of devconfig and stpwlev, now for the actual termination * settings. */ if (aic7xxx_override_term != -1) { /* * Again, this only applies to PCI controllers. We don't have problems * with the termination on 274x controllers to the best of my knowledge. */ if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) { unsigned char term_override; term_override = ( (aic7xxx_override_term >> (p->instance * 4)) & 0x0f); p->adapter_control &= ~(CFSTERM|CFWSTERM|CFLVDSTERM|CFAUTOTERM|CFSEAUTOTERM); if ( (p->features & AHC_ULTRA2) && (term_override & 0x0c) ) { p->adapter_control |= CFLVDSTERM; } if (term_override & 0x02) { p->adapter_control |= CFWSTERM; } if (term_override & 0x01) { p->adapter_control |= CFSTERM; } } } if ( (p->flags & AHC_SEEPROM_FOUND) || (aic7xxx_override_term != -1) ) { if (p->features & AHC_SPIOCAP) { if ( aic_inb(p, SPIOCAP) & SSPIOCPS ) /* * Update the settings in sxfrctl1 to match the termination * settings. */ configure_termination(p); } else if ((p->chip & AHC_CHIPID_MASK) >= AHC_AIC7870) { configure_termination(p); } } /* * Clear out any possible pending interrupts. */ aic7xxx_clear_intstat(p); /* * Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1, for both channels */ if (p->features & AHC_TWIN) { /* Select channel B */ aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL); term = ((p->flags & AHC_TERM_ENB_B) != 0) ? STPWEN : 0; aic_outb(p, p->scsi_id_b, SCSIID); scsi_conf = aic_inb(p, SCSICONF + 1); aic_outb(p, DFON | SPIOEN, SXFRCTL0); aic_outb(p, (scsi_conf & ENSPCHK) | STIMESEL | term | ENSTIMER | ACTNEGEN, SXFRCTL1); aic_outb(p, 0, SIMODE0); aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1); aic_outb(p, 0, SCSIRATE); /* Select channel A */ aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL); } term = ((p->flags & AHC_TERM_ENB_SE_LOW) != 0) ? STPWEN : 0; if (p->features & AHC_ULTRA2) aic_outb(p, p->scsi_id, SCSIID_ULTRA2); else aic_outb(p, p->scsi_id, SCSIID); scsi_conf = aic_inb(p, SCSICONF); aic_outb(p, DFON | SPIOEN, SXFRCTL0); aic_outb(p, (scsi_conf & ENSPCHK) | STIMESEL | term | ENSTIMER | ACTNEGEN, SXFRCTL1); aic_outb(p, 0, SIMODE0); aic_outb(p, ENSELTIMO | ENSCSIRST | ENSCSIPERR, SIMODE1); aic_outb(p, 0, SCSIRATE); if ( p->features & AHC_ULTRA2) aic_outb(p, 0, SCSIOFFSET); /* * Look at the information that board initialization or the board * BIOS has left us. In the lower four bits of each target's * scratch space any value other than 0 indicates that we should * initiate synchronous transfers. If it's zero, the user or the * BIOS has decided to disable synchronous negotiation to that * target so we don't activate the needsdtr flag. */ if ((p->features & (AHC_TWIN|AHC_WIDE)) == 0) { max_targets = 8; } else { max_targets = 16; } if (!(aic7xxx_no_reset)) { /* * If we reset the bus, then clear the transfer settings, else leave * them be */ for (i = 0; i < max_targets; i++) { aic_outb(p, 0, TARG_SCSIRATE + i); if (p->features & AHC_ULTRA2) { aic_outb(p, 0, TARG_OFFSET + i); } p->transinfo[i].cur_offset = 0; p->transinfo[i].cur_period = 0; p->transinfo[i].cur_width = MSG_EXT_WDTR_BUS_8_BIT; } /* * If we reset the bus, then clear the transfer settings, else leave * them be. */ aic_outb(p, 0, ULTRA_ENB); aic_outb(p, 0, ULTRA_ENB + 1); p->ultraenb = 0; } /* * Allocate enough hardware scbs to handle the maximum number of * concurrent transactions we can have. We have to make sure that * the allocated memory is contiguous memory. The Linux kmalloc * routine should only allocate contiguous memory, but note that * this could be a problem if kmalloc() is changed. */ { size_t array_size; unsigned int hscb_physaddr; unsigned long temp; array_size = p->scb_data->maxscbs * sizeof(struct aic7xxx_hwscb); if (p->scb_data->hscbs == NULL) { /* * A little padding so we can align thing the way we want */ p->scb_data->hscbs = kmalloc(array_size + 0x1f, GFP_ATOMIC); } if (p->scb_data->hscbs == NULL) { printk("(scsi%d) Unable to allocate hardware SCB array; " "failing detection.\n", p->host_no); p->irq = 0; return(0); } /* * Save the actual kmalloc buffer pointer off, then align our * buffer to a 32 byte boundary */ p->scb_data->hscb_kmalloc_ptr = p->scb_data->hscbs; temp = (unsigned long)p->scb_data->hscbs; temp += 0x1f; temp &= ~0x1f; p->scb_data->hscbs = (struct aic7xxx_hwscb *)temp; /* At least the control byte of each SCB needs to be 0. */ memset(p->scb_data->hscbs, 0, array_size); /* Tell the sequencer where it can find the hardware SCB array. */ hscb_physaddr = VIRT_TO_BUS(p->scb_data->hscbs); aic_outb(p, hscb_physaddr & 0xFF, HSCB_ADDR); aic_outb(p, (hscb_physaddr >> 8) & 0xFF, HSCB_ADDR + 1); aic_outb(p, (hscb_physaddr >> 16) & 0xFF, HSCB_ADDR + 2); aic_outb(p, (hscb_physaddr >> 24) & 0xFF, HSCB_ADDR + 3); /* Set up the fifo areas at the same time */ hscb_physaddr = VIRT_TO_BUS(&p->untagged_scbs[0]); aic_outb(p, hscb_physaddr & 0xFF, SCBID_ADDR); aic_outb(p, (hscb_physaddr >> 8) & 0xFF, SCBID_ADDR + 1); aic_outb(p, (hscb_physaddr >> 16) & 0xFF, SCBID_ADDR + 2); aic_outb(p, (hscb_physaddr >> 24) & 0xFF, SCBID_ADDR + 3); } /* The Q-FIFOs we just set up are all empty */ aic_outb(p, 0, QINPOS); aic_outb(p, 0, KERNEL_QINPOS); aic_outb(p, 0, QOUTPOS); if(p->features & AHC_QUEUE_REGS) { aic_outb(p, SCB_QSIZE_256, QOFF_CTLSTA); aic_outb(p, 0, SDSCB_QOFF); aic_outb(p, 0, SNSCB_QOFF); aic_outb(p, 0, HNSCB_QOFF); } /* * We don't have any waiting selections or disconnected SCBs. */ aic_outb(p, SCB_LIST_NULL, WAITING_SCBH); aic_outb(p, SCB_LIST_NULL, DISCONNECTED_SCBH); /* * Message out buffer starts empty */ aic_outb(p, MSG_NOOP, MSG_OUT); aic_outb(p, MSG_NOOP, LAST_MSG); /* * Set all the other asundry items that haven't been set yet. * This includes just dumping init values to a lot of registers simply * to make sure they've been touched and are ready for use parity wise * speaking. */ aic_outb(p, 0, TMODE_CMDADDR); aic_outb(p, 0, TMODE_CMDADDR + 1); aic_outb(p, 0, TMODE_CMDADDR + 2); aic_outb(p, 0, TMODE_CMDADDR + 3); aic_outb(p, 0, TMODE_CMDADDR_NEXT); /* * Link us into the list of valid hosts */ p->next = first_aic7xxx; first_aic7xxx = p; /* * Clear out any possible pending interrupts, again. */ aic7xxx_clear_intstat(p); /* * Allocate the first set of scbs for this controller. This is to stream- * line code elsewhere in the driver. If we have to check for the existence * of scbs in certain code sections, it slows things down. However, as * soon as we register the IRQ for this card, we could get an interrupt that * includes possibly the SCSI_RSTI interrupt. If we catch that interrupt * then we are likely to segfault if we don't have at least one chunk of * SCBs allocated or add checks all through the reset code to make sure * that the SCBs have been allocated which is an invalid running condition * and therefore I think it's preferable to simply pre-allocate the first * chunk of SCBs. */ aic7xxx_allocate_scb(p); /* * Load the sequencer program, then re-enable the board - * resetting the AIC-7770 disables it, leaving the lights * on with nobody home. */ aic7xxx_loadseq(p); /* * Make sure the AUTOFLUSHDIS bit is *not* set in the SBLKCTL register */ aic_outb(p, aic_inb(p, SBLKCTL) & ~AUTOFLUSHDIS, SBLKCTL); if ( (p->chip & AHC_CHIPID_MASK) == AHC_AIC7770 ) { aic_outb(p, ENABLE, BCTL); /* Enable the boards BUS drivers. */ } if ( !(aic7xxx_no_reset) ) { if (p->features & AHC_TWIN) { if (aic7xxx_verbose & VERBOSE_PROBE2) printk(KERN_INFO "(scsi%d) Resetting channel B\n", p->host_no); aic_outb(p, aic_inb(p, SBLKCTL) | SELBUSB, SBLKCTL); aic7xxx_reset_current_bus(p); aic_outb(p, aic_inb(p, SBLKCTL) & ~SELBUSB, SBLKCTL); } /* Reset SCSI bus A. */ if (aic7xxx_verbose & VERBOSE_PROBE2) { /* In case we are a 3940, 3985, or 7895, print the right channel */ char *channel = ""; if (p->flags & AHC_MULTI_CHANNEL) { channel = " A"; if (p->flags & (AHC_CHNLB|AHC_CHNLC)) channel = (p->flags & AHC_CHNLB) ? " B" : " C"; } printk(KERN_INFO "(scsi%d) Resetting channel%s\n", p->host_no, channel); } /* * Some of the new Ultra2 chipsets need a longer delay after a chip * reset than just the init setup creates, so we have to delay here * before we go into a reset in order to make the chips happy. */ if (p->features & AHC_ULTRA2) mdelay(250); aic7xxx_reset_current_bus(p); /* * Delay for the reset delay. */ if (!reset_delay) aic7xxx_delay(AIC7XXX_RESET_DELAY); } else { if (!reset_delay) { printk(KERN_INFO "(scsi%d) Not resetting SCSI bus. Note: Don't use " "the no_reset\n", p->host_no); printk(KERN_INFO "(scsi%d) option unless you have a verifiable need " "for it.\n", p->host_no); printk(KERN_INFO "(scsi%d) The no_reset option is known to break some " "systems,\n", p->host_no); printk(KERN_INFO "(scsi%d) and is not supported by the driver author\n", p->host_no); aic7xxx_delay(AIC7XXX_RESET_DELAY); } } /* * Register IRQ with the kernel. Only allow sharing IRQs with * PCI devices. */ if (!(p->chip & AHC_PCI)) { result = (request_irq(p->irq, do_aic7xxx_isr, 0, "aic7xxx", p)); } else { result = (request_irq(p->irq, do_aic7xxx_isr, SA_SHIRQ, "aic7xxx", p)); if (result < 0) { result = (request_irq(p->irq, do_aic7xxx_isr, SA_INTERRUPT | SA_SHIRQ, "aic7xxx", p)); } } if (result < 0) { printk(KERN_WARNING "(scsi%d) Couldn't register IRQ %d, ignoring " "controller.\n", p->host_no, p->irq); p->irq = 0; return (0); } unpause_sequencer(p, /* unpause_always */ TRUE); return (found); } /*+F************************************************************************* * Function: * aic7xxx_chip_reset * * Description: * Perform a chip reset on the aic7xxx SCSI controller. The controller * is paused upon return. *-F*************************************************************************/ int aic7xxx_chip_reset(struct aic7xxx_host *p) { unsigned char sblkctl; int wait; /* * For some 274x boards, we must clear the CHIPRST bit and pause * the sequencer. For some reason, this makes the driver work. */ aic_outb(p, PAUSE | CHIPRST, HCNTRL); /* * In the future, we may call this function as a last resort for * error handling. Let's be nice and not do any unecessary delays. */ wait = 1000; /* 1 second (1000 * 1 msec) */ while (--wait && !(aic_inb(p, HCNTRL) & CHIPRSTACK)) { mdelay(1); /* 1 msec */ } pause_sequencer(p); sblkctl = aic_inb(p, SBLKCTL) & (SELBUSB|SELWIDE); if (p->chip & AHC_PCI) sblkctl &= ~SELBUSB; switch( sblkctl ) { case 0: /* normal narrow card */ break; case 2: /* Wide card */ p->features |= AHC_WIDE; break; case 8: /* Twin card */ p->features |= AHC_TWIN; p->flags |= AHC_MULTI_CHANNEL; break; default: /* hmmm...we don't know what this is */ printk(KERN_WARNING "aic7xxx: Unsupported adapter type %d, ignoring.\n", aic_inb(p, SBLKCTL) & 0x0a); return(-1); } return(0); } /*+F************************************************************************* * Function: * aic7xxx_alloc * * Description: * Allocate and initialize a host structure. Returns NULL upon error * and a pointer to a aic7xxx_host struct upon success. *-F*************************************************************************/ static struct aic7xxx_host * aic7xxx_alloc(Scsi_Host_Template *sht, struct aic7xxx_host *temp) { struct aic7xxx_host *p = NULL; struct Scsi_Host *host; int i; /* * Allocate a storage area by registering us with the mid-level * SCSI layer. */ host = scsi_register(sht, sizeof(struct aic7xxx_host)); if (host != NULL) { p = (struct aic7xxx_host *) host->hostdata; memset(p, 0, sizeof(struct aic7xxx_host)); *p = *temp; p->host = host; p->scb_data = kmalloc(sizeof(scb_data_type), GFP_ATOMIC); if (p->scb_data != NULL) { memset(p->scb_data, 0, sizeof(scb_data_type)); scbq_init (&p->scb_data->free_scbs); } else { /* * For some reason we don't have enough memory. Free the * allocated memory for the aic7xxx_host struct, and return NULL. */ release_region(p->base, MAXREG - MINREG); scsi_unregister(host); return(NULL); } p->host_no = host->host_no; p->tagenable = 0; p->orderedtag = 0; for (i=0; itransinfo[i].goal_period = 0; p->transinfo[i].goal_offset = 0; p->transinfo[i].goal_width = MSG_EXT_WDTR_BUS_8_BIT; } DRIVER_LOCK_INIT } return (p); } /*+F************************************************************************* * Function: * aic7xxx_free * * Description: * Frees and releases all resources associated with an instance of * the driver (struct aic7xxx_host *). *-F*************************************************************************/ static void aic7xxx_free(struct aic7xxx_host *p) { int i; /* * Free the allocated hardware SCB space. */ if (p->scb_data != NULL) { if (p->scb_data->hscbs != NULL) { kfree(p->scb_data->hscb_kmalloc_ptr); p->scb_data->hscbs = p->scb_data->hscb_kmalloc_ptr = NULL; } /* * Free the driver SCBs. These were allocated on an as-need * basis. We allocated these in groups depending on how many * we could fit into a given amount of RAM. The tail SCB for * these allocations has a pointer to the alloced area. */ for (i = 0; i < p->scb_data->numscbs; i++) { if (p->scb_data->scb_array[i]->kmalloc_ptr != NULL) kfree(p->scb_data->scb_array[i]->kmalloc_ptr); p->scb_data->scb_array[i] = NULL; } /* * Free the SCB data area. */ kfree(p->scb_data); } /* * Free any alloced Scsi_Cmnd structures that might be around for * negotiation purposes.... */ for (i = 0; i < MAX_TARGETS; i++) { if(p->dev_wdtr_cmnd[i]) kfree(p->dev_wdtr_cmnd[i]); if(p->dev_sdtr_cmnd[i]) kfree(p->dev_sdtr_cmnd[i]); } } /*+F************************************************************************* * Function: * aic7xxx_load_seeprom * * Description: * Load the seeprom and configure adapter and target settings. * Returns 1 if the load was successful and 0 otherwise. *-F*************************************************************************/ static void aic7xxx_load_seeprom(struct aic7xxx_host *p, unsigned char *sxfrctl1) { int have_seeprom = 0; int i, max_targets, mask; unsigned char scsirate, scsi_conf; unsigned short scarray[128]; struct seeprom_config *sc = (struct seeprom_config *) scarray; if (aic7xxx_verbose & VERBOSE_PROBE2) { printk(KERN_INFO "aic7xxx: Loading serial EEPROM..."); } switch (p->chip) { case (AHC_AIC7770|AHC_EISA): /* None of these adapters have seeproms. */ if (aic_inb(p, SCSICONF) & TERM_ENB) p->flags |= AHC_TERM_ENB_A; if ( (p->features & AHC_TWIN) && (aic_inb(p, SCSICONF + 1) & TERM_ENB) ) p->flags |= AHC_TERM_ENB_B; aic_outb(p, 0, DISC_DSB); aic_outb(p, 0, DISC_DSB + 1); break; case (AHC_AIC7770|AHC_VL): have_seeprom = read_284x_seeprom(p, (struct seeprom_config *) scarray); break; default: have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)), scarray, p->sc_size, p->sc_type); if (!have_seeprom) { if(p->sc_type == C46) have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)), scarray, p->sc_size, C56_66); else have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)), scarray, p->sc_size, C46); } if (!have_seeprom) { p->sc_size = 128; have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)), scarray, p->sc_size, p->sc_type); if (!have_seeprom) { if(p->sc_type == C46) have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)), scarray, p->sc_size, C56_66); else have_seeprom = read_seeprom(p, (p->flags & (AHC_CHNLB|AHC_CHNLC)), scarray, p->sc_size, C46); } } break; } if (!have_seeprom) { if (aic7xxx_verbose & VERBOSE_PROBE2) { printk("\naic7xxx: No SEEPROM available.\n"); } p->flags |= AHC_NEWEEPROM_FMT; if (aic_inb(p, SCSISEQ) == 0) { p->flags |= AHC_USEDEFAULTS; p->flags &= ~AHC_BIOS_ENABLED; p->scsi_id = p->scsi_id_b = 7; *sxfrctl1 |= STPWEN; if (aic7xxx_verbose & VERBOSE_PROBE2) { printk("aic7xxx: Using default values.\n"); } } else if (aic7xxx_verbose & VERBOSE_PROBE2) { printk("aic7xxx: Using leftover BIOS values.\n"); } if ( ((p->chip & ~AHC_CHIPID_MASK) == AHC_PCI) && (*sxfrctl1 & STPWEN) ) { p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH; sc->adapter_control &= ~CFAUTOTERM; sc->adapter_control |= CFSTERM | CFWSTERM | CFLVDSTERM; } if (aic7xxx_extended) p->flags |= (AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B); else p->flags &= ~(AHC_EXTEND_TRANS_A | AHC_EXTEND_TRANS_B); } else { if (aic7xxx_verbose & VERBOSE_PROBE2) { printk("done\n"); } /* * Note things in our flags */ p->flags |= AHC_SEEPROM_FOUND; /* * Update the settings in sxfrctl1 to match the termination settings. */ *sxfrctl1 = 0; /* * Get our SCSI ID from the SEEPROM setting... */ p->scsi_id = (sc->brtime_id & CFSCSIID); /* * First process the settings that are different between the VLB * and PCI adapter seeproms. */ if ((p->chip & AHC_CHIPID_MASK) == AHC_AIC7770) { /* VLB adapter seeproms */ if (sc->bios_control & CF284XEXTEND) p->flags |= AHC_EXTEND_TRANS_A; if (sc->adapter_control & CF284XSTERM) { *sxfrctl1 |= STPWEN; p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH; } } else { /* PCI adapter seeproms */ if (sc->bios_control & CFEXTEND) p->flags |= AHC_EXTEND_TRANS_A; if (sc->bios_control & CFBIOSEN) p->flags |= AHC_BIOS_ENABLED; else p->flags &= ~AHC_BIOS_ENABLED; if (sc->adapter_control & CFSTERM) { *sxfrctl1 |= STPWEN; p->flags |= AHC_TERM_ENB_SE_LOW | AHC_TERM_ENB_SE_HIGH; } } p->sc = *sc; } p->discenable = 0; /* * Limit to 16 targets just in case. The 2842 for one is known to * blow the max_targets setting, future cards might also. */ max_targets = MIN(sc->max_targets & CFMAXTARG, ((p->features & (AHC_TWIN | AHC_WIDE)) ? 16 : 8)); if (have_seeprom) { for (i = 0; i < max_targets; i++) { if( ((p->features & AHC_ULTRA) && !(sc->adapter_control & CFULTRAEN) && (sc->device_flags[i] & CFSYNCHISULTRA)) || (sc->device_flags[i] & CFNEWULTRAFORMAT) ) { p->flags |= AHC_NEWEEPROM_FMT; break; } } } for (i = 0; i < max_targets; i++) { mask = (0x01 << i); if (!have_seeprom) { if (aic_inb(p, SCSISEQ) != 0) { /* * OK...the BIOS set things up and left behind the settings we need. * Just make our sc->device_flags[i] entry match what the card has * set for this device. */ p->discenable = ~(aic_inb(p, DISC_DSB) | (aic_inb(p, DISC_DSB + 1) << 8) ); p->ultraenb = (aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8) ); sc->device_flags[i] = (p->discenable & mask) ? CFDISC : 0; if (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER) sc->device_flags[i] |= CFWIDEB; if (p->features & AHC_ULTRA2) { if (aic_inb(p, TARG_OFFSET + i)) { sc->device_flags[i] |= CFSYNCH; sc->device_flags[i] |= (aic_inb(p, TARG_SCSIRATE + i) & 0x07); if ( (aic_inb(p, TARG_SCSIRATE + i) & 0x18) == 0x18 ) sc->device_flags[i] |= CFSYNCHISULTRA; } } else { if (aic_inb(p, TARG_SCSIRATE + i) & ~WIDEXFER) { sc->device_flags[i] |= CFSYNCH; if (p->features & AHC_ULTRA) sc->device_flags[i] |= ((p->ultraenb & mask) ? CFSYNCHISULTRA : 0); } } } else { /* * Assume the BIOS has NOT been run on this card and nothing between * the card and the devices is configured yet. */ sc->device_flags[i] = CFDISC; if (p->features & AHC_WIDE) sc->device_flags[i] |= CFWIDEB; if (p->features & AHC_ULTRA2) sc->device_flags[i] |= 3; else if (p->features & AHC_ULTRA) sc->device_flags[i] |= CFSYNCHISULTRA; sc->device_flags[i] |= CFSYNCH; aic_outb(p, 0, TARG_SCSIRATE + i); if (p->features & AHC_ULTRA2) aic_outb(p, 0, TARG_OFFSET + i); } } if (sc->device_flags[i] & CFDISC) { p->discenable |= mask; } if (p->flags & AHC_NEWEEPROM_FMT) { if ( (sc->device_flags[i] & CFNEWULTRAFORMAT) && !(p->features & AHC_ULTRA2) ) { /* * I know of two different Ultra BIOSes that do this differently. * One on the Gigabyte 6BXU mb that wants flags[i] & CFXFER to * be == to 0x03 and SYNCISULTRA to be true to mean 40MByte/s * while on the IBM Netfinity 5000 they want the same thing * to be something else, while flags[i] & CFXFER == 0x03 and * SYNCISULTRA false should be 40MByte/s. So, we set both to * 40MByte/s and the lower speeds be damned. People will have * to select around the conversely mapped lower speeds in order * to select lower speeds on these boards. */ if ((sc->device_flags[i] & (CFXFER)) == 0x03) { sc->device_flags[i] &= ~CFXFER; sc->device_flags[i] |= CFSYNCHISULTRA; } } if (sc->device_flags[i] & CFSYNCHISULTRA) { p->ultraenb |= mask; } } else if (sc->adapter_control & CFULTRAEN) { p->ultraenb |= mask; } if ( (sc->device_flags[i] & CFSYNCH) == 0) { sc->device_flags[i] &= ~CFXFER; p->ultraenb &= ~mask; p->transinfo[i].user_offset = 0; p->transinfo[i].user_period = 0; p->transinfo[i].cur_offset = 0; p->transinfo[i].cur_period = 0; p->needsdtr_copy &= ~mask; } else { if (p->features & AHC_ULTRA2) { p->transinfo[i].user_offset = MAX_OFFSET_ULTRA2; p->transinfo[i].cur_offset = aic_inb(p, TARG_OFFSET + i); scsirate = (sc->device_flags[i] & CFXFER) | ((p->ultraenb & mask) ? 0x18 : 0x10); p->transinfo[i].user_period = aic7xxx_find_period(p, scsirate, AHC_SYNCRATE_ULTRA2); p->transinfo[i].cur_period = aic7xxx_find_period(p, aic_inb(p, TARG_SCSIRATE + i), AHC_SYNCRATE_ULTRA2); } else { scsirate = (sc->device_flags[i] & CFXFER) << 4; if (sc->device_flags[i] & CFWIDEB) p->transinfo[i].user_offset = MAX_OFFSET_16BIT; else p->transinfo[i].user_offset = MAX_OFFSET_8BIT; if (p->features & AHC_ULTRA) { short ultraenb; ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8); p->transinfo[i].user_period = aic7xxx_find_period(p, scsirate, (p->ultraenb & mask) ? AHC_SYNCRATE_ULTRA : AHC_SYNCRATE_FAST); p->transinfo[i].cur_period = aic7xxx_find_period(p, aic_inb(p, TARG_SCSIRATE + i), (ultraenb & mask) ? AHC_SYNCRATE_ULTRA : AHC_SYNCRATE_FAST); } else p->transinfo[i].user_period = aic7xxx_find_period(p, scsirate, AHC_SYNCRATE_FAST); } p->needsdtr_copy |= mask; } if ( (sc->device_flags[i] & CFWIDEB) && (p->features & AHC_WIDE) ) { p->transinfo[i].user_width = MSG_EXT_WDTR_BUS_16_BIT; p->needwdtr_copy |= mask; } else { p->transinfo[i].user_width = MSG_EXT_WDTR_BUS_8_BIT; p->needwdtr_copy &= ~mask; } p->transinfo[i].cur_width = (aic_inb(p, TARG_SCSIRATE + i) & WIDEXFER) ? MSG_EXT_WDTR_BUS_16_BIT : MSG_EXT_WDTR_BUS_8_BIT; } aic_outb(p, ~(p->discenable & 0xFF), DISC_DSB); aic_outb(p, ~((p->discenable >> 8) & 0xFF), DISC_DSB + 1); p->needwdtr = p->needwdtr_copy; p->needsdtr = p->needsdtr_copy; p->wdtr_pending = p->sdtr_pending = 0; /* * We set the p->ultraenb from the SEEPROM to begin with, but now we make * it match what is already down in the card. If we are doing a reset * on the card then this will get put back to a default state anyway. * This allows us to not have to pre-emptively negotiate when using the * no_reset option. */ if (p->features & AHC_ULTRA) p->ultraenb = aic_inb(p, ULTRA_ENB) | (aic_inb(p, ULTRA_ENB + 1) << 8); scsi_conf = (p->scsi_id & HSCSIID); if(have_seeprom) { p->adapter_control = sc->adapter_control; p->bios_control = sc->bios_control; switch (p->chip & AHC_CHIPID_MASK) { case AHC_AIC7895: case AHC_AIC7896: if (p->adapter_control & CFBPRIMARY) p->flags |= AHC_CHANNEL_B_PRIMARY; default: break; } if (sc->adapter_control & CFSPARITY) scsi_conf |= ENSPCHK; } else { scsi_conf |= ENSPCHK | RESET_SCSI; } /* * Only set the SCSICONF and SCSICONF + 1 registers if we are a PCI card. * The 2842 and 2742 cards already have these registers set and we don't * want to muck with them since we don't set all the bits they do. */ if ( (p->chip & ~AHC_CHIPID_MASK) == AHC_PCI ) { /* Set the host ID */ aic_outb(p, scsi_conf, SCSICONF); /* In case we are a wide card */ aic_outb(p, p->scsi_id, SCSICONF + 1); } } /*+F************************************************************************* * Function: * aic7xxx_detect * * Description: * Try to detect and register an Adaptec 7770 or 7870 SCSI controller. * * XXX - This should really be called aic7xxx_probe(). A sequence of * probe(), attach()/detach(), and init() makes more sense than * one do-it-all function. This may be useful when (and if) the * mid-level SCSI code is overhauled. *-F*************************************************************************/ int aic7xxx_detect(Scsi_Host_Template *template) { struct aic7xxx_host *temp_p = NULL; struct aic7xxx_host *current_p = NULL; struct aic7xxx_host *list_p = NULL; int found = 0; #if defined(__i386__) || defined(__alpha__) ahc_flag_type flags = 0; int type; #endif unsigned char sxfrctl1; #if defined(__i386__) || defined(__alpha__) unsigned char hcntrl, hostconf; unsigned int slot, base; #endif #ifdef MODULE /* * If we are called as a module, the aic7xxx pointer may not be null * and it would point to our bootup string, just like on the lilo * command line. IF not NULL, then process this config string with * aic7xxx_setup */ if(aic7xxx) aic7xxx_setup(aic7xxx, NULL); if(dummy_buffer[0] != 'P') printk(KERN_WARNING "aic7xxx: Please read the file /usr/src/linux/drivers" "/scsi/README.aic7xxx\n" "aic7xxx: to see the proper way to specify options to the aic7xxx " "module\n" "aic7xxx: Specifically, don't use any commas when passing arguments to\n" "aic7xxx: insmod or else it might trash certain memory areas.\n"); #endif template->proc_dir = &proc_scsi_aic7xxx; template->sg_tablesize = AIC7XXX_MAX_SG; #if defined(__i386__) || defined(__alpha__) /* * EISA/VL-bus card signature probe. */ slot = MINSLOT; while ( (slot <= MAXSLOT) && !(aic7xxx_no_probe) ) { base = SLOTBASE(slot) + MINREG; if (check_region(base, MAXREG - MINREG)) { /* * Some other driver has staked a * claim to this i/o region already. */ slot++; continue; /* back to the beginning of the for loop */ } flags = 0; type = aic7xxx_probe(slot, base + AHC_HID0, &flags); if (type == -1) { slot++; continue; } temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC); if (temp_p == NULL) { printk(KERN_WARNING "aic7xxx: Unable to allocate device space.\n"); slot++; continue; /* back to the beginning of the while loop */ } /* * Pause the card preserving the IRQ type. Allow the operator * to override the IRQ trigger. */ if (aic7xxx_irq_trigger == 1) hcntrl = IRQMS; /* Level */ else if (aic7xxx_irq_trigger == 0) hcntrl = 0; /* Edge */ else hcntrl = inb(base + HCNTRL) & IRQMS; /* Default */ memset(temp_p, 0, sizeof(struct aic7xxx_host)); temp_p->unpause = hcntrl | INTEN; temp_p->pause = hcntrl | PAUSE | INTEN; temp_p->base = base; temp_p->mbase = 0; temp_p->maddr = 0; temp_p->pci_bus = 0; temp_p->pci_device_fn = slot; aic_outb(temp_p, hcntrl | PAUSE, HCNTRL); while( (aic_inb(temp_p, HCNTRL) & PAUSE) == 0 ) ; if (aic7xxx_chip_reset(temp_p) == -1) temp_p->irq = 0; else temp_p->irq = aic_inb(temp_p, INTDEF) & 0x0F; temp_p->flags |= AHC_PAGESCBS; switch (temp_p->irq) { case 9: case 10: case 11: case 12: case 14: case 15: break; default: printk(KERN_WARNING "aic7xxx: Host adapter uses unsupported IRQ " "level %d, ignoring.\n", temp_p->irq); kfree(temp_p); slot++; continue; /* back to the beginning of the while loop */ } /* * We are commited now, everything has been checked and this card * has been found, now we just set it up */ /* * Insert our new struct into the list at the end */ if (list_p == NULL) { list_p = current_p = temp_p; } else { current_p = list_p; while (current_p->next != NULL) current_p = current_p->next; current_p->next = temp_p; } switch (type) { case 0: temp_p->board_name_index = 2; if (aic7xxx_verbose & VERBOSE_PROBE2) printk("aic7xxx: <%s> at EISA %d\n", board_names[2], slot); /* FALLTHROUGH */ case 1: { temp_p->chip = AHC_AIC7770 | AHC_EISA; temp_p->features |= AHC_AIC7770_FE; temp_p->bios_control = aic_inb(temp_p, HA_274_BIOSCTRL); /* * Get the primary channel information. Right now we don't * do anything with this, but someday we will be able to inform * the mid-level SCSI code which channel is primary. */ if (temp_p->board_name_index == 0) { temp_p->board_name_index = 3; if (aic7xxx_verbose & VERBOSE_PROBE2) printk("aic7xxx: <%s> at EISA %d\n", board_names[3], slot); } if (temp_p->bios_control & CHANNEL_B_PRIMARY) { temp_p->flags |= AHC_CHANNEL_B_PRIMARY; } if ((temp_p->bios_control & BIOSMODE) == BIOSDISABLED) { temp_p->flags &= ~AHC_BIOS_ENABLED; } else { temp_p->flags &= ~AHC_USEDEFAULTS; temp_p->flags |= AHC_BIOS_ENABLED; if ( (temp_p->bios_control & 0x20) == 0 ) { temp_p->bios_address = 0xcc000; temp_p->bios_address += (0x4000 * (temp_p->bios_control & 0x07)); } else { temp_p->bios_address = 0xd0000; temp_p->bios_address += (0x8000 * (temp_p->bios_control & 0x06)); } } temp_p->adapter_control = aic_inb(temp_p, SCSICONF) << 8; temp_p->adapter_control |= aic_inb(temp_p, SCSICONF + 1); if (temp_p->features & AHC_WIDE) { temp_p->scsi_id = temp_p->adapter_control & HWSCSIID; temp_p->scsi_id_b = temp_p->scsi_id; } else { temp_p->scsi_id = (temp_p->adapter_control >> 8) & HSCSIID; temp_p->scsi_id_b = temp_p->adapter_control & HSCSIID; } aic7xxx_load_seeprom(temp_p, &sxfrctl1); break; } case 2: case 3: temp_p->chip = AHC_AIC7770 | AHC_VL; temp_p->features |= AHC_AIC7770_FE; if (type == 2) temp_p->flags |= AHC_BIOS_ENABLED; else temp_p->flags &= ~AHC_BIOS_ENABLED; if (aic_inb(temp_p, SCSICONF) & TERM_ENB) sxfrctl1 = STPWEN; aic7xxx_load_seeprom(temp_p, &sxfrctl1); temp_p->board_name_index = 4; if (aic7xxx_verbose & VERBOSE_PROBE2) printk("aic7xxx: <%s> at VLB %d\n", board_names[2], slot); switch( aic_inb(temp_p, STATUS_2840) & BIOS_SEL ) { case 0x00: temp_p->bios_address = 0xe0000; break; case 0x20: temp_p->bios_address = 0xc8000; break; case 0x40: temp_p->bios_address = 0xd0000; break; case 0x60: temp_p->bios_address = 0xd8000; break; default: break; /* can't get here */ } break; default: /* Won't get here. */ break; } if (aic7xxx_verbose & VERBOSE_PROBE2) { printk(KERN_INFO "aic7xxx: BIOS %sabled, IO Port 0x%lx, IRQ %d (%s)\n", (temp_p->flags & AHC_USEDEFAULTS) ? "dis" : "en", temp_p->base, temp_p->irq, (temp_p->pause & IRQMS) ? "level sensitive" : "edge triggered"); printk(KERN_INFO "aic7xxx: Extended translation %sabled.\n", (temp_p->flags & AHC_EXTEND_TRANS_A) ? "en" : "dis"); } /* * Set the FIFO threshold and the bus off time. */ hostconf = aic_inb(temp_p, HOSTCONF); aic_outb(temp_p, hostconf & DFTHRSH, BUSSPD); aic_outb(temp_p, (hostconf << 2) & BOFF, BUSTIME); slot++; found++; } #endif /* defined(__i386__) || defined(__alpha__) */ #ifdef CONFIG_PCI /* * PCI-bus probe. */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) if (pci_present()) #else if (pcibios_present()) #endif { struct { unsigned short vendor_id; unsigned short device_id; ahc_chip chip; ahc_flag_type flags; ahc_feature features; int board_name_index; unsigned short seeprom_size; unsigned short seeprom_type; } const aic_pdevs[] = { {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7810, AHC_NONE, AHC_FNONE, AHC_FENONE, 1, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7850, AHC_AIC7850, AHC_PAGESCBS, AHC_AIC7850_FE, 5, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7855, AHC_AIC7850, AHC_PAGESCBS, AHC_AIC7850_FE, 6, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7821, AHC_AIC7860, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7860_FE, 7, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_3860, AHC_AIC7860, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7860_FE, 7, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7860, AHC_AIC7860, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7860_FE, 7, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7861, AHC_AIC7860, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7860_FE, 8, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7870, AHC_AIC7870, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 9, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7871, AHC_AIC7870, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 10, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7872, AHC_AIC7870, AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL, AHC_AIC7870_FE, 11, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7873, AHC_AIC7870, AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL, AHC_AIC7870_FE, 12, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7874, AHC_AIC7870, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7870_FE, 13, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7880, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 14, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7881, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 15, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7882, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL, AHC_AIC7880_FE, 16, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7883, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL, AHC_AIC7880_FE, 17, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7884, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7885, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7886, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7887, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7888, AHC_AIC7880, AHC_PAGESCBS | AHC_BIOS_ENABLED, AHC_AIC7880_FE, 18, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_7895, AHC_AIC7895, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL, AHC_AIC7895_FE, 19, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890, AHC_AIC7890, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7890_FE, 20, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7890B, AHC_AIC7890, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7890_FE, 20, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2930U2, AHC_AIC7890, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7890_FE, 21, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_2940U2, AHC_AIC7890, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7890_FE, 22, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7896, AHC_AIC7896, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL, AHC_AIC7896_FE, 23, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3940U2, AHC_AIC7896, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL, AHC_AIC7896_FE, 24, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_3950U2D, AHC_AIC7896, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED | AHC_MULTI_CHANNEL, AHC_AIC7896_FE, 25, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC, PCI_DEVICE_ID_ADAPTEC_1480A, AHC_AIC7860, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7860_FE, 26, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892A, AHC_AIC7892, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7892_FE, 27, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892B, AHC_AIC7892, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7892_FE, 27, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892D, AHC_AIC7892, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7892_FE, 27, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7892P, AHC_AIC7892, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7892_FE, 27, 32, C46 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899A, AHC_AIC7899, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7899_FE, 28, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899B, AHC_AIC7899, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7899_FE, 28, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899D, AHC_AIC7899, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7899_FE, 28, 32, C56_66 }, {PCI_VENDOR_ID_ADAPTEC2, PCI_DEVICE_ID_ADAPTEC2_7899P, AHC_AIC7899, AHC_PAGESCBS | AHC_NEWEEPROM_FMT | AHC_BIOS_ENABLED, AHC_AIC7899_FE, 28, 32, C56_66 }, }; unsigned short command; unsigned int devconfig, i, oldverbose; #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) struct pci_dev *pdev = NULL; #else int index; unsigned int piobase, mmapbase; unsigned char pci_bus, pci_devfn, pci_irq; #endif for (i = 0; i < NUMBER(aic_pdevs); i++) { #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) pdev = NULL; while ((pdev = pci_find_device(aic_pdevs[i].vendor_id, aic_pdevs[i].device_id, pdev))) #else index = 0; while (!(pcibios_find_device(aic_pdevs[i].vendor_id, aic_pdevs[i].device_id, index++, &pci_bus, &pci_devfn)) ) #endif { if ( i == 0 ) /* We found one, but it's the 7810 RAID cont. */ { if (aic7xxx_verbose & (VERBOSE_PROBE|VERBOSE_PROBE2)) { printk(KERN_INFO "aic7xxx: The 7810 RAID controller is not " "supported by\n"); printk(KERN_INFO " this driver, we are ignoring it.\n"); } } else if ( (temp_p = kmalloc(sizeof(struct aic7xxx_host), GFP_ATOMIC)) != NULL ) { memset(temp_p, 0, sizeof(struct aic7xxx_host)); temp_p->chip = aic_pdevs[i].chip | AHC_PCI; temp_p->flags = aic_pdevs[i].flags; temp_p->features = aic_pdevs[i].features; temp_p->board_name_index = aic_pdevs[i].board_name_index; temp_p->sc_size = aic_pdevs[i].seeprom_size; temp_p->sc_type = aic_pdevs[i].seeprom_type; /* * Read sundry information from PCI BIOS. */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) temp_p->irq = pdev->irq; temp_p->pdev = pdev; temp_p->pci_bus = pdev->bus->number; temp_p->pci_device_fn = pdev->devfn; temp_p->base = pdev->base_address[0]; temp_p->mbase = pdev->base_address[1]; if (aic7xxx_verbose & VERBOSE_PROBE2) printk("aic7xxx: <%s> at PCI %d/%d\n", board_names[aic_pdevs[i].board_name_index], PCI_SLOT(temp_p->pdev->devfn), PCI_FUNC(temp_p->pdev->devfn)); pci_read_config_word(pdev, PCI_COMMAND, &command); if (aic7xxx_verbose & VERBOSE_PROBE2) { printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n", (int)command); } #ifdef AIC7XXX_STRICT_PCI_SETUP command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | PCI_COMMAND_INVALIDATE | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO; #else command |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO; #endif if (aic7xxx_pci_parity == 0) command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY); pci_write_config_word(pdev, PCI_COMMAND, command); #ifdef AIC7XXX_STRICT_PCI_SETUP pci_read_config_dword(pdev, DEVCONFIG, &devconfig); if (aic7xxx_verbose & VERBOSE_PROBE2) { printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig); } devconfig |= 0x80000000; if ((aic7xxx_pci_parity == 0) || (aic7xxx_pci_parity == -1)) { devconfig &= ~(0x00000008); } else { devconfig |= 0x00000008; } pci_write_config_dword(pdev, DEVCONFIG, devconfig); #endif /* AIC7XXX_STRICT_PCI_SETUP */ #else /* LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) */ temp_p->pci_bus = pci_bus; temp_p->pci_device_fn = pci_devfn; if (aic7xxx_verbose & VERBOSE_PROBE2) printk("aic7xxx: <%s> at PCI %d/%d\n", board_names[aic_pdevs[i].board_name_index], PCI_SLOT(temp_p->pci_device_fn), PCI_FUNC(temp_p->pci_device_fn)); pcibios_read_config_byte(pci_bus, pci_devfn, PCI_INTERRUPT_LINE, &pci_irq); temp_p->irq = pci_irq; pcibios_read_config_dword(pci_bus, pci_devfn, PCI_BASE_ADDRESS_0, &piobase); temp_p->base = piobase; pcibios_read_config_dword(pci_bus, pci_devfn, PCI_BASE_ADDRESS_1, &mmapbase); temp_p->mbase = mmapbase; pcibios_read_config_word(pci_bus, pci_devfn, PCI_COMMAND, &command); if (aic7xxx_verbose & VERBOSE_PROBE2) { printk("aic7xxx: Initial PCI_COMMAND value was 0x%x\n", (int)command); } #ifdef AIC7XXX_STRICT_PCI_SETUP command |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | PCI_COMMAND_INVALIDATE | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO; #else command |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO; #endif if (aic7xxx_pci_parity == 0) command &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY); pcibios_write_config_word(pci_bus, pci_devfn, PCI_COMMAND, command); #ifdef AIC7XXX_STRICT_PCI_SETUP pcibios_read_config_dword(pci_bus, pci_devfn, DEVCONFIG, &devconfig); if (aic7xxx_verbose & VERBOSE_PROBE2) { printk("aic7xxx: Initial DEVCONFIG value was 0x%x\n", devconfig); } devconfig |= 0x80000000; if ((aic7xxx_pci_parity == 0) || (aic7xxx_pci_parity == -1)) { devconfig &= ~(0x00000008); } else { devconfig |= 0x00000008; } pcibios_write_config_dword(pci_bus, pci_devfn, DEVCONFIG, devconfig); #endif /* AIC7XXX_STRICT_PCI_SETUP */ #endif /* LINUIX_VERSION_CODE > KERNEL_VERSION(2,1,92) */ /* * The first bit (LSB) of PCI_BASE_ADDRESS_0 is always set, so * we mask it off. */ temp_p->base &= PCI_BASE_ADDRESS_IO_MASK; temp_p->mbase &= PCI_BASE_ADDRESS_MEM_MASK; temp_p->unpause = INTEN; temp_p->pause = temp_p->unpause | PAUSE; if ( ((temp_p->base == 0) && (temp_p->mbase == 0)) || (temp_p->irq == 0) ) { printk("aic7xxx: <%s> at PCI %d/%d\n", board_names[aic_pdevs[i].board_name_index], PCI_SLOT(temp_p->pci_device_fn), PCI_FUNC(temp_p->pci_device_fn)); printk("aic7xxx: Controller disabled by BIOS, ignoring.\n"); kfree(temp_p); temp_p = NULL; continue; } #ifdef MMAPIO { unsigned long page_offset, base; base = temp_p->mbase & PAGE_MASK; page_offset = temp_p->mbase - base; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,1,0) temp_p->maddr = ioremap_nocache(base, page_offset + 256); #else temp_p->maddr = vremap(base, page_offset + 256); #endif if(temp_p->maddr) { temp_p->maddr += page_offset; /* * We need to check the I/O with the MMAPed address. Some machines * simply fail to work with MMAPed I/O and certain controllers. */ if(aic_inb(temp_p, HCNTRL) == 0xff) { /* * OK.....we failed our test....go back to programmed I/O */ printk(KERN_INFO "aic7xxx: <%s> at PCI %d/%d\n", board_names[aic_pdevs[i].board_name_index], PCI_SLOT(temp_p->pci_device_fn), PCI_FUNC(temp_p->pci_device_fn)); printk(KERN_INFO "aic7xxx: MMAPed I/O failed, reverting to " "Programmed I/O.\n"); #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,0) iounmap((void *) (((unsigned long) temp_p->maddr) & PAGE_MASK)); #else vfree((void *) (((unsigned long) temp_p->maddr) & PAGE_MASK)); #endif temp_p->maddr = 0; } } } #endif /* * We HAVE to make sure the first pause_sequencer() and all other * subsequent I/O that isn't PCI config space I/O takes place * after the MMAPed I/O region is configured and tested. The * problem is the PowerPC architecture that doesn't support * programmed I/O at all, so we have to have the MMAP I/O set up * for this pause to even work on those machines. */ pause_sequencer(temp_p); /* * Clear out any pending PCI error status messages. Also set * verbose to 0 so that we don't emit strange PCI error messages * while cleaning out the current status bits. */ oldverbose = aic7xxx_verbose; aic7xxx_verbose = 0; aic7xxx_pci_intr(temp_p); aic7xxx_verbose = oldverbose; temp_p->bios_address = 0; /* * Remember how the card was setup in case there is no seeprom. */ if (temp_p->features & AHC_ULTRA2) temp_p->scsi_id = aic_inb(temp_p, SCSIID_ULTRA2) & OID; else temp_p->scsi_id = aic_inb(temp_p, SCSIID) & OID; /* * Get current termination setting */ sxfrctl1 = aic_inb(temp_p, SXFRCTL1) & STPWEN; if (aic7xxx_chip_reset(temp_p) == -1) { kfree(temp_p); temp_p = NULL; continue; } /* * We need to set the CHNL? assignments before loading the SEEPROM * The 3940 and 3985 cards (original stuff, not any of the later * stuff) are 7870 and 7880 class chips. The Ultra2 stuff falls * under 7896 and 7897. The 7895 is in a class by itself :) */ switch (temp_p->chip & AHC_CHIPID_MASK) { case AHC_AIC7870: /* 3840 / 3985 */ case AHC_AIC7880: /* 3840 UW / 3985 UW */ if(temp_p->flags & AHC_MULTI_CHANNEL) { switch(PCI_SLOT(temp_p->pci_device_fn)) { case 5: temp_p->flags |= AHC_CHNLB; break; case 8: temp_p->flags |= AHC_CHNLB; break; case 12: temp_p->flags |= AHC_CHNLC; break; default: break; } } break; case AHC_AIC7895: /* 7895 */ case AHC_AIC7896: /* 7896/7 */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) if (PCI_FUNC(temp_p->pdev->devfn) != 0) { temp_p->flags |= AHC_CHNLB; } /* * The 7895 is the only chipset that sets the SCBSIZE32 param * in the DEVCONFIG register. The Ultra2 chipsets use * the DSCOMMAND0 register instead. */ if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) { pci_read_config_dword(pdev, DEVCONFIG, &devconfig); devconfig |= SCBSIZE32; pci_write_config_dword(pdev, DEVCONFIG, devconfig); } #else if (PCI_FUNC(temp_p->pci_device_fn) != 0) { temp_p->flags |= AHC_CHNLB; } /* * The 7895 is the only chipset that sets the SCBSIZE32 param * in the DEVCONFIG register. The Ultra2 chipsets use * the DSCOMMAND0 register instead. */ if ((temp_p->chip & AHC_CHIPID_MASK) == AHC_AIC7895) { pcibios_read_config_dword(pci_bus, pci_devfn, DEVCONFIG, &devconfig); devconfig |= SCBSIZE32; pcibios_write_config_dword(pci_bus, pci_devfn, DEVCONFIG, devconfig); } #endif break; default: break; } /* * Loading of the SEEPROM needs to come after we've set the flags * to indicate possible CHNLB and CHNLC assigments. Otherwise, * on 394x and 398x cards we'll end up reading the wrong settings * for channels B and C */ switch (temp_p->chip & AHC_CHIPID_MASK) { case AHC_AIC7890: case AHC_AIC7896: aic_outb(temp_p, 0, SCAMCTL); /* * We used to set DPARCKEN in this register, but after talking * to a tech from Adaptec, I found out they don't use that * particular bit in their own register settings, and when you * combine that with the fact that I determined that we were * seeing Data-Path Parity Errors on things we shouldn't see * them on, I think there is a bug in the silicon and the way * to work around it is to disable this particular check. Also * This bug only showed up on certain commands, so it seems to * be pattern related or some such. The commands we would * typically send as a linux TEST_UNIT_READY or INQUIRY command * could cause it to be triggered, while regular commands that * actually made reasonable use of the SG array capabilities * seemed not to cause the problem. */ /* aic_outb(temp_p, aic_inb(temp_p, DSCOMMAND0) | CACHETHEN | DPARCKEN | MPARCKEN | USCBSIZE32 | CIOPARCKEN, DSCOMMAND0); */ aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) | CACHETHEN | MPARCKEN | USCBSIZE32 | CIOPARCKEN) & ~DPARCKEN, DSCOMMAND0); aic7xxx_load_seeprom(temp_p, &sxfrctl1); break; case AHC_AIC7850: case AHC_AIC7860: /* * Set the DSCOMMAND0 register on these cards different from * on the 789x cards. Also, read the SEEPROM as well. */ aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) | CACHETHEN | MPARCKEN) & ~DPARCKEN, DSCOMMAND0); /* FALLTHROUGH */ default: aic7xxx_load_seeprom(temp_p, &sxfrctl1); break; case AHC_AIC7880: /* * Check the rev of the chipset before we change DSCOMMAND0 */ #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) pci_read_config_dword(pdev, DEVCONFIG, &devconfig); #else pcibios_read_config_dword(pci_bus, pci_devfn, DEVCONFIG, &devconfig); #endif if ((devconfig & 0xff) >= 1) { aic_outb(temp_p, (aic_inb(temp_p, DSCOMMAND0) | CACHETHEN | MPARCKEN) & ~DPARCKEN, DSCOMMAND0); } aic7xxx_load_seeprom(temp_p, &sxfrctl1); break; } /* * and then we need another switch based on the type in order to * make sure the channel B primary flag is set properly on 7895 * controllers....Arrrgggghhh!!! We also have to catch the fact * that when you disable the BIOS on the 7895 on the Intel DK440LX * motherboard, and possibly others, it only sets the BIOS disabled * bit on the A channel...I think I'm starting to lean towards * going postal.... */ switch(temp_p->chip & AHC_CHIPID_MASK) { case AHC_AIC7895: case AHC_AIC7896: current_p = list_p; while(current_p != NULL) { if ( (current_p->pci_bus == temp_p->pci_bus) && (PCI_SLOT(current_p->pci_device_fn) == PCI_SLOT(temp_p->pci_device_fn)) ) { if ( PCI_FUNC(current_p->pci_device_fn) == 0 ) { temp_p->flags |= (current_p->flags & AHC_CHANNEL_B_PRIMARY); temp_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS); temp_p->flags |= (current_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS)); } else { current_p->flags |= (temp_p->flags & AHC_CHANNEL_B_PRIMARY); current_p->flags &= ~(AHC_BIOS_ENABLED|AHC_USEDEFAULTS); current_p->flags |= (temp_p->flags & (AHC_BIOS_ENABLED|AHC_USEDEFAULTS)); } } current_p = current_p->next; } break; default: break; } /* * We only support external SCB RAM on the 7895/6/7 chipsets. * We could support it on the 7890/1 easy enough, but I don't * know of any 7890/1 based cards that have it. I do know * of 7895/6/7 cards that have it and they work properly. */ switch(temp_p->chip & AHC_CHIPID_MASK) { default: break; case AHC_AIC7895: case AHC_AIC7896: #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) pci_read_config_dword(pdev, DEVCONFIG, &devconfig); #else pcibios_read_config_dword(pci_bus, pci_devfn, DEVCONFIG, &devconfig); #endif if (temp_p->features & AHC_ULTRA2) { if (aic_inb(temp_p, DSCOMMAND0) & RAMPSM_ULTRA2) { aic_outb(temp_p, aic_inb(temp_p, DSCOMMAND0) & ~SCBRAMSEL_ULTRA2, DSCOMMAND0); temp_p->flags |= AHC_EXTERNAL_SRAM; devconfig |= EXTSCBPEN; } } else if (devconfig & RAMPSM) { devconfig &= ~SCBRAMSEL; devconfig |= EXTSCBPEN; temp_p->flags |= AHC_EXTERNAL_SRAM; } #if LINUX_VERSION_CODE > KERNEL_VERSION(2,1,92) pci_write_config_dword(pdev, DEVCONFIG, devconfig); #else pcibios_write_config_dword(pci_bus, pci_devfn, DEVCONFIG, devconfig); #endif if ( (temp_p->flags & AHC_EXTERNAL_SRAM) && (temp_p->flags & AHC_CHNLB) ) aic_outb(temp_p, 1, CCSCBBADDR); break; } /* * Take the LED out of diagnostic mode */ aic_outb(temp_p, (aic_inb(temp_p, SBLKCTL) & ~(DIAGLEDEN | DIAGLEDON)), SBLKCTL); /* * We don't know where this is set in the SEEPROM or by the * BIOS, so we default to 100%. On Ultra2 controllers, use 75% * instead. */ if (temp_p->features & AHC_ULTRA2) { aic_outb(temp_p, RD_DFTHRSH_75 | WR_DFTHRSH_75, DFF_THRSH); } else { aic_outb(temp_p, DFTHRSH_100, DSPCISTATUS); } if ( list_p == NULL ) { list_p = current_p = temp_p; } else { current_p = list_p; while(current_p->next != NULL) current_p = current_p->next; current_p->next = temp_p; } temp_p->next = NULL; found++; } /* Found an Adaptec PCI device. */ else /* Well, we found one, but we couldn't get any memory */ { printk("aic7xxx: Found <%s>\n", board_names[aic_pdevs[i].board_name_index]); printk(KERN_INFO "aic7xxx: Unable to allocate device memory, " "skipping.\n"); } } /* while(pdev=....) */ } /* for PCI_DEVICES */ } /* PCI BIOS present */ #endif CONFIG_PCI /* * Now, we re-order the probed devices by BIOS address and BUS class. * In general, we follow this algorithm to make the adapters show up * in the same order under linux that the computer finds them. * 1: All VLB/EISA cards with BIOS_ENABLED first, according to BIOS * address, going from lowest to highest. * 2: All PCI controllers with BIOS_ENABLED next, according to BIOS * address, going from lowest to highest. * 3: Remaining VLB/EISA controllers going in slot order. * 4: Remaining PCI controllers, going in PCI device order (reversable) */ { struct aic7xxx_host *sort_list[4] = { NULL, NULL, NULL, NULL }; struct aic7xxx_host *vlb, *pci; struct aic7xxx_host *prev_p; struct aic7xxx_host *p; unsigned char left; prev_p = vlb = pci = NULL; temp_p = list_p; while (temp_p != NULL) { switch(temp_p->chip & ~AHC_CHIPID_MASK) { case AHC_EISA: case AHC_VL: { p = temp_p; if (p->flags & AHC_BIOS_ENABLED) vlb = sort_list[0]; else vlb = sort_list[2]; if (vlb == NULL) { vlb = temp_p; temp_p = temp_p->next; vlb->next = NULL; } else { current_p = vlb; prev_p = NULL; while ( (current_p != NULL) && (current_p->bios_address < temp_p->bios_address)) { prev_p = current_p; current_p = current_p->next; } if (prev_p != NULL) { prev_p->next = temp_p; temp_p = temp_p->next; prev_p->next->next = current_p; } else { vlb = temp_p; temp_p = temp_p->next; vlb->next = current_p; } } if (p->flags & AHC_BIOS_ENABLED) sort_list[0] = vlb; else sort_list[2] = vlb; break; } default: /* All PCI controllers fall through to default */ { p = temp_p; if (p->flags & AHC_BIOS_ENABLED) pci = sort_list[1]; else pci = sort_list[3]; if (pci == NULL) { pci = temp_p; temp_p = temp_p->next; pci->next = NULL; } else { current_p = pci; prev_p = NULL; if (!aic7xxx_reverse_scan) { while ( (current_p != NULL) && ( (PCI_SLOT(current_p->pci_device_fn) | (current_p->pci_bus << 8)) < (PCI_SLOT(temp_p->pci_device_fn) | (temp_p->pci_bus << 8)) ) ) { prev_p = current_p; current_p = current_p->next; } } else { while ( (current_p != NULL) && ( (PCI_SLOT(current_p->pci_device_fn) | (current_p->pci_bus << 8)) > (PCI_SLOT(temp_p->pci_device_fn) | (temp_p->pci_bus << 8)) ) ) { prev_p = current_p; current_p = current_p->next; } } /* * Are we dealing with a 7985 where we need to sort the * channels as well, if so, the bios_address values should * be the same */ if ( (current_p) && (temp_p->flags & AHC_MULTI_CHANNEL) && (temp_p->pci_bus == current_p->pci_bus) && (PCI_SLOT(temp_p->pci_device_fn) == PCI_SLOT(current_p->pci_device_fn)) ) { if (temp_p->flags & AHC_CHNLB) { if ( !(temp_p->flags & AHC_CHANNEL_B_PRIMARY) ) { prev_p = current_p; current_p = current_p->next; } } else { if (temp_p->flags & AHC_CHANNEL_B_PRIMARY) { prev_p = current_p; current_p = current_p->next; } } } if (prev_p != NULL) { prev_p->next = temp_p; temp_p = temp_p->next; prev_p->next->next = current_p; } else { pci = temp_p; temp_p = temp_p->next; pci->next = current_p; } } if (p->flags & AHC_BIOS_ENABLED) sort_list[1] = pci; else sort_list[3] = pci; break; } } /* End of switch(temp_p->type) */ } /* End of while (temp_p != NULL) */ /* * At this point, the cards have been broken into 4 sorted lists, now * we run through the lists in order and register each controller */ { int i; left = found; for (i=0; iname = board_names[temp_p->board_name_index]; p = aic7xxx_alloc(template, temp_p); if (p != NULL) { p->instance = found - left; if (aic7xxx_register(template, p, (--left)) == 0) { found--; aic7xxx_release(p->host); scsi_unregister(p->host); } else if (aic7xxx_dump_card) { pause_sequencer(p); aic7xxx_print_card(p); aic7xxx_print_scratch_ram(p); unpause_sequencer(p, TRUE); } } current_p = temp_p; temp_p = (struct aic7xxx_host *)temp_p->next; kfree(current_p); } } } } return (found); } #ifdef AIC7XXX_FAKE_NEGOTIATION_CMDS /*+F************************************************************************* * Function: * aic7xxx_negotiation_complete * * Description: * Handle completion events for our Negotiation commands. Clear out the * struct and get it ready for its next use. *-F*************************************************************************/ static void aic7xxx_negotiation_complete(Scsi_Cmnd *cmd) { return; } /*+F************************************************************************* * Function: * aic7xxx_build_negotiation_command * * Description: * Build a Scsi_Cmnd structure to perform negotiation with or else send * a pre-built command specifically for this purpose. *-F*************************************************************************/ static void aic7xxx_build_negotiation_cmnd(struct aic7xxx_host *p, Scsi_Cmnd *old_cmd, int tindex) { if ( (p->needwdtr & (1<wdtr_pending & (1<dev_wdtr_cmnd[tindex] == NULL) { Scsi_Cmnd *cmd; if (!(p->dev_wdtr_cmnd[tindex] = kmalloc(sizeof(Scsi_Cmnd), GFP_ATOMIC)) ) { return; } cmd = p->dev_wdtr_cmnd[tindex]; memset(cmd, 0, sizeof(Scsi_Cmnd)); memcpy(cmd, old_cmd, sizeof(Scsi_Cmnd)); memset(&cmd->cmnd[0], 0, sizeof(cmd->cmnd)); memset(&cmd->data_cmnd[0], 0, sizeof(cmd->data_cmnd)); cmd->lun = 0; cmd->request_bufflen = 0; cmd->request_buffer = NULL; cmd->use_sg = cmd->old_use_sg = cmd->sglist_len = 0; cmd->bufflen = 0; cmd->buffer = NULL; cmd->underflow = 0; cmd->cmd_len = 6; } /* * Before sending this thing out, we also amke the cmd->next pointer * point to the real command so we can stuff any possible SENSE data * intp the real command instead of this fake command. This has to be * done each time the command is built, not just the first time, hence * it's outside of the above if()... */ p->dev_wdtr_cmnd[tindex]->next = old_cmd; aic7xxx_queue(p->dev_wdtr_cmnd[tindex], aic7xxx_negotiation_complete); } else if ( (p->needsdtr & (1<sdtr_pending & (1<wdtr_pending & (1<dev_sdtr_cmnd[tindex] == NULL) { Scsi_Cmnd *cmd; if (!(p->dev_sdtr_cmnd[tindex] = kmalloc(sizeof(Scsi_Cmnd), GFP_ATOMIC)) ) { return; } cmd = p->dev_sdtr_cmnd[tindex]; memset(cmd, 0, sizeof(Scsi_Cmnd)); memcpy(cmd, old_cmd, sizeof(Scsi_Cmnd)); memset(&cmd->cmnd[0], 0, sizeof(cmd->cmnd)); memset(&cmd->data_cmnd[0], 0, sizeof(cmd->data_cmnd)); cmd->lun = 0; cmd->request_bufflen = 0; cmd->request_buffer = NULL; cmd->use_sg = cmd->old_use_sg = cmd->sglist_len = 0; cmd->bufflen = 0; cmd->buffer = NULL; cmd->underflow = 0; cmd->cmd_len = 6; } /* * Before sending this thing out, we also amke the cmd->next pointer * point to the real command so we can stuff any possible SENSE data * intp the real command instead of this fake command. This has to be * done each time the command is built, not just the first time, hence * it's outside of the above if()... */ p->dev_sdtr_cmnd[tindex]->next = old_cmd; aic7xxx_queue(p->dev_sdtr_cmnd[tindex], aic7xxx_negotiation_complete); } } #endif #ifdef AIC7XXX_VERBOSE_DEBUGGING /*+F************************************************************************* * Function: * aic7xxx_print_scb * * Description: * Dump the byte codes for an about to be sent SCB. *-F*************************************************************************/ static void aic7xxx_print_scb(struct aic7xxx_host *p, struct aic7xxx_scb *scb) { int i; unsigned char *x; x = (unsigned char *)&scb->hscb->control; for(i=0; i<32; i++) { printk("%02x ", x[i]); } printk("\n"); } #endif /*+F************************************************************************* * Function: * aic7xxx_buildscb * * Description: * Build a SCB. *-F*************************************************************************/ static void aic7xxx_buildscb(struct aic7xxx_host *p, Scsi_Cmnd *cmd, struct aic7xxx_scb *scb) { unsigned short mask; struct aic7xxx_hwscb *hscb; mask = (0x01 << TARGET_INDEX(cmd)); hscb = scb->hscb; /* * Setup the control byte if we need negotiation and have not * already requested it. */ hscb->control = 0; scb->tag_action = 0; if (p->discenable & mask) { hscb->control |= DISCENB; if (p->tagenable & mask) { cmd->tag = hscb->tag; p->dev_commands_sent[TARGET_INDEX(cmd)]++; if (p->dev_commands_sent[TARGET_INDEX(cmd)] < 200) { hscb->control |= MSG_SIMPLE_Q_TAG; scb->tag_action = MSG_SIMPLE_Q_TAG; } else { if (p->orderedtag & mask) { hscb->control |= MSG_ORDERED_Q_TAG; scb->tag_action = MSG_ORDERED_Q_TAG; } else { hscb->control |= MSG_SIMPLE_Q_TAG; scb->tag_action = MSG_SIMPLE_Q_TAG; } p->dev_commands_sent[TARGET_INDEX(cmd)] = 0; } } } if (p->dev_flags[TARGET_INDEX(cmd)] & DEVICE_SCANNED) { #ifdef AIC7XXX_FAKE_NEGOTIATION_CMDS if ( (p->needwdtr & mask) && !(p->wdtr_pending & mask) ) { if (cmd == p->dev_wdtr_cmnd[TARGET_INDEX(cmd)]) { p->wdtr_pending |= mask; scb->flags |= SCB_MSGOUT_WDTR; hscb->control &= DISCENB; hscb->control |= MK_MESSAGE; scb->tag_action = 0; } else { aic7xxx_build_negotiation_cmnd(p, cmd, TARGET_INDEX(cmd)); } } else if ( (p->needsdtr & mask) && !(p->sdtr_pending & mask) && !(p->wdtr_pending & mask) ) { if (cmd == p->dev_sdtr_cmnd[TARGET_INDEX(cmd)]) { p->sdtr_pending |= mask; scb->flags |= SCB_MSGOUT_SDTR; hscb->control &= DISCENB; hscb->control |= MK_MESSAGE; scb->tag_action = 0; } else if (cmd != p->dev_wdtr_cmnd[TARGET_INDEX(cmd)]) { aic7xxx_build_negotiation_cmnd(p, cmd, TARGET_INDEX(cmd)); } } #else if ( (p->needwdtr & mask) && !(p->wdtr_pending & mask) && !(p->sdtr_pending & mask) && (cmd->lun == 0) ) { p->wdtr_pending |= mask; scb->flags |= SCB_MSGOUT_WDTR; hscb->control &= DISCENB; hscb->control |= MK_MESSAGE; scb->tag_action = 0; #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Building WDTR command.\n", p->host_no, CTL_OF_CMD(cmd)); #endif } else if ( (p->needsdtr & mask) && !(p->wdtr_pending & mask) && !(p->sdtr_pending & mask) && (cmd->lun == 0) ) { p->sdtr_pending |= mask; scb->flags |= SCB_MSGOUT_SDTR; hscb->control &= DISCENB; hscb->control |= MK_MESSAGE; scb->tag_action = 0; #ifdef AIC7XXX_VERBOSE_DEBUGGING if (aic7xxx_verbose > 0xffff) printk(INFO_LEAD "Building SDTR command.\n", p->host_no, CTL_OF_CMD(cmd)); #endif } #endif } hscb->target_channel_lun = ((cmd->target << 4) & 0xF0) | ((cmd->channel & 0x01) << 3) | (cmd->lun & 0x07); /* * The interpretation of request_buffer and request_bufflen * changes depending on whether or not use_sg is zero; a * non-zero use_sg indicates the number of elements in the * scatter-gather array. */ /* * XXX - this relies on the host data being stored in a * little-endian format. */ hscb->SCSI_cmd_length = cmd->cmd_len; hscb->SCSI_cmd_pointer = cpu_to_le32(VIRT_TO_BUS(cmd->cmnd)); if (cmd->use_sg) { struct scatterlist *sg; /* Must be mid-level SCSI code scatterlist */ /* * We must build an SG list in adapter format, as the kernel's SG list * cannot be used directly because of data field size (__alpha__) * differences and the kernel SG list uses virtual addresses where * we need physical addresses. */ int i; sg = (struct scatterlist *)cmd->request_buffer; scb->sg_length = 0; /* * Copy the segments into the SG array. NOTE!!! - We used to * have the first entry both in the data_pointer area and the first * SG element. That has changed somewhat. We still have the first * entry in both places, but now we download the address of * scb->sg_list[1] instead of 0 to the sg pointer in the hscb. */ for (i = 0; i < cmd->use_sg; i++) { scb->sg_list[i].address = cpu_to_le32(VIRT_TO_BUS(sg[i].address)); scb->sg_list[i].length = cpu_to_le32(sg[i].length); scb->sg_length += sg[i].length; } /* Copy the first SG into the data pointer area. */ hscb->data_pointer = scb->sg_list[0].address; hscb->data_count = scb->sg_list[0].length; scb->sg_count = cmd->use_sg; hscb->SG_segment_count = cmd->use_sg; hscb->SG_list_pointer = cpu_to_le32(VIRT_TO_BUS(&scb->sg_list[1])); } else { if (cmd->request_bufflen) { scb->sg_count = 1; scb->sg_list[0].address = cpu_to_le32(VIRT_TO_BUS(cmd->request_buffer)); scb->sg_list[0].length = cpu_to_le32(cmd->request_bufflen); scb->sg_length = cmd->request_bufflen; hscb->SG_segment_count = 1; hscb->SG_list_pointer = cpu_to_le32(VIRT_TO_BUS(&scb->sg_list[0])); hscb->data_count = scb->sg_list[0].length; hscb->data_pointer = scb->sg_list[0].address; } else { scb->sg_count = 0; scb->sg_length = 0; hscb->SG_segment_count = 0; hscb->SG_list_pointer = 0; hscb->data_count = 0; hscb->data_pointer = 0; } } #ifdef AIC7XXX_VERBOSE_DEBUGGING if((cmd->cmnd[0] == TEST_UNIT_READY) && (aic7xxx_verbose & VERBOSE_PROBE2)) { aic7xxx_print_scb(p, scb); } #endif } /*+F************************************************************************* * Function: * aic7xxx_queue * * Description: * Queue a SCB to the controller. *-F*************************************************************************/ int aic7xxx_queue(Scsi_Cmnd *cmd, void (*fn)(Scsi_Cmnd *)) { struct aic7xxx_host *p; struct aic7xxx_scb *scb; #ifdef AIC7XXX_VERBOSE_DEBUGGING int tindex = TARGET_INDEX(cmd); #endif #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags = 0; #endif p = (struct aic7xxx_host *) cmd->host->hostdata; /* * Check to see if channel was scanned. */ #ifdef AIC7XXX_VERBOSE_DEBUGGING if (!(p->flags & AHC_A_SCANNED) && (cmd->channel == 0)) { if (aic7xxx_verbose & VERBOSE_PROBE2) printk(INFO_LEAD "Scanning channel for devices.\n", p->host_no, 0, -1, -1); p->flags |= AHC_A_SCANNED; } else { if (!(p->flags & AHC_B_SCANNED) && (cmd->channel == 1)) { if (aic7xxx_verbose & VERBOSE_PROBE2) printk(INFO_LEAD "Scanning channel for devices.\n", p->host_no, 1, -1, -1); p->flags |= AHC_B_SCANNED; } } if (p->dev_active_cmds[tindex] > (cmd->device->queue_depth + 1)) { printk(WARN_LEAD "Commands queued exceeds queue " "depth, active=%d\n", p->host_no, CTL_OF_CMD(cmd), p->dev_active_cmds[tindex]); if ( p->dev_active_cmds[tindex] > 220 ) p->dev_active_cmds[tindex] = 0; } #endif scb = scbq_remove_head(&p->scb_data->free_scbs); if (scb == NULL) { DRIVER_LOCK aic7xxx_allocate_scb(p); DRIVER_UNLOCK scb = scbq_remove_head(&p->scb_data->free_scbs); } if (scb == NULL) { printk(WARN_LEAD "Couldn't get a free SCB.\n", p->host_no, CTL_OF_CMD(cmd)); cmd->result = (DID_BUS_BUSY << 16); DRIVER_LOCK aic7xxx_queue_cmd_complete(p, cmd); DRIVER_UNLOCK return 0; } else { scb->cmd = cmd; aic7xxx_position(cmd) = scb->hscb->tag; /* * Construct the SCB beforehand, so the sequencer is * paused a minimal amount of time. */ aic7xxx_buildscb(p, cmd, scb); /* * Make sure the Scsi_Cmnd pointer is saved, the struct it points to * is set up properly, and the parity error flag is reset, then send * the SCB to the sequencer and watch the fun begin. */ cmd->scsi_done = fn; cmd->result = DID_OK; memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer)); aic7xxx_error(cmd) = DID_OK; aic7xxx_status(cmd) = 0; cmd->host_scribble = NULL; scb->flags |= SCB_ACTIVE | SCB_WAITINGQ; DRIVER_LOCK scbq_insert_tail(&p->waiting_scbs, scb); if ( (p->flags & (AHC_IN_ISR | AHC_IN_ABORT | AHC_IN_RESET)) == 0) { aic7xxx_run_waiting_queues(p); } DRIVER_UNLOCK } return (0); } /*+F************************************************************************* * Function: * aic7xxx_bus_device_reset * * Description: * Abort or reset the current SCSI command(s). If the scb has not * previously been aborted, then we attempt to send a BUS_DEVICE_RESET * message to the target. If the scb has previously been unsuccessfully * aborted, then we will reset the channel and have all devices renegotiate. * Returns an enumerated type that indicates the status of the operation. *-F*************************************************************************/ static int aic7xxx_bus_device_reset(struct aic7xxx_host *p, Scsi_Cmnd *cmd) { struct aic7xxx_scb *scb; struct aic7xxx_hwscb *hscb; int result = -1; int channel; unsigned char saved_scbptr, lastphase; unsigned char hscb_index; int disconnected; scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]); hscb = scb->hscb; lastphase = aic_inb(p, LASTPHASE); if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) { printk(INFO_LEAD "Bus Device reset, scb flags 0x%x, ", p->host_no, CTL_OF_SCB(scb), scb->flags); switch (lastphase) { case P_DATAOUT: printk("Data-Out phase\n"); break; case P_DATAIN: printk("Data-In phase\n"); break; case P_COMMAND: printk("Command phase\n"); break; case P_MESGOUT: printk("Message-Out phase\n"); break; case P_STATUS: printk("Status phase\n"); break; case P_MESGIN: printk("Message-In phase\n"); break; default: /* * We're not in a valid phase, so assume we're idle. */ printk("while idle, LASTPHASE = 0x%x\n", lastphase); break; } printk(INFO_LEAD "SCSISIGI 0x%x, SEQADDR 0x%x, SSTAT0 0x%x, SSTAT1 " "0x%x\n", p->host_no, CTL_OF_SCB(scb), aic_inb(p, SCSISIGI), aic_inb(p, SEQADDR0) | (aic_inb(p, SEQADDR1) << 8), aic_inb(p, SSTAT0), aic_inb(p, SSTAT1)); } channel = cmd->channel; /* * Send a Device Reset Message: * The target that is holding up the bus may not be the same as * the one that triggered this timeout (different commands have * different timeout lengths). Our strategy here is to queue an * abort message to the timed out target if it is disconnected. * Otherwise, if we have an active target we stuff the message buffer * with an abort message and assert ATN in the hopes that the target * will let go of the bus and go to the mesgout phase. If this * fails, we'll get another timeout a few seconds later which will * attempt a bus reset. */ saved_scbptr = aic_inb(p, SCBPTR); disconnected = FALSE; if (lastphase != P_BUSFREE) { if (aic_inb(p, SCB_TAG) >= p->scb_data->numscbs) { printk(WARN_LEAD "Invalid SCB ID %d is active, " "SCB flags = 0x%x.\n", p->host_no, CTL_OF_CMD(cmd), scb->hscb->tag, scb->flags); return(SCSI_RESET_ERROR); } if (scb->hscb->tag == aic_inb(p, SCB_TAG)) { if ( (lastphase != P_MESGOUT) && (lastphase != P_MESGIN) ) { if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Device reset message in " "message buffer\n", p->host_no, CTL_OF_SCB(scb)); scb->flags |= SCB_RESET | SCB_DEVICE_RESET; aic7xxx_error(scb->cmd) = DID_RESET; p->dev_flags[TARGET_INDEX(scb->cmd)] |= BUS_DEVICE_RESET_PENDING; /* Send the abort message to the active SCB. */ aic_outb(p, HOST_MSG, MSG_OUT); aic_outb(p, lastphase | ATNO, SCSISIGO); return(SCSI_RESET_PENDING); } else { /* We want to send out the message, but it could screw an already */ /* in place and being used message. Instead, we return an error */ /* to try and start the bus reset phase since this command is */ /* probably hung (aborts failed, and now reset is failing). We */ /* also make sure to set BUS_DEVICE_RESET_PENDING so we won't try */ /* any more on this device, but instead will escalate to a bus or */ /* host reset (additionally, we won't try to abort any more). */ printk(WARN_LEAD "Device reset, Message buffer " "in use\n", p->host_no, CTL_OF_SCB(scb)); scb->flags |= SCB_RESET | SCB_DEVICE_RESET; aic7xxx_error(scb->cmd) = DID_RESET; p->dev_flags[TARGET_INDEX(scb->cmd)] |= BUS_DEVICE_RESET_PENDING; return(SCSI_RESET_ERROR); } } } /* if (last_phase != P_BUSFREE).....indicates we are idle and can work */ hscb_index = aic7xxx_find_scb(p, scb); if (hscb_index == SCB_LIST_NULL) { disconnected = (aic7xxx_scb_on_qoutfifo(p, scb)) ? FALSE : TRUE; } else { aic_outb(p, hscb_index, SCBPTR); if (aic_inb(p, SCB_CONTROL) & DISCONNECTED) { disconnected = TRUE; } } if (disconnected) { /* * Simply set the MK_MESSAGE flag and the SEQINT handler will do * the rest on a reconnect. */ scb->hscb->control |= MK_MESSAGE; scb->flags |= SCB_RESET | SCB_DEVICE_RESET; p->dev_flags[TARGET_INDEX(scb->cmd)] |= BUS_DEVICE_RESET_PENDING; if (hscb_index != SCB_LIST_NULL) { unsigned char scb_control; aic_outb(p, hscb_index, SCBPTR); scb_control = aic_inb(p, SCB_CONTROL); aic_outb(p, scb_control | MK_MESSAGE, SCB_CONTROL); } /* * Actually requeue this SCB in case we can select the * device before it reconnects. If the transaction we * want to abort is not tagged, then this will be the only * outstanding command and we can simply shove it on the * qoutfifo and be done. If it is tagged, then it goes right * in with all the others, no problem :) We need to add it * to the qinfifo and let the sequencer know it is there. * Now, the only problem left to deal with is, *IF* this * command completes, in spite of the MK_MESSAGE bit in the * control byte, then we need to pick that up in the interrupt * routine and clean things up. This *shouldn't* ever happen. */ if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Queueing device reset " "command.\n", p->host_no, CTL_OF_SCB(scb)); p->qinfifo[p->qinfifonext++] = scb->hscb->tag; if (p->features & AHC_QUEUE_REGS) aic_outb(p, p->qinfifonext, HNSCB_QOFF); else aic_outb(p, p->qinfifonext, KERNEL_QINPOS); scb->flags |= SCB_QUEUED_ABORT; result = SCSI_RESET_PENDING; } else if (result == -1) { result = SCSI_RESET_ERROR; } aic_outb(p, saved_scbptr, SCBPTR); return (result); } /*+F************************************************************************* * Function: * aic7xxx_panic_abort * * Description: * Abort the current SCSI command(s). *-F*************************************************************************/ void aic7xxx_panic_abort(struct aic7xxx_host *p, Scsi_Cmnd *cmd) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,0) int i, mask, found, need_tag; struct aic7xxx_scb *scb; unsigned char qinpos, hscbp; found = FALSE; #endif printk("aic7xxx driver version %s/%s\n", AIC7XXX_C_VERSION, UTS_RELEASE); printk("Controller type:\n %s\n", board_names[p->board_name_index]); printk("p->flags=0x%x, p->chip=0x%x, p->features=0x%x, " "sequencer %s paused\n", p->flags, p->chip, p->features, (aic_inb(p, HCNTRL) & PAUSE) ? "is" : "isn't" ); pause_sequencer(p); disable_irq(p->irq); aic7xxx_print_card(p); aic7xxx_print_scratch_ram(p); #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,0) for(i=0; idev_flags[i] & DEVICE_PRESENT) { mask = (0x01 << i); printk(INFO_LEAD "dev_flags=0x%x, WDTR:%c/%c/%c, SDTR:%c/%c/%c," " q_depth=%d:%d\n", p->host_no, 0, i, 0, p->dev_flags[i], (p->wdtr_pending & mask) ? 'Y' : 'N', (p->needwdtr & mask) ? 'Y' : 'N', (p->needwdtr_copy & mask) ? 'Y' : 'N', (p->sdtr_pending & mask) ? 'Y' : 'N', (p->needsdtr & mask) ? 'Y' : 'N', (p->needsdtr_copy & mask) ? 'Y' : 'N', p->dev_active_cmds[i], p->dev_max_queue_depth[i] ); printk(INFO_LEAD "targ_scsirate=0x%x", p->host_no, 0, i, 0, aic_inb(p, TARG_SCSIRATE + i)); if (p->features & AHC_ULTRA2) printk(", targ_offset=%d", aic_inb(p, TARG_OFFSET + i)); printk("\n"); } } /* * Search for this command and see if we can't track it down, it's the * one causing the timeout. Print out this command first, then all other * active commands afterwords. */ need_tag = -1; if ( cmd ) { scb = p->scb_data->scb_array[aic7xxx_position(cmd)]; if ( (scb->flags & SCB_ACTIVE) && (scb->cmd == cmd) ) { printk("Timed out command is scb #%d:\n", scb->hscb->tag); printk("Tag%d: flags=0x%x, control=0x%x, TCL=0x%x, %s\n", scb->hscb->tag, scb->flags, scb->hscb->control, scb->hscb->target_channel_lun, (scb->flags & SCB_WAITINGQ) ? "WAITINGQ" : "Sent" ); need_tag = scb->hscb->tag; if (scb->flags & SCB_WAITINGQ) found=TRUE; } } printk("QINFIFO: (TAG) "); qinpos = aic_inb(p, QINPOS); while ( qinpos != p->qinfifonext ) { if (p->qinfifo[qinpos] == need_tag) found=TRUE; printk("%d ", p->qinfifo[qinpos++]); } printk("\n"); printk("Current SCB: (SCBPTR/TAG/CONTROL) %d/%d/0x%x\n", aic_inb(p, SCBPTR), aic_inb(p, SCB_TAG), aic_inb(p, SCB_CONTROL) ); if (aic_inb(p, SCB_TAG) == need_tag) found=TRUE; printk("WAITING_SCBS: (SCBPTR/TAG/CONTROL) %d->", hscbp = aic_inb(p, WAITING_SCBH)); while (hscbp != SCB_LIST_NULL) { aic_outb(p, hscbp, SCBPTR); printk("%d/%d/0x%x ", hscbp, aic_inb(p, SCB_TAG), aic_inb(p, SCB_CONTROL)); hscbp = aic_inb(p, SCB_NEXT); if (aic_inb(p, SCB_TAG) == need_tag) found=TRUE; } printk("\n"); printk("DISCONNECTED_SCBS: (SCBPTR/TAG/CONTROL) %d->", hscbp = aic_inb(p, DISCONNECTED_SCBH)); while (hscbp != SCB_LIST_NULL) { aic_outb(p, hscbp, SCBPTR); printk("%d/%d/0x%x ", hscbp, aic_inb(p, SCB_TAG), aic_inb(p, SCB_CONTROL)); hscbp = aic_inb(p, SCB_NEXT); if (aic_inb(p, SCB_TAG) == need_tag) found=TRUE; } printk("\n"); printk("FREE_SCBS: (SCBPTR/TAG/CONTROL) %d->", hscbp = aic_inb(p, FREE_SCBH)); while (hscbp != SCB_LIST_NULL) { aic_outb(p, hscbp, SCBPTR); printk("%d/%d/0x%x ", hscbp, aic_inb(p, SCB_TAG), aic_inb(p, SCB_CONTROL)); hscbp = aic_inb(p, SCB_NEXT); } printk("\n"); if (found == FALSE) { /* * We haven't found the offending SCB yet, and it should be around * somewhere, so go look for it in the cards SCBs. */ printk("SCBPTR CONTROL TAG PREV NEXT\n"); for(i=0; iscb_data->maxhscbs; i++) { aic_outb(p, i, SCBPTR); printk(" %3d %02x %02x %02x %02x\n", i, aic_inb(p, SCB_CONTROL), aic_inb(p, SCB_TAG), aic_inb(p, SCB_PREV), aic_inb(p, SCB_NEXT)); } } for (i=0; i < p->scb_data->numscbs; i++) { scb = p->scb_data->scb_array[i]; if ( (scb->flags & SCB_ACTIVE) && (scb->cmd != cmd) ) { printk("Tag%d: flags=0x%x, control=0x%x, TCL=0x%x, %s\n", scb->hscb->tag, scb->flags, scb->hscb->control, scb->hscb->target_channel_lun, (scb->flags & SCB_WAITINGQ) ? "WAITINGQ" : "Sent" ); } } #endif sti(); for(;;) barrier(); } /*+F************************************************************************* * Function: * aic7xxx_abort * * Description: * Abort the current SCSI command(s). *-F*************************************************************************/ int aic7xxx_abort(Scsi_Cmnd *cmd) { struct aic7xxx_scb *scb = NULL; struct aic7xxx_host *p; int result, found=0; unsigned char tmp_char, saved_hscbptr, next_hscbptr, prev_hscbptr; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags = 0; #endif Scsi_Cmnd *cmd_next, *cmd_prev; p = (struct aic7xxx_host *) cmd->host->hostdata; scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]); /* * I added a new config option to the driver: "panic_on_abort" that will * cause the driver to panic and the machine to stop on the first abort * or reset call into the driver. At that point, it prints out a lot of * usefull information for me which I can then use to try and debug the * problem. Simply enable the boot time prompt in order to activate this * code. */ if (aic7xxx_panic_on_abort) aic7xxx_panic_abort(p, cmd); DRIVER_LOCK /* * Run the isr to grab any command in the QOUTFIFO and any other misc. * assundry tasks. This should also set up the bh handler if there is * anything to be done, but it won't run until we are done here since * we are following a straight code path without entering the scheduler * code. */ pause_sequencer(p); while ( (aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR)) { aic7xxx_isr(p->irq, p, (void *)NULL); pause_sequencer(p); aic7xxx_done_cmds_complete(p); } if ((scb == NULL) || (cmd->serial_number != cmd->serial_number_at_timeout)) /* Totally bogus cmd since it points beyond our */ { /* valid SCB range or doesn't even match it's own*/ /* timeout serial number. */ if (aic7xxx_verbose & VERBOSE_ABORT_MID) printk(INFO_LEAD "Abort called with bogus Scsi_Cmnd " "pointer.\n", p->host_no, CTL_OF_CMD(cmd)); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_ABORT_NOT_RUNNING); } if (scb->cmd != cmd) /* Hmmm...either this SCB is currently free with a */ { /* NULL cmd pointer (NULLed out when freed) or it */ /* has already been recycled for another command */ /* Either way, this SCB has nothing to do with this*/ /* command and we need to deal with cmd without */ /* touching the SCB. */ /* The theory here is to return a value that will */ /* make the queued for complete command actually */ /* finish successfully, or to indicate that we */ /* don't have this cmd any more and the mid level */ /* code needs to find it. */ cmd_next = p->completeq.head; cmd_prev = NULL; while (cmd_next != NULL) { if (cmd_next == cmd) { if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "Abort called for command " "on completeq, completing.\n", p->host_no, CTL_OF_CMD(cmd)); if ( cmd_prev == NULL ) p->completeq.head = (Scsi_Cmnd *)cmd_next->host_scribble; else cmd_prev->host_scribble = cmd_next->host_scribble; cmd_next->scsi_done(cmd_next); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_ABORT_NOT_RUNNING); /* It's already back as a successful * completion */ } cmd_prev = cmd_next; cmd_next = (Scsi_Cmnd *)cmd_next->host_scribble; } if (aic7xxx_verbose & VERBOSE_ABORT_MID) printk(INFO_LEAD "Abort called for already completed" " command.\n", p->host_no, CTL_OF_CMD(cmd)); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_ABORT_NOT_RUNNING); } /* At this point we know the following: * the SCB pointer is valid * the command pointer passed in to us and the scb->cmd pointer match * this then means that the command we need to abort is the same as the * command held by the scb pointer and is a valid abort request. * Now, we just have to figure out what to do from here. Current plan is: * if we have already been here on this command, escalate to a reset * if scb is on waiting list or QINFIFO, send it back as aborted, but * we also need to be aware of the possibility that we could be using * a faked negotiation command that is holding this command up, if * so we need to take care of that command instead, which means we * would then treat this one like it was sitting around disconnected * instead. * if scb is on WAITING_SCB list in sequencer, free scb and send back * if scb is disconnected and not completed, abort with abort message * if scb is currently running, then it may be causing the bus to hang * so we want a return value that indicates a reset would be appropriate * if the command does not finish shortly * if scb is already complete but not on completeq, we're screwed because * this can't happen (except if the command is in the QOUTFIFO, in which * case we would like it to complete successfully instead of having to * to be re-done) * All other scenarios already dealt with by previous code. */ if ( scb->flags & (SCB_ABORT | SCB_RESET | SCB_QUEUED_ABORT) ) { if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "SCB aborted once already, " "escalating.\n", p->host_no, CTL_OF_SCB(scb)); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_ABORT_SNOOZE); } if ( (p->flags & (AHC_RESET_PENDING | AHC_ABORT_PENDING)) || (p->dev_flags[TARGET_INDEX(scb->cmd)] & BUS_DEVICE_RESET_PENDING) ) { if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "Reset/Abort pending for this " "device, not wasting our time.\n", p->host_no, CTL_OF_SCB(scb)); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_ABORT_PENDING); } found = 0; p->flags |= AHC_IN_ABORT; if (aic7xxx_verbose & VERBOSE_ABORT) printk(INFO_LEAD "Aborting scb %d, flags 0x%x\n", p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags); /* * First, let's check to see if the currently running command is our target * since if it is, the return is fairly easy and quick since we don't want * to touch the command in case it might complete, but we do want a timeout * in case it's actually hung, so we really do nothing, but tell the mid * level code to reset the timeout. */ if ( scb->hscb->tag == aic_inb(p, SCB_TAG) ) { /* * Check to see if the sequencer is just sitting on this command, or * if it's actively being run. */ result = aic_inb(p, LASTPHASE); switch (result) { case P_DATAOUT: /* For any of these cases, we can assume we are */ case P_DATAIN: /* an active command and act according. For */ case P_COMMAND: /* anything else we are going to fall on through*/ case P_STATUS: /* The SCSI_ABORT_SNOOZE will give us two abort */ case P_MESGOUT: /* chances to finish and then escalate to a */ case P_MESGIN: /* reset call */ if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "SCB is currently active. " "Waiting on completion.\n", p->host_no, CTL_OF_SCB(scb)); unpause_sequencer(p, FALSE); p->flags &= ~AHC_IN_ABORT; scb->flags |= SCB_RECOVERY_SCB; /* Note the fact that we've been */ p->flags |= AHC_ABORT_PENDING; /* here so we will know not to */ DRIVER_UNLOCK /* muck with other SCBs if this */ return(SCSI_ABORT_PENDING); /* one doesn't complete and clear */ break; /* out. */ default: break; } } if ((found == 0) && (scb->flags & SCB_WAITINGQ)) { int tindex = TARGET_INDEX(cmd); #ifdef AIC7XXX_FAKE_NEGOTIATION_CMDS unsigned short mask; mask = (1 << tindex); if (p->wdtr_pending & mask) { if (p->dev_wdtr_cmnd[tindex]->next != cmd) found = 1; else found = 0; } else if (p->sdtr_pending & mask) { if (p->dev_sdtr_cmnd[tindex]->next != cmd) found = 1; else found = 0; } else { found = 1; } if (found == 0) { /* * OK..this means the command we are currently getting an abort * for has an outstanding negotiation command in front of it. * We don't really have a way to tie back into the negotiation * commands, so we just send this back as pending, then it * will get reset in 2 seconds. */ unpause_sequencer(p, TRUE); scb->flags |= SCB_ABORT; DRIVER_UNLOCK return(SCSI_ABORT_PENDING); } #endif if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "SCB found on waiting list and " "aborted.\n", p->host_no, CTL_OF_SCB(scb)); scbq_remove(&p->waiting_scbs, scb); scbq_remove(&p->delayed_scbs[tindex], scb); p->dev_active_cmds[tindex]++; p->activescbs++; scb->flags &= ~(SCB_WAITINGQ | SCB_ACTIVE); scb->flags |= SCB_ABORT | SCB_QUEUED_FOR_DONE; found = 1; } /* * We just checked the waiting_q, now for the QINFIFO */ if ( found == 0 ) { if ( ((found = aic7xxx_search_qinfifo(p, cmd->target, cmd->channel, cmd->lun, scb->hscb->tag, SCB_ABORT | SCB_QUEUED_FOR_DONE, FALSE, NULL)) != 0) && (aic7xxx_verbose & VERBOSE_ABORT_PROCESS)) printk(INFO_LEAD "SCB found in QINFIFO and " "aborted.\n", p->host_no, CTL_OF_SCB(scb)); } /* * QINFIFO, waitingq, completeq done. Next, check WAITING_SCB list in card */ if ( found == 0 ) { unsigned char scb_next_ptr; prev_hscbptr = SCB_LIST_NULL; saved_hscbptr = aic_inb(p, SCBPTR); next_hscbptr = aic_inb(p, WAITING_SCBH); while ( next_hscbptr != SCB_LIST_NULL ) { aic_outb(p, next_hscbptr, SCBPTR ); if ( scb->hscb->tag == aic_inb(p, SCB_TAG) ) { found = 1; if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "SCB found on hardware waiting" " list and aborted.\n", p->host_no, CTL_OF_SCB(scb)); if ( prev_hscbptr == SCB_LIST_NULL ) { aic_outb(p, aic_inb(p, SCB_NEXT), WAITING_SCBH); /* stop the selection since we just * grabbed the scb out from under the * card */ aic_outb(p, aic_inb(p, SCSISEQ) & ~ENSELO, SCSISEQ); aic_outb(p, CLRSELTIMEO, CLRSINT1); } else { scb_next_ptr = aic_inb(p, SCB_NEXT); aic_outb(p, prev_hscbptr, SCBPTR); aic_outb(p, scb_next_ptr, SCB_NEXT); aic_outb(p, next_hscbptr, SCBPTR); } aic_outb(p, SCB_LIST_NULL, SCB_TAG); aic_outb(p, 0, SCB_CONTROL); aic7xxx_add_curscb_to_free_list(p); scb->flags = SCB_ABORT | SCB_QUEUED_FOR_DONE; break; } prev_hscbptr = next_hscbptr; next_hscbptr = aic_inb(p, SCB_NEXT); } aic_outb(p, saved_hscbptr, SCBPTR ); } /* * Hmmm...completeq, QOUTFIFO, QINFIFO, WAITING_SCBH, waitingq all checked. * OK...the sequencer's paused, interrupts are off, and we haven't found the * command anyplace where it could be easily aborted. Time for the hard * work. We also know the command is valid. This essentially means the * command is disconnected, or connected but not into any phases yet, which * we know due to the tests we ran earlier on the current active scb phase. * At this point we can queue the abort tag and go on with life. */ if ( found == 0 ) { p->flags |= AHC_ABORT_PENDING; scb->flags |= SCB_QUEUED_ABORT | SCB_ABORT | SCB_RECOVERY_SCB; scb->hscb->control |= MK_MESSAGE; result=aic7xxx_find_scb(p, scb); if ( result != SCB_LIST_NULL ) { saved_hscbptr = aic_inb(p, SCBPTR); aic_outb(p, result, SCBPTR); tmp_char = aic_inb(p, SCB_CONTROL); aic_outb(p, tmp_char | MK_MESSAGE, SCB_CONTROL); aic_outb(p, saved_hscbptr, SCBPTR); } if (aic7xxx_verbose & VERBOSE_ABORT_PROCESS) printk(INFO_LEAD "SCB disconnected. Queueing Abort" " SCB.\n", p->host_no, CTL_OF_SCB(scb)); p->qinfifo[p->qinfifonext++] = scb->hscb->tag; if (p->features & AHC_QUEUE_REGS) aic_outb(p, p->qinfifonext, HNSCB_QOFF); else aic_outb(p, p->qinfifonext, KERNEL_QINPOS); } if (found) { aic7xxx_run_done_queue(p, TRUE); aic7xxx_run_waiting_queues(p); } p->flags &= ~AHC_IN_ABORT; unpause_sequencer(p, FALSE); DRIVER_UNLOCK /* * On the return value. If we found the command and aborted it, then we know * it's already sent back and there is no reason for a further timeout, so * we use SCSI_ABORT_SUCCESS. On the queued abort side, we aren't so certain * there hasn't been a bus hang or something that might keep the abort from * from completing. Therefore, we use SCSI_ABORT_PENDING. The first time this * is passed back, the timeout on the command gets extended, the second time * we pass this back, the mid level SCSI code calls our reset function, which * would shake loose a hung bus. */ if ( found != 0 ) return(SCSI_ABORT_SUCCESS); else return(SCSI_ABORT_PENDING); } /*+F************************************************************************* * Function: * aic7xxx_reset * * Description: * Resetting the bus always succeeds - is has to, otherwise the * kernel will panic! Try a surgical technique - sending a BUS * DEVICE RESET message - on the offending target before pulling * the SCSI bus reset line. *-F*************************************************************************/ int aic7xxx_reset(Scsi_Cmnd *cmd, unsigned int flags) { struct aic7xxx_scb *scb = NULL; struct aic7xxx_host *p; int tindex; int result = -1; #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,95) unsigned long cpu_flags = 0; #endif #define DEVICE_RESET 0x01 #define BUS_RESET 0x02 #define HOST_RESET 0x04 #define FAIL 0x08 #define RESET_DELAY 0x10 int action; Scsi_Cmnd *cmd_prev, *cmd_next; if ( cmd == NULL ) { printk(KERN_WARNING "(scsi?:?:?:?) Reset called with NULL Scsi_Cmnd " "pointer, failing.\n"); return(SCSI_RESET_SNOOZE); } p = (struct aic7xxx_host *) cmd->host->hostdata; scb = (p->scb_data->scb_array[aic7xxx_position(cmd)]); tindex = TARGET_INDEX(cmd); /* * I added a new config option to the driver: "panic_on_abort" that will * cause the driver to panic and the machine to stop on the first abort * or reset call into the driver. At that point, it prints out a lot of * usefull information for me which I can then use to try and debug the * problem. Simply enable the boot time prompt in order to activate this * code. */ if (aic7xxx_panic_on_abort) aic7xxx_panic_abort(p, cmd); DRIVER_LOCK pause_sequencer(p); while ( (aic_inb(p, INTSTAT) & INT_PEND) && !(p->flags & AHC_IN_ISR)) { aic7xxx_isr(p->irq, p, (void *)NULL ); pause_sequencer(p); aic7xxx_done_cmds_complete(p); } if (scb == NULL) { if (aic7xxx_verbose & VERBOSE_RESET_MID) printk(INFO_LEAD "Reset called with bogus Scsi_Cmnd" "->SCB mapping, improvising.\n", p->host_no, CTL_OF_CMD(cmd)); if ( flags & SCSI_RESET_SUGGEST_HOST_RESET ) { action = HOST_RESET; } else { action = BUS_RESET; } } else if (scb->cmd != cmd) { if (aic7xxx_verbose & VERBOSE_RESET_MID) printk(INFO_LEAD "Reset called with recycled SCB " "for cmd.\n", p->host_no, CTL_OF_CMD(cmd)); cmd_prev = NULL; cmd_next = p->completeq.head; while ( cmd_next != NULL ) { if (cmd_next == cmd) { if (aic7xxx_verbose & VERBOSE_RESET_RETURN) printk(INFO_LEAD "Reset, found cmd on completeq" ", completing.\n", p->host_no, CTL_OF_CMD(cmd)); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_RESET_NOT_RUNNING); } cmd_prev = cmd_next; cmd_next = (Scsi_Cmnd *)cmd_next->host_scribble; } if ( !(flags & SCSI_RESET_SYNCHRONOUS) ) { if (aic7xxx_verbose & VERBOSE_RESET_RETURN) printk(INFO_LEAD "Reset, cmd not found," " failing.\n", p->host_no, CTL_OF_CMD(cmd)); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_RESET_NOT_RUNNING); } else { if (aic7xxx_verbose & VERBOSE_RESET_MID) printk(INFO_LEAD "Reset called, no scb, " "flags 0x%x\n", p->host_no, CTL_OF_CMD(cmd), flags); scb = NULL; action = HOST_RESET; } } else { if (aic7xxx_verbose & VERBOSE_RESET_MID) printk(INFO_LEAD "Reset called, scb %d, flags " "0x%x\n", p->host_no, CTL_OF_SCB(scb), scb->hscb->tag, scb->flags); if ( aic7xxx_scb_on_qoutfifo(p, scb) ) { if(aic7xxx_verbose & VERBOSE_RESET_RETURN) printk(INFO_LEAD "SCB on qoutfifo, returning.\n", p->host_no, CTL_OF_SCB(scb)); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_RESET_NOT_RUNNING); } if ( flags & SCSI_RESET_SUGGEST_HOST_RESET ) { action = HOST_RESET; } else if ( flags & SCSI_RESET_SUGGEST_BUS_RESET ) { action = BUS_RESET; } else { action = DEVICE_RESET; } } if ( (action & DEVICE_RESET) && (p->dev_flags[tindex] & BUS_DEVICE_RESET_PENDING) ) { if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Bus device reset already sent to " "device, escalating.\n", p->host_no, CTL_OF_CMD(cmd)); action = BUS_RESET; } if ( (action & DEVICE_RESET) && (scb->flags & SCB_QUEUED_ABORT) ) { if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) { printk(INFO_LEAD "Have already attempted to reach " "device with queued\n", p->host_no, CTL_OF_CMD(cmd)); printk(INFO_LEAD "message, will escalate to bus " "reset.\n", p->host_no, CTL_OF_CMD(cmd)); } action = BUS_RESET; } if ( (action & DEVICE_RESET) && (p->flags & (AHC_RESET_PENDING | AHC_ABORT_PENDING)) ) { if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Bus device reset stupid when " "other action has failed.\n", p->host_no, CTL_OF_CMD(cmd)); action = BUS_RESET; } if ( (action & BUS_RESET) && !(p->features & AHC_TWIN) ) { action = HOST_RESET; } if ( (p->dev_flags[tindex] & DEVICE_RESET_DELAY) && !(action & (HOST_RESET | BUS_RESET))) { if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) { printk(INFO_LEAD "Reset called too soon after last " "reset without requesting\n", p->host_no, CTL_OF_CMD(cmd)); printk(INFO_LEAD "bus or host reset, escalating.\n", p->host_no, CTL_OF_CMD(cmd)); } action = BUS_RESET; } if ( (p->flags & AHC_RESET_DELAY) && (action & (HOST_RESET | BUS_RESET)) ) { if (aic7xxx_verbose & VERBOSE_RESET_PROCESS) printk(INFO_LEAD "Reset called too soon after " "last bus reset, delaying.\n", p->host_no, CTL_OF_CMD(cmd)); action = RESET_DELAY; } /* * By this point, we want to already know what we are going to do and * only have the following code implement our course of action. */ switch (action) { case RESET_DELAY: unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_RESET_PENDING); break; case FAIL: unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(SCSI_RESET_ERROR); break; case DEVICE_RESET: p->flags |= AHC_IN_RESET; result = aic7xxx_bus_device_reset(p, cmd); aic7xxx_run_done_queue(p, TRUE); /* We can't rely on run_waiting_queues to unpause the sequencer for * PCI based controllers since we use AAP */ aic7xxx_run_waiting_queues(p); unpause_sequencer(p, FALSE); p->flags &= ~AHC_IN_RESET; DRIVER_UNLOCK return(result); break; case BUS_RESET: case HOST_RESET: default: p->flags |= AHC_IN_RESET | AHC_RESET_DELAY; p->dev_expires[p->scsi_id] = jiffies + (3 * HZ); p->dev_timer_active |= (0x01 << p->scsi_id); if ( !(p->dev_timer_active & (0x01 << MAX_TARGETS)) || time_after_eq(p->dev_timer.expires, p->dev_expires[p->scsi_id]) ) { del_timer(&p->dev_timer); p->dev_timer.expires = p->dev_expires[p->scsi_id]; add_timer(&p->dev_timer); p->dev_timer_active |= (0x01 << MAX_TARGETS); } aic7xxx_reset_channel(p, cmd->channel, TRUE); if ( (p->features & AHC_TWIN) && (action & HOST_RESET) ) { aic7xxx_reset_channel(p, cmd->channel ^ 0x01, TRUE); restart_sequencer(p); } if (action != HOST_RESET) result = SCSI_RESET_SUCCESS | SCSI_RESET_BUS_RESET; else { result = SCSI_RESET_SUCCESS | SCSI_RESET_HOST_RESET; aic_outb(p, aic_inb(p, SIMODE1) & ~(ENREQINIT|ENBUSFREE), SIMODE1); aic7xxx_clear_intstat(p); p->flags &= ~AHC_HANDLING_REQINITS; p->msg_type = MSG_TYPE_NONE; p->msg_index = 0; p->msg_len = 0; } aic7xxx_run_done_queue(p, TRUE); /* * If this a SCSI_RESET_SYNCHRONOUS then the command we were given is * in need of being re-started, so send it on through to aic7xxx_queue * and let it set until the delay is over. This keeps it from dying * entirely and avoids getting a bogus dead command back through the * mid-level code due to too many retries. */ #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,132) if ( flags & SCSI_RESET_SYNCHRONOUS ) { cmd->result = DID_BUS_BUSY << 16; cmd->done(cmd); } #endif p->flags &= ~AHC_IN_RESET; /* * We can't rely on run_waiting_queues to unpause the sequencer for * PCI based controllers since we use AAP. NOTE: this also sets * the timer for the one command we might have queued in the case * of a synch reset. */ aic7xxx_run_waiting_queues(p); unpause_sequencer(p, FALSE); DRIVER_UNLOCK return(result); break; } } /*+F************************************************************************* * Function: * aic7xxx_biosparam * * Description: * Return the disk geometry for the given SCSI device. *-F*************************************************************************/ int aic7xxx_biosparam(Disk *disk, kdev_t dev, int geom[]) { int heads, sectors, cylinders, ret; struct aic7xxx_host *p; struct buffer_head *bh; p = (struct aic7xxx_host *) disk->device->host->hostdata; bh = bread(MKDEV(MAJOR(dev), MINOR(dev)&~0xf), 0, 1024); if ( bh ) { ret = scsi_partsize(bh, disk->capacity, &geom[2], &geom[0], &geom[1]); brelse(bh); if ( ret != -1 ) return(ret); } heads = 64; sectors = 32; cylinders = disk->capacity / (heads * sectors); if ((p->flags & AHC_EXTEND_TRANS_A) && (cylinders > 1024)) { heads = 255; sectors = 63; cylinders = disk->capacity / (heads * sectors); } geom[0] = heads; geom[1] = sectors; geom[2] = cylinders; return (0); } /*+F************************************************************************* * Function: * aic7xxx_release * * Description: * Free the passed in Scsi_Host memory structures prior to unloading the * module. *-F*************************************************************************/ int aic7xxx_release(struct Scsi_Host *host) { struct aic7xxx_host *p = (struct aic7xxx_host *) host->hostdata; struct aic7xxx_host *next, *prev; if(p->irq) free_irq(p->irq, p); release_region(p->base, MAXREG - MINREG); #ifdef MMAPIO if(p->maddr) { #if LINUX_VERSION_CODE < KERNEL_VERSION(2,1,0) vfree((void *) (((unsigned long) p->maddr) & PAGE_MASK)); #else iounmap((void *) (((unsigned long) p->maddr) & PAGE_MASK)); #endif } #endif /* MMAPIO */ prev = NULL; next = first_aic7xxx; while(next != NULL) { if(next == p) { if(prev == NULL) first_aic7xxx = next->next; else prev->next = next->next; } else { prev = next; } next = next->next; } aic7xxx_free(p); return(0); } /*+F************************************************************************* * Function: * aic7xxx_print_card * * Description: * Print out all of the control registers on the card * * NOTE: This function is not yet safe for use on the VLB and EISA * controllers, so it isn't used on those controllers at all. *-F*************************************************************************/ static void aic7xxx_print_card(struct aic7xxx_host *p) { int i, j, k, chip; static struct register_ranges { int num_ranges; int range_val[32]; } cards_ds[] = { { 0, {0,} }, /* none */ {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1f, 0x1f, 0x60, 0x60, /*7771*/ 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9b, 0x9f} }, { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7850*/ 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} }, { 9, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7860*/ 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} }, {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1c, 0x1f, 0x60, 0x60, /*7870*/ 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} }, {10, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1a, 0x1c, 0x1f, 0x60, 0x60, /*7880*/ 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9f} }, {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7890*/ 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f, 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc, 0xfe, 0xff} }, {12, {0x00, 0x05, 0x08, 0x11, 0x18, 0x19, 0x1b, 0x1f, 0x60, 0x60, /*7895*/ 0x62, 0x66, 0x80, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f, 0xe0, 0xf1} }, {16, {0x00, 0x05, 0x08, 0x11, 0x18, 0x1f, 0x60, 0x60, 0x62, 0x66, /*7896*/ 0x84, 0x8e, 0x90, 0x95, 0x97, 0x97, 0x9a, 0x9a, 0x9f, 0x9f, 0xe0, 0xf1, 0xf4, 0xf4, 0xf6, 0xf6, 0xf8, 0xf8, 0xfa, 0xfc, 0xfe, 0xff} }, }; #ifdef CONFIG_PCI static struct register_ranges cards_ns[] = { { 0, {0,} }, /* none */ { 0, {0,} }, /* 7771 */ { 7, {0x04, 0x08, 0x0c, 0x0e, 0x10, 0x17, 0x28, 0x2b, 0x30, 0x33, 0x3c, 0x41, 0x43, 0x47} }, { 7, {0x04, 0x08, 0x0c, 0x0e, 0x10, 0x17, 0x28, 0x2b, 0x30, 0x33, 0x3c, 0x41, 0x43, 0x47} }, { 5, {0x04, 0x08, 0x0c, 0x0e, 0x10, 0x17, 0x30, 0x33, 0x3c, 0x41} }, { 5, {0x04, 0x08, 0x0c, 0x0e, 0x10, 0x17, 0x30, 0x34, 0x3c, 0x47} }, { 5, {0x04, 0x08, 0x0c, 0x1b, 0x30, 0x34, 0x3c, 0x43, 0xdc, 0xe3} }, { 6, {0x04, 0x08, 0x0c, 0x0e, 0x10, 0x17, 0x30, 0x34, 0x3c, 0x47, 0xdc, 0xe3} }, { 6, {0x04, 0x08, 0x0c, 0x1b, 0x30, 0x34, 0x3c, 0x43, 0xdc, 0xe3, 0xff, 0xff} } }; #endif chip = p->chip & AHC_CHIPID_MASK; /* * Let's run through the PCI space first.... */ printk("%s at ", board_names[p->board_name_index]); switch(p->chip & ~AHC_CHIPID_MASK) { case AHC_VL: printk("VLB Slot %d.\n", p->pci_device_fn); break; case AHC_EISA: printk("EISA Slot %d.\n", p->pci_device_fn); break; case AHC_PCI: default: printk("PCI %d/%d.\n", PCI_SLOT(p->pci_device_fn), PCI_FUNC(p->pci_device_fn)); break; } #ifdef CONFIG_PCI { unsigned char temp; printk("PCI Dump:\n"); k=0; for(i=0; i KERNEL_VERSION(2,1,92) pci_read_config_byte(p->pdev, j, &temp); #else pcibios_read_config_byte(p->pci_bus, p->pci_device_fn, j, &temp); #endif printk("%02x:%02x ", j, temp); if(++k == 13) { printk("\n"); k = 0; } } } } if(k != 0) printk("\n"); #endif /* CONFIG_PCI */ /* * Now the registers on the card.... */ printk("Card Dump:\n"); k = 0; for(i=0; iflags & AHC_SEEPROM_FOUND) { unsigned short *sc1; sc1 = (unsigned short *)&p->sc; printk("SEEPROM dump.\n"); for(i=1; i<=32; i++) { printk("0x%04x", sc1[i-1]); if ( (i % 8) == 0 ) printk("\n"); else printk(" "); } } /* * If this was an Ultra2 controller, then we just hosed the card in terms * of the QUEUE REGS. This function is only called at init time or by * the panic_abort function, so it's safe to assume a generic init time * setting here */ if(p->features & AHC_QUEUE_REGS) { aic_outb(p, 0, SDSCB_QOFF); aic_outb(p, 0, SNSCB_QOFF); aic_outb(p, 0, HNSCB_QOFF); } } /*+F************************************************************************* * Function: * aic7xxx_print_scratch_ram * * Description: * Print out the scratch RAM values on the card. *-F*************************************************************************/ static void aic7xxx_print_scratch_ram(struct aic7xxx_host *p) { int i, k; k = 0; printk("Scratch RAM:\n"); for(i = SRAM_BASE; i < SEQCTL; i++) { printk("%02x:%02x ", i, aic_inb(p, i)); if(++k == 13) { printk("\n"); k=0; } } if (p->features & AHC_MORE_SRAM) { for(i = TARG_OFFSET; i < 0x80; i++) { printk("%02x:%02x ", i, aic_inb(p, i)); if(++k == 13) { printk("\n"); k=0; } } } printk("\n"); } #include "aic7xxx_proc.c" #ifdef MODULE /* Eventually this will go into an include file, but this will be later */ Scsi_Host_Template driver_template = AIC7XXX; #include "scsi_module.c" #endif /* * Overrides for Emacs so that we almost follow Linus's tabbing style. * Emacs will notice this stuff at the end of the file and automatically * adjust the settings for this buffer only. This must remain at the end * of the file. * --------------------------------------------------------------------------- * Local variables: * c-indent-level: 2 * c-brace-imaginary-offset: 0 * c-brace-offset: -2 * c-argdecl-indent: 2 * c-label-offset: -2 * c-continued-statement-offset: 2 * c-continued-brace-offset: 0 * indent-tabs-mode: nil * tab-width: 8 * End: */