/* myson803.c: A Linux device driver for the Myson mtd803 Ethernet chip. */ /* Written 1998-2003 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Drivers based on or derived from this code fall under the GPL and must retain the authorship, copyright and license notice. This file is not a complete program and may only be used when the entire operating system is licensed under the GPL. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 410 Severn Ave., Suite 210 Annapolis MD 21403 Support information and updates available at http://www.scyld.com/network/myson803.html */ /* These identify the driver base version and may not be removed. */ static const char version1[] = "myson803.c:v1.05 3/10/2003 Written by Donald Becker \n"; static const char version2[] = " http://www.scyld.com/network/drivers.html\n"; /* Automatically extracted configuration info: probe-func: myson803_probe config-in: tristate 'Myson MTD803 series Ethernet support' CONFIG_MYSON_ETHER c-help-name: Myson MTD803 PCI Ethernet support c-help-symbol: CONFIG_MYSON_ETHER c-help: This driver is for the Myson MTD803 Ethernet adapter series. c-help: More specific information and updates are available from c-help: http://www.scyld.com/network/drivers.html */ /* The user-configurable values. These may be modified when a driver module is loaded.*/ /* Message enable level: 0..31 = no..all messages. See NETIF_MSG docs. */ static int debug = 2; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 40; /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). This chip uses a 64 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 32; /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1518 effectively disables this feature. */ static int rx_copybreak = 0; /* Used to pass the media type, etc. Both 'options[]' and 'full_duplex[]' should exist for driver interoperability. The media type is usually passed in 'options[]'. The default is autonegotation for speed and duplex. This should rarely be overridden. Use option values 0x10/0x20 for 10Mbps, 0x100,0x200 for 100Mbps. Use option values 0x10 and 0x100 for forcing half duplex fixed speed. Use option values 0x20 and 0x200 for forcing full duplex operation. */ #define MAX_UNITS 8 /* More are supported, limit only on options */ static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; /* Operational parameters that are set at compile time. */ /* Keep the ring sizes a power of two for compile efficiency. The compiler will convert '%'<2^N> into a bit mask. Making the Tx ring too large decreases the effectiveness of channel bonding and packet priority. There are no ill effects from too-large receive rings. */ #define TX_RING_SIZE 16 #define TX_QUEUE_LEN 10 /* Limit Tx ring entries actually used. */ #define RX_RING_SIZE 32 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (6*HZ) /* Allocation size of Rx buffers with normal sized Ethernet frames. Do not change this value without good reason. This is not a limit, but a way to keep a consistent allocation size among drivers. */ #define PKT_BUF_SZ 1536 #ifndef __KERNEL__ #define __KERNEL__ #endif #if !defined(__OPTIMIZE__) #warning You must compile this file with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif /* Include files, designed to support most kernel versions 2.0.0 and later. */ #include #if defined(CONFIG_SMP) && ! defined(__SMP__) #define __SMP__ #endif #if defined(MODULE) && defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS) #define MODVERSIONS #endif #include #if defined(MODVERSIONS) #include #endif #include #include #include #include #include #include #if LINUX_VERSION_CODE >= 0x20400 #include #else #include #endif #include #include #include #include #include #include #include /* Processor type for cache alignment. */ #include #include #include #ifdef INLINE_PCISCAN #include "k_compat.h" #else #include "pci-scan.h" #include "kern_compat.h" #endif /* Condensed operations for readability. */ #define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr)) #define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr)) #if (LINUX_VERSION_CODE >= 0x20100) && defined(MODULE) char kernel_version[] = UTS_RELEASE; #endif /* Kernels before 2.1.0 cannot map the high addrs assigned by some BIOSes. */ #if (LINUX_VERSION_CODE < 0x20100) || ! defined(MODULE) #define USE_IO_OPS #endif MODULE_AUTHOR("Donald Becker "); MODULE_DESCRIPTION("Myson mtd803 Ethernet driver"); MODULE_LICENSE("GPL"); /* List in order of common use. */ MODULE_PARM(debug, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(multicast_filter_limit, "i"); MODULE_PARM_DESC(debug, "Driver message level (0-31)"); MODULE_PARM_DESC(options, "Force transceiver type or fixed speed+duplex"); MODULE_PARM_DESC(full_duplex, "Non-zero to force full duplex, " "non-negotiated link (deprecated)."); MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt"); MODULE_PARM_DESC(rx_copybreak, "Breakpoint in bytes for copy-only-tiny-frames"); MODULE_PARM_DESC(multicast_filter_limit, "Multicast addresses before switching to Rx-all-multicast"); /* Theory of Operation I. Board Compatibility This driver is for the Myson mtd803 chip. It should work with other Myson 800 series chips. II. Board-specific settings None. III. Driver operation IIIa. Ring buffers This driver uses two statically allocated fixed-size descriptor lists formed into rings by a branch from the final descriptor to the beginning of the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. Some chips explicitly use only 2^N sized rings, while others use a 'next descriptor' pointer that the driver forms into rings. IIIb/c. Transmit/Receive Structure This driver uses a zero-copy receive and transmit scheme. The driver allocates full frame size skbuffs for the Rx ring buffers at open() time and passes the skb->data field to the chip as receive data buffers. When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is copied to the new skbuff. When the incoming frame is larger, the skbuff is passed directly up the protocol stack. Buffers consumed this way are replaced by newly allocated skbuffs in a later phase of receives. The RX_COPYBREAK value is chosen to trade-off the memory wasted by using a full-sized skbuff for small frames vs. the copying costs of larger frames. New boards are typically used in generously configured machines and the underfilled buffers have negligible impact compared to the benefit of a single allocation size, so the default value of zero results in never copying packets. When copying is done, the cost is usually mitigated by using a combined copy/checksum routine. Copying also preloads the cache, which is most useful with small frames. A subtle aspect of the operation is that the IP header at offset 14 in an ethernet frame isn't longword aligned for further processing. When unaligned buffers are permitted by the hardware (and always on copies) frames are put into the skbuff at an offset of "+2", 16-byte aligning the IP header. IIId. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and interrupt handling software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'lp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. After reaping the stats, it marks the Tx queue entry as empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IIId. SMP semantics The following are serialized with respect to each other via the "xmit_lock". dev->hard_start_xmit() Transmit a packet dev->tx_timeout() Transmit watchdog for stuck Tx dev->set_multicast_list() Set the recieve filter. Note: The Tx timeout watchdog code is implemented by the timer routine in kernels up to 2.2.*. In 2.4.* and later the timeout code is part of the driver interface. The following fall under the global kernel lock. The module will not be unloaded during the call, unless a call with a potential reschedule e.g. kmalloc() is called. No other synchronization assertion is made. dev->open() dev->do_ioctl() dev->get_stats() Caution: The lock for dev->open() is commonly broken with request_irq() or kmalloc(). It is best to avoid any lock-breaking call in do_ioctl() and get_stats(), or additional module locking code must be implemented. The following is self-serialized (no simultaneous entry) An handler registered with request_irq(). IV. Notes IVb. References http://www.scyld.com/expert/100mbps.html http://scyld.com/expert/NWay.html http://www.myson.com.hk/mtd/datasheet/mtd803.pdf Myson does not require a NDA to read the datasheet. IVc. Errata No undocumented errata. */ /* PCI probe routines. */ static void *myson_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int find_cnt); static int netdev_pwr_event(void *dev_instance, int event); /* Chips prior to the 803 have an external MII transceiver. */ enum chip_capability_flags { HasMIIXcvr=1, HasChipXcvr=2 }; #ifdef USE_IO_OPS #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_IO | PCI_ADDR0) #define PCI_IOSIZE 256 #else #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1) #define PCI_IOSIZE 1024 #endif static struct pci_id_info pci_id_tbl[] = { {"Myson mtd803 Fast Ethernet", {0x08031516, 0xffffffff, }, PCI_IOTYPE, PCI_IOSIZE, HasChipXcvr}, {"Myson mtd891 Gigabit Ethernet", {0x08911516, 0xffffffff, }, PCI_IOTYPE, PCI_IOSIZE, HasChipXcvr}, {0,}, /* 0 terminated list. */ }; struct drv_id_info myson803_drv_id = { "myson803", 0, PCI_CLASS_NETWORK_ETHERNET<<8, pci_id_tbl, myson_probe1, netdev_pwr_event }; /* This driver was written to use PCI memory space, however x86-oriented hardware sometimes works only with I/O space accesses. */ #ifdef USE_IO_OPS #undef readb #undef readw #undef readl #undef writeb #undef writew #undef writel #define readb inb #define readw inw #define readl inl #define writeb outb #define writew outw #define writel outl #endif /* Offsets to the various registers. Most accesses must be longword aligned. */ enum register_offsets { StationAddr=0x00, MulticastFilter0=0x08, MulticastFilter1=0x0C, FlowCtrlAddr=0x10, RxConfig=0x18, TxConfig=0x1a, PCIBusCfg=0x1c, TxStartDemand=0x20, RxStartDemand=0x24, RxCurrentPtr=0x28, TxRingPtr=0x2c, RxRingPtr=0x30, IntrStatus=0x34, IntrEnable=0x38, FlowCtrlThreshold=0x3c, MIICtrl=0x40, EECtrl=0x40, RxErrCnts=0x44, TxErrCnts=0x48, PHYMgmt=0x4c, }; /* Bits in the interrupt status/mask registers. */ enum intr_status_bits { IntrRxErr=0x0002, IntrRxDone=0x0004, IntrTxDone=0x0008, IntrTxEmpty=0x0010, IntrRxEmpty=0x0020, StatsMax=0x0040, RxEarly=0x0080, TxEarly=0x0100, RxOverflow=0x0200, TxUnderrun=0x0400, IntrPCIErr=0x2000, NWayDone=0x4000, LinkChange=0x8000, }; /* Bits in the RxMode (np->txrx_config) register. */ enum rx_mode_bits { RxEnable=0x01, RxFilter=0xfe, AcceptErr=0x02, AcceptRunt=0x08, AcceptBroadcast=0x40, AcceptMulticast=0x20, AcceptAllPhys=0x80, AcceptMyPhys=0x00, RxFlowCtrl=0x2000, TxEnable=0x40000, TxModeFDX=0x00100000, TxThreshold=0x00e00000, }; /* Misc. bits. */ enum misc_bits { BCR_Reset=1, /* PCIBusCfg */ TxThresholdInc=0x200000, }; /* The Rx and Tx buffer descriptors. */ /* Note that using only 32 bit fields simplifies conversion to big-endian architectures. */ struct netdev_desc { u32 status; u32 ctrl_length; u32 buf_addr; u32 next_desc; }; /* Bits in network_desc.status */ enum desc_status_bits { DescOwn=0x80000000, RxDescStartPacket=0x0800, RxDescEndPacket=0x0400, RxDescWholePkt=0x0c00, RxDescErrSum=0x80, RxErrRunt=0x40, RxErrLong=0x20, RxErrFrame=0x10, RxErrCRC=0x08, RxErrCode=0x04, TxErrAbort=0x2000, TxErrCarrier=0x1000, TxErrLate=0x0800, TxErr16Colls=0x0400, TxErrDefer=0x0200, TxErrHeartbeat=0x0100, TxColls=0x00ff, }; /* Bits in network_desc.ctrl_length */ enum ctrl_length_bits { TxIntrOnDone=0x80000000, TxIntrOnFIFO=0x40000000, TxDescEndPacket=0x20000000, TxDescStartPacket=0x10000000, TxAppendCRC=0x08000000, TxPadTo64=0x04000000, TxNormalPkt=0x3C000000, }; #define PRIV_ALIGN 15 /* Required alignment mask */ /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment within the structure. */ struct netdev_private { /* Descriptor rings first for alignment. */ struct netdev_desc rx_ring[RX_RING_SIZE]; struct netdev_desc tx_ring[TX_RING_SIZE]; struct net_device *next_module; /* Link for devices of this type. */ void *priv_addr; /* Unaligned address for kfree */ /* The addresses of receive-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; /* The saved address of a sent-in-place packet/buffer, for later free(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; struct net_device_stats stats; struct timer_list timer; /* Media monitoring timer. */ /* Frequently used values: keep some adjacent for cache effect. */ int msg_level; int max_interrupt_work; int intr_enable; int chip_id, drv_flags; struct pci_dev *pci_dev; struct netdev_desc *rx_head_desc; unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ unsigned int rx_buf_sz; /* Based on MTU+slack. */ int rx_copybreak; unsigned int cur_tx, dirty_tx; unsigned int tx_full:1; /* The Tx queue is full. */ unsigned int rx_died:1; unsigned int txrx_config; /* These values keep track of the transceiver/media in use. */ unsigned int full_duplex:1; /* Full-duplex operation requested. */ unsigned int duplex_lock:1; unsigned int medialock:1; /* Do not sense media. */ unsigned int default_port; /* Last dev->if_port value. */ unsigned int mcast_filter[2]; int multicast_filter_limit; /* MII transceiver section. */ int mii_cnt; /* MII device addresses. */ u16 advertising; /* NWay media advertisement */ unsigned char phys[2]; /* MII device addresses. */ }; static int eeprom_read(long ioaddr, int location); static int mdio_read(struct net_device *dev, int phy_id, unsigned int location); static void mdio_write(struct net_device *dev, int phy_id, unsigned int location, int value); static int netdev_open(struct net_device *dev); static void check_duplex(struct net_device *dev); static void netdev_timer(unsigned long data); static void tx_timeout(struct net_device *dev); static void init_ring(struct net_device *dev); static int start_tx(struct sk_buff *skb, struct net_device *dev); static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs); static void netdev_error(struct net_device *dev, int intr_status); static int netdev_rx(struct net_device *dev); static void netdev_error(struct net_device *dev, int intr_status); static void set_rx_mode(struct net_device *dev); static struct net_device_stats *get_stats(struct net_device *dev); static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int netdev_close(struct net_device *dev); /* A list of our installed devices, for removing the driver module. */ static struct net_device *root_net_dev = NULL; #ifndef MODULE int myson803_probe(struct net_device *dev) { if (pci_drv_register(&myson803_drv_id, dev) < 0) return -ENODEV; if (debug >= NETIF_MSG_DRV) /* Emit version even if no cards detected. */ printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2); return 0; } #endif static void *myson_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int card_idx) { struct net_device *dev; struct netdev_private *np; void *priv_mem; int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0; dev = init_etherdev(init_dev, 0); if (!dev) return NULL; printk(KERN_INFO "%s: %s at 0x%lx, ", dev->name, pci_id_tbl[chip_idx].name, ioaddr); for (i = 0; i < 3; i++) ((u16 *)dev->dev_addr)[i] = le16_to_cpu(eeprom_read(ioaddr, i + 8)); if (memcmp(dev->dev_addr, "\0\0\0\0\0", 6) == 0) { /* Fill a temp addr with the "locally administered" bit set. */ memcpy(dev->dev_addr, ">Linux", 6); } for (i = 0; i < 5; i++) printk("%2.2x:", dev->dev_addr[i]); printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq); #if ! defined(final_version) /* Dump the EEPROM contents during development. */ if (debug > 4) for (i = 0; i < 0x40; i++) printk("%4.4x%s", eeprom_read(ioaddr, i), i % 16 != 15 ? " " : "\n"); #endif /* Make certain elements e.g. descriptor lists are aligned. */ priv_mem = kmalloc(sizeof(*np) + PRIV_ALIGN, GFP_KERNEL); /* Check for the very unlikely case of no memory. */ if (priv_mem == NULL) return NULL; /* Do bogusness checks before this point. We do a request_region() only to register /proc/ioports info. */ #ifdef USE_IO_OPS request_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name); #endif /* Reset the chip to erase previous misconfiguration. */ writel(BCR_Reset, ioaddr + PCIBusCfg); dev->base_addr = ioaddr; dev->irq = irq; dev->priv = np = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN); memset(np, 0, sizeof(*np)); np->priv_addr = priv_mem; np->next_module = root_net_dev; root_net_dev = dev; np->pci_dev = pdev; np->chip_id = chip_idx; np->drv_flags = pci_id_tbl[chip_idx].drv_flags; np->msg_level = (1 << debug) - 1; np->rx_copybreak = rx_copybreak; np->max_interrupt_work = max_interrupt_work; np->multicast_filter_limit = multicast_filter_limit; if (dev->mem_start) option = dev->mem_start; /* The lower four bits are the media type. */ if (option > 0) { if (option & 0x220) np->full_duplex = 1; np->default_port = option & 0x3ff; if (np->default_port) np->medialock = 1; } if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) np->full_duplex = 1; if (np->full_duplex) { if (np->msg_level & NETIF_MSG_PROBE) printk(KERN_INFO "%s: Set to forced full duplex, autonegotiation" " disabled.\n", dev->name); np->duplex_lock = 1; } /* The chip-specific entries in the device structure. */ dev->open = &netdev_open; dev->hard_start_xmit = &start_tx; dev->stop = &netdev_close; dev->get_stats = &get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &mii_ioctl; if (np->drv_flags & HasMIIXcvr) { int phy, phy_idx = 0; for (phy = 0; phy < 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(dev, phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { np->phys[phy_idx++] = phy; np->advertising = mdio_read(dev, phy, 4); if (np->msg_level & NETIF_MSG_PROBE) printk(KERN_INFO "%s: MII PHY found at address %d, status " "0x%4.4x advertising %4.4x.\n", dev->name, phy, mii_status, np->advertising); } } np->mii_cnt = phy_idx; } if (np->drv_flags & HasChipXcvr) { np->phys[np->mii_cnt++] = 32; printk(KERN_INFO "%s: Internal PHY status 0x%4.4x" " advertising %4.4x.\n", dev->name, mdio_read(dev, 32, 1), mdio_read(dev, 32, 4)); } /* Allow forcing the media type. */ if (np->default_port & 0x330) { np->medialock = 1; if (option & 0x220) np->full_duplex = 1; printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n", (option & 0x300 ? 100 : 10), (np->full_duplex ? "full" : "half")); if (np->mii_cnt) mdio_write(dev, np->phys[0], 0, ((option & 0x300) ? 0x2000 : 0) | /* 100mbps? */ (np->full_duplex ? 0x0100 : 0)); /* Full duplex? */ } return dev; } /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. These are often serial bit streams generated by the host processor. The example below is for the common 93c46 EEPROM, 64 16 bit words. */ /* This "delay" forces out buffered PCI writes. The udelay() is unreliable for timing, but some Myson NICs shipped with absurdly slow EEPROMs. */ #define eeprom_delay(ee_addr) readl(ee_addr); udelay(2); readl(ee_addr) enum EEPROM_Ctrl_Bits { EE_ShiftClk=0x04<<16, EE_ChipSelect=0x88<<16, EE_DataOut=0x02<<16, EE_DataIn=0x01<<16, EE_Write0=0x88<<16, EE_Write1=0x8a<<16, }; /* The EEPROM commands always start with 01.. preamble bits. Commands are prepended to the variable-length address. */ enum EEPROM_Cmds { EE_WriteCmd=5, EE_ReadCmd=6, EE_EraseCmd=7, }; static int eeprom_read(long addr, int location) { int i; int retval = 0; long ee_addr = addr + EECtrl; int read_cmd = location | (EE_ReadCmd<<6); writel(EE_ChipSelect, ee_addr); /* Shift the read command bits out. */ for (i = 10; i >= 0; i--) { int dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0; writel(dataval, ee_addr); eeprom_delay(ee_addr); writel(dataval | EE_ShiftClk, ee_addr); eeprom_delay(ee_addr); } writel(EE_ChipSelect, ee_addr); eeprom_delay(ee_addr); for (i = 16; i > 0; i--) { writel(EE_ChipSelect | EE_ShiftClk, ee_addr); eeprom_delay(ee_addr); retval = (retval << 1) | ((readl(ee_addr) & EE_DataIn) ? 1 : 0); writel(EE_ChipSelect, ee_addr); eeprom_delay(ee_addr); } /* Terminate the EEPROM access. */ writel(EE_ChipSelect, ee_addr); writel(0, ee_addr); return retval; } /* MII transceiver control section. Read and write the MII registers using software-generated serial MDIO protocol. See the MII specifications or DP83840A data sheet for details. The maximum data clock rate is 2.5 Mhz. The timing is decoupled from the processor clock by flushing the write from the CPU write buffer with a following read, and using PCI transaction timing. */ #define mdio_in(mdio_addr) readl(mdio_addr) #define mdio_out(value, mdio_addr) writel(value, mdio_addr) #define mdio_delay(mdio_addr) readl(mdio_addr) /* Set iff a MII transceiver on any interface requires mdio preamble. This only set with older tranceivers, so the extra code size of a per-interface flag is not worthwhile. */ static char mii_preamble_required = 0; enum mii_reg_bits { MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004, }; #define MDIO_EnbIn (0) #define MDIO_WRITE0 (MDIO_EnbOutput) #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput) /* Generate the preamble required for initial synchronization and a few older transceivers. */ static void mdio_sync(long mdio_addr) { int bits = 32; /* Establish sync by sending at least 32 logic ones. */ while (--bits >= 0) { mdio_out(MDIO_WRITE1, mdio_addr); mdio_delay(mdio_addr); mdio_out(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr); mdio_delay(mdio_addr); } } static int mdio_read(struct net_device *dev, int phy_id, unsigned int location) { long ioaddr = dev->base_addr; long mdio_addr = ioaddr + MIICtrl; int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; int i, retval = 0; if (location >= 32) return 0xffff; if (phy_id >= 32) { if (location < 6) return readw(ioaddr + PHYMgmt + location*2); else if (location == 16) return readw(ioaddr + PHYMgmt + 6*2); else if (location == 17) return readw(ioaddr + PHYMgmt + 7*2); else if (location == 18) return readw(ioaddr + PHYMgmt + 10*2); else return 0; } if (mii_preamble_required) mdio_sync(mdio_addr); /* Shift the read command bits out. */ for (i = 15; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; mdio_out(dataval, mdio_addr); mdio_delay(mdio_addr); mdio_out(dataval | MDIO_ShiftClk, mdio_addr); mdio_delay(mdio_addr); } /* Read the two transition, 16 data, and wire-idle bits. */ for (i = 19; i > 0; i--) { mdio_out(MDIO_EnbIn, mdio_addr); mdio_delay(mdio_addr); retval = (retval << 1) | ((mdio_in(mdio_addr) & MDIO_Data) ? 1 : 0); mdio_out(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); mdio_delay(mdio_addr); } return (retval>>1) & 0xffff; } static void mdio_write(struct net_device *dev, int phy_id, unsigned int location, int value) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; long mdio_addr = ioaddr + MIICtrl; int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value; int i; if (location == 4 && phy_id == np->phys[0]) np->advertising = value; else if (location >= 32) return; if (phy_id == 32) { if (location < 6) writew(value, ioaddr + PHYMgmt + location*2); else if (location == 16) writew(value, ioaddr + PHYMgmt + 6*2); else if (location == 17) writew(value, ioaddr + PHYMgmt + 7*2); return; } if (mii_preamble_required) mdio_sync(mdio_addr); /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; mdio_out(dataval, mdio_addr); mdio_delay(mdio_addr); mdio_out(dataval | MDIO_ShiftClk, mdio_addr); mdio_delay(mdio_addr); } /* Clear out extra bits. */ for (i = 2; i > 0; i--) { mdio_out(MDIO_EnbIn, mdio_addr); mdio_delay(mdio_addr); mdio_out(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); mdio_delay(mdio_addr); } return; } static int netdev_open(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; /* Some chips may need to be reset. */ MOD_INC_USE_COUNT; writel(~0, ioaddr + IntrStatus); /* Note that both request_irq() and init_ring() call kmalloc(), which break the global kernel lock protecting this routine. */ if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev)) { MOD_DEC_USE_COUNT; return -EAGAIN; } if (np->msg_level & NETIF_MSG_IFUP) printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", dev->name, dev->irq); init_ring(dev); writel(virt_to_bus(np->rx_ring), ioaddr + RxRingPtr); writel(virt_to_bus(np->tx_ring), ioaddr + TxRingPtr); /* Address register must be written as words. */ writel(cpu_to_le32(cpu_to_le32(get_unaligned((u32 *)dev->dev_addr))), ioaddr + StationAddr); writel(cpu_to_le16(cpu_to_le16(get_unaligned((u16 *)(dev->dev_addr+4)))), ioaddr + StationAddr + 4); /* Set the flow control address, 01:80:c2:00:00:01. */ writel(0x00c28001, ioaddr + FlowCtrlAddr); writel(0x00000100, ioaddr + FlowCtrlAddr + 4); /* Initialize other registers. */ /* Configure the PCI bus bursts and FIFO thresholds. */ writel(0x01f8, ioaddr + PCIBusCfg); if (dev->if_port == 0) dev->if_port = np->default_port; np->txrx_config = TxEnable | RxEnable | RxFlowCtrl | 0x00600000; np->mcast_filter[0] = np->mcast_filter[1] = 0; np->rx_died = 0; set_rx_mode(dev); netif_start_tx_queue(dev); /* Enable interrupts by setting the interrupt mask. */ np->intr_enable = IntrRxDone | IntrRxErr | IntrRxEmpty | IntrTxDone | IntrTxEmpty | StatsMax | RxOverflow | TxUnderrun | IntrPCIErr | NWayDone | LinkChange; writel(np->intr_enable, ioaddr + IntrEnable); if (np->msg_level & NETIF_MSG_IFUP) printk(KERN_DEBUG "%s: Done netdev_open(), PHY status: %x %x.\n", dev->name, (int)readw(ioaddr + PHYMgmt), (int)readw(ioaddr + PHYMgmt + 2)); /* Set the timer to check for link beat. */ init_timer(&np->timer); np->timer.expires = jiffies + 3*HZ; np->timer.data = (unsigned long)dev; np->timer.function = &netdev_timer; /* timer handler */ add_timer(&np->timer); return 0; } static void check_duplex(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int new_tx_mode = np->txrx_config; if (np->medialock) { } else { int mii_reg5 = mdio_read(dev, np->phys[0], 5); int negotiated = mii_reg5 & np->advertising; int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; if (np->duplex_lock || mii_reg5 == 0xffff) return; if (duplex) new_tx_mode |= TxModeFDX; if (np->full_duplex != duplex) { np->full_duplex = duplex; if (np->msg_level & NETIF_MSG_LINK) printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d" " negotiated capability %4.4x.\n", dev->name, duplex ? "full" : "half", np->phys[0], negotiated); } } if (np->txrx_config != new_tx_mode) writel(new_tx_mode, ioaddr + RxConfig); } static void netdev_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 10*HZ; if (np->msg_level & NETIF_MSG_TIMER) { printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x.\n", dev->name, (int)readw(ioaddr + PHYMgmt + 10)); } /* This will either have a small false-trigger window or will not catch tbusy incorrectly set when the queue is empty. */ if (netif_queue_paused(dev) && np->cur_tx - np->dirty_tx > 1 && (jiffies - dev->trans_start) > TX_TIMEOUT) { tx_timeout(dev); } /* It's dead Jim, no race condition. */ if (np->rx_died) netdev_rx(dev); check_duplex(dev); np->timer.expires = jiffies + next_tick; add_timer(&np->timer); } static void tx_timeout(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; printk(KERN_WARNING "%s: Transmit timed out, status %8.8x," " resetting...\n", dev->name, (int)readl(ioaddr + IntrStatus)); if (np->msg_level & NETIF_MSG_TX_ERR) { int i; printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring); for (i = 0; i < RX_RING_SIZE; i++) printk(" %8.8x", (unsigned int)np->rx_ring[i].status); printk("\n"KERN_DEBUG" Tx ring %p: ", np->tx_ring); for (i = 0; i < TX_RING_SIZE; i++) printk(" %8.8x", np->tx_ring[i].status); printk("\n"); } /* Stop and restart the chip's Tx processes . */ writel(np->txrx_config & ~TxEnable, ioaddr + RxConfig); writel(virt_to_bus(np->tx_ring + (np->dirty_tx%TX_RING_SIZE)), ioaddr + TxRingPtr); writel(np->txrx_config, ioaddr + RxConfig); /* Trigger an immediate transmit demand. */ writel(0, dev->base_addr + TxStartDemand); dev->trans_start = jiffies; np->stats.tx_errors++; return; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void init_ring(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; int i; np->tx_full = 0; np->cur_rx = np->cur_tx = 0; np->dirty_rx = np->dirty_tx = 0; np->rx_buf_sz = (dev->mtu <= 1532 ? PKT_BUF_SZ : dev->mtu + 4); np->rx_head_desc = &np->rx_ring[0]; /* Initialize all Rx descriptors. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].ctrl_length = cpu_to_le32(np->rx_buf_sz); np->rx_ring[i].status = 0; np->rx_ring[i].next_desc = virt_to_le32desc(&np->rx_ring[i+1]); np->rx_skbuff[i] = 0; } /* Mark the last entry as wrapping the ring. */ np->rx_ring[i-1].next_desc = virt_to_le32desc(&np->rx_ring[0]); /* Fill in the Rx buffers. Handle allocation failure gracefully. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[i] = skb; if (skb == NULL) break; skb->dev = dev; /* Mark as being used by this device. */ np->rx_ring[i].buf_addr = virt_to_le32desc(skb->tail); np->rx_ring[i].status = cpu_to_le32(DescOwn); } np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); for (i = 0; i < TX_RING_SIZE; i++) { np->tx_skbuff[i] = 0; np->tx_ring[i].status = 0; np->tx_ring[i].next_desc = virt_to_le32desc(&np->tx_ring[i+1]); } np->tx_ring[i-1].next_desc = virt_to_le32desc(&np->tx_ring[0]); return; } static int start_tx(struct sk_buff *skb, struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; unsigned entry; /* Block a timer-based transmit from overlapping. This happens when packets are presumed lost, and we use this check the Tx status. */ if (netif_pause_tx_queue(dev) != 0) { /* This watchdog code is redundant with the media monitor timer. */ if (jiffies - dev->trans_start > TX_TIMEOUT) tx_timeout(dev); return 1; } /* Note: Ordering is important here, set the field with the "ownership" bit last, and only then increment cur_tx. */ /* Calculate the next Tx descriptor entry. */ entry = np->cur_tx % TX_RING_SIZE; np->tx_skbuff[entry] = skb; np->tx_ring[entry].buf_addr = virt_to_le32desc(skb->data); np->tx_ring[entry].ctrl_length = cpu_to_le32(TxIntrOnDone | TxNormalPkt | (skb->len << 11) | skb->len); np->tx_ring[entry].status = cpu_to_le32(DescOwn); np->cur_tx++; /* On some architectures: explicitly flushing cache lines here speeds operation. */ if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) { np->tx_full = 1; /* Check for a just-cleared queue. */ if (np->cur_tx - (volatile unsigned int)np->dirty_tx < TX_QUEUE_LEN - 2) { np->tx_full = 0; netif_unpause_tx_queue(dev); } else netif_stop_tx_queue(dev); } else netif_unpause_tx_queue(dev); /* Typical path */ /* Wake the potentially-idle transmit channel. */ writel(0, dev->base_addr + TxStartDemand); dev->trans_start = jiffies; if (np->msg_level & NETIF_MSG_TX_QUEUED) { printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", dev->name, np->cur_tx, entry); } return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs) { struct net_device *dev = (struct net_device *)dev_instance; struct netdev_private *np; long ioaddr; int boguscnt; #ifndef final_version /* Can never occur. */ if (dev == NULL) { printk (KERN_ERR "Netdev interrupt handler(): IRQ %d for unknown " "device.\n", irq); return; } #endif ioaddr = dev->base_addr; np = (struct netdev_private *)dev->priv; boguscnt = np->max_interrupt_work; #if defined(__i386__) && LINUX_VERSION_CODE < 0x020300 /* A lock to prevent simultaneous entry bug on Intel SMP machines. */ if (test_and_set_bit(0, (void*)&dev->interrupt)) { printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n", dev->name); dev->interrupt = 0; /* Avoid halting machine. */ return; } #endif do { u32 intr_status = readl(ioaddr + IntrStatus); /* Acknowledge all of the current interrupt sources ASAP. */ writel(intr_status, ioaddr + IntrStatus); if (np->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name, intr_status); if (intr_status == 0) break; if (intr_status & IntrRxDone) netdev_rx(dev); for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { int entry = np->dirty_tx % TX_RING_SIZE; int tx_status = le32_to_cpu(np->tx_ring[entry].status); if (tx_status & DescOwn) break; if (np->msg_level & NETIF_MSG_TX_DONE) printk(KERN_DEBUG "%s: Transmit done, Tx status %8.8x.\n", dev->name, tx_status); if (tx_status & (TxErrAbort | TxErrCarrier | TxErrLate | TxErr16Colls | TxErrHeartbeat)) { if (np->msg_level & NETIF_MSG_TX_ERR) printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n", dev->name, tx_status); np->stats.tx_errors++; if (tx_status & TxErrCarrier) np->stats.tx_carrier_errors++; if (tx_status & TxErrLate) np->stats.tx_window_errors++; if (tx_status & TxErrHeartbeat) np->stats.tx_heartbeat_errors++; #ifdef ETHER_STATS if (tx_status & TxErr16Colls) np->stats.collisions16++; if (tx_status & TxErrAbort) np->stats.tx_aborted_errors++; #else if (tx_status & (TxErr16Colls|TxErrAbort)) np->stats.tx_aborted_errors++; #endif } else { np->stats.tx_packets++; np->stats.collisions += tx_status & TxColls; #if LINUX_VERSION_CODE > 0x20127 np->stats.tx_bytes += np->tx_skbuff[entry]->len; #endif #ifdef ETHER_STATS if (tx_status & TxErrDefer) np->stats.tx_deferred++; #endif } /* Free the original skb. */ dev_free_skb_irq(np->tx_skbuff[entry]); np->tx_skbuff[entry] = 0; } /* Note the 4 slot hysteresis to mark the queue non-full. */ if (np->tx_full && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { /* The ring is no longer full, allow new TX entries. */ np->tx_full = 0; netif_resume_tx_queue(dev); } /* Abnormal error summary/uncommon events handlers. */ if (intr_status & (IntrRxErr | IntrRxEmpty | StatsMax | RxOverflow | TxUnderrun | IntrPCIErr | NWayDone | LinkChange)) netdev_error(dev, intr_status); if (--boguscnt < 0) { printk(KERN_WARNING "%s: Too much work at interrupt, " "status=0x%4.4x.\n", dev->name, intr_status); break; } } while (1); if (np->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", dev->name, (int)readl(ioaddr + IntrStatus)); #if defined(__i386__) && LINUX_VERSION_CODE < 0x020300 clear_bit(0, (void*)&dev->interrupt); #endif return; } /* This routine is logically part of the interrupt handler, but separated for clarity and better register allocation. */ static int netdev_rx(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; int entry = np->cur_rx % RX_RING_SIZE; int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; int refilled = 0; if (np->msg_level & NETIF_MSG_RX_STATUS) { printk(KERN_DEBUG " In netdev_rx(), entry %d status %4.4x.\n", entry, np->rx_ring[entry].status); } /* If EOP is set on the next entry, it's a new packet. Send it up. */ while ( ! (np->rx_head_desc->status & cpu_to_le32(DescOwn))) { struct netdev_desc *desc = np->rx_head_desc; u32 desc_status = le32_to_cpu(desc->status); if (np->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", desc_status); if (--boguscnt < 0) break; if ((desc_status & RxDescWholePkt) != RxDescWholePkt) { printk(KERN_WARNING "%s: Oversized Ethernet frame spanned " "multiple buffers, entry %#x length %d status %4.4x!\n", dev->name, np->cur_rx, desc_status >> 16, desc_status); np->stats.rx_length_errors++; } else if (desc_status & RxDescErrSum) { /* There was a error. */ if (np->msg_level & NETIF_MSG_RX_ERR) printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n", desc_status); np->stats.rx_errors++; if (desc_status & (RxErrLong|RxErrRunt)) np->stats.rx_length_errors++; if (desc_status & (RxErrFrame|RxErrCode)) np->stats.rx_frame_errors++; if (desc_status & RxErrCRC) np->stats.rx_crc_errors++; } else { struct sk_buff *skb; /* Reported length should omit the CRC. */ u16 pkt_len = ((desc_status >> 16) & 0xfff) - 4; #ifndef final_version if (np->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" " of %d, bogus_cnt %d.\n", pkt_len, pkt_len, boguscnt); #endif /* Check if the packet is long enough to accept without copying to a minimally-sized skbuff. */ if (pkt_len < np->rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0); skb_put(skb, pkt_len); } else { skb_put(skb = np->rx_skbuff[entry], pkt_len); np->rx_skbuff[entry] = NULL; } #ifndef final_version /* Remove after testing. */ /* You will want this info for the initial debug. */ if (np->msg_level & NETIF_MSG_PKTDATA) printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:" "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x " "%d.%d.%d.%d.\n", skb->data[0], skb->data[1], skb->data[2], skb->data[3], skb->data[4], skb->data[5], skb->data[6], skb->data[7], skb->data[8], skb->data[9], skb->data[10], skb->data[11], skb->data[12], skb->data[13], skb->data[14], skb->data[15], skb->data[16], skb->data[17]); #endif skb->mac.raw = skb->data; /* Protocol lookup disabled until verified with all kernels. */ if (0 && ntohs(skb->mac.ethernet->h_proto) >= 0x0800) { struct ethhdr *eth = skb->mac.ethernet; skb->protocol = eth->h_proto; if (desc_status & 0x1000) { if ((dev->flags & IFF_PROMISC) && memcmp(eth->h_dest, dev->dev_addr, ETH_ALEN)) skb->pkt_type = PACKET_OTHERHOST; } else if (desc_status & 0x2000) skb->pkt_type = PACKET_BROADCAST; else if (desc_status & 0x4000) skb->pkt_type = PACKET_MULTICAST; } else skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; np->stats.rx_packets++; #if LINUX_VERSION_CODE > 0x20127 np->stats.rx_bytes += pkt_len; #endif } entry = (++np->cur_rx) % RX_RING_SIZE; np->rx_head_desc = &np->rx_ring[entry]; } /* Refill the Rx ring buffers. */ for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { struct sk_buff *skb; entry = np->dirty_rx % RX_RING_SIZE; if (np->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[entry] = skb; if (skb == NULL) break; /* Better luck next round. */ skb->dev = dev; /* Mark as being used by this device. */ np->rx_ring[entry].buf_addr = virt_to_le32desc(skb->tail); } np->rx_ring[entry].ctrl_length = cpu_to_le32(np->rx_buf_sz); np->rx_ring[entry].status = cpu_to_le32(DescOwn); refilled++; } /* Restart Rx engine if stopped. */ if (refilled) { /* Perhaps "&& np->rx_died" */ writel(0, dev->base_addr + RxStartDemand); np->rx_died = 0; } return refilled; } static void netdev_error(struct net_device *dev, int intr_status) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; if (intr_status & (LinkChange | NWayDone)) { if (np->msg_level & NETIF_MSG_LINK) printk(KERN_NOTICE "%s: Link changed: Autonegotiation advertising" " %4.4x partner %4.4x.\n", dev->name, mdio_read(dev, np->phys[0], 4), mdio_read(dev, np->phys[0], 5)); /* Clear sticky bit first. */ readw(ioaddr + PHYMgmt + 2); if (readw(ioaddr + PHYMgmt + 2) & 0x0004) netif_link_up(dev); else netif_link_down(dev); check_duplex(dev); } if ((intr_status & TxUnderrun) && (np->txrx_config & TxThreshold) != TxThreshold) { np->txrx_config += TxThresholdInc; writel(np->txrx_config, ioaddr + RxConfig); np->stats.tx_fifo_errors++; } if (intr_status & IntrRxEmpty) { printk(KERN_WARNING "%s: Out of receive buffers: no free memory.\n", dev->name); /* Refill Rx descriptors */ np->rx_died = 1; netdev_rx(dev); } if (intr_status & RxOverflow) { printk(KERN_WARNING "%s: Receiver overflow.\n", dev->name); np->stats.rx_over_errors++; netdev_rx(dev); /* Refill Rx descriptors */ get_stats(dev); /* Empty dropped counter. */ } if (intr_status & StatsMax) { get_stats(dev); } if ((intr_status & ~(LinkChange|NWayDone|StatsMax|TxUnderrun|RxOverflow |TxEarly|RxEarly|0x001e)) && (np->msg_level & NETIF_MSG_DRV)) printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", dev->name, intr_status); /* Hmmmmm, it's not clear how to recover from PCI faults. */ if (intr_status & IntrPCIErr) { const char *const pcierr[4] = { "Parity Error", "Master Abort", "Target Abort", "Unknown Error" }; if (np->msg_level & NETIF_MSG_DRV) printk(KERN_WARNING "%s: PCI Bus %s, %x.\n", dev->name, pcierr[(intr_status>>11) & 3], intr_status); } } /* We do not bother to spinlock statistics. A window only exists if we have non-atomic adds, the error counts are typically zero, and statistics are non-critical. */ static struct net_device_stats *get_stats(struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; unsigned int rxerrs = readl(ioaddr + RxErrCnts); unsigned int txerrs = readl(ioaddr + TxErrCnts); /* The chip only need report frames silently dropped. */ np->stats.rx_crc_errors += rxerrs >> 16; np->stats.rx_missed_errors += rxerrs & 0xffff; /* These stats are required when the descriptor is closed before Tx. */ np->stats.tx_aborted_errors += txerrs >> 24; np->stats.tx_window_errors += (txerrs >> 16) & 0xff; np->stats.collisions += txerrs & 0xffff; return &np->stats; } /* Big-endian AUTODIN II ethernet CRC calculations. This is slow but compact code. Do not use this routine for bulk data, use a table-based routine instead. This is common code and may be in the kernel with Linux 2.5+. */ static unsigned const ethernet_polynomial = 0x04c11db7U; static inline u32 ether_crc(int length, unsigned char *data) { u32 crc = ~0; while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 0; bit < 8; bit++, current_octet >>= 1) crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0); } return crc; } static void set_rx_mode(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; u32 mc_filter[2]; /* Multicast hash filter */ u32 rx_mode; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ /* Unconditionally log net taps. */ printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); mc_filter[1] = mc_filter[0] = ~0; rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAllPhys | AcceptMyPhys; } else if ((dev->mc_count > np->multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to match, or accept all multicasts. */ mc_filter[1] = mc_filter[0] = ~0; rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; } else { struct dev_mc_list *mclist; int i; mc_filter[1] = mc_filter[0] = 0; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { set_bit((ether_crc(ETH_ALEN, mclist->dmi_addr) >> 26) & 0x3f, mc_filter); } rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; } if (mc_filter[0] != np->mcast_filter[0] || mc_filter[1] != np->mcast_filter[1]) { writel(mc_filter[0], ioaddr + MulticastFilter0); writel(mc_filter[1], ioaddr + MulticastFilter1); np->mcast_filter[0] = mc_filter[0]; np->mcast_filter[1] = mc_filter[1]; } if ((np->txrx_config & RxFilter) != rx_mode) { np->txrx_config &= ~RxFilter; np->txrx_config |= rx_mode; writel(np->txrx_config, ioaddr + RxConfig); } } /* Handle user-level ioctl() calls. We must use two numeric constants as the key because some clueless person changed the value for the symbolic name. */ static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct netdev_private *np = (struct netdev_private *)dev->priv; u16 *data = (u16 *)&rq->ifr_data; u32 *data32 = (void *)&rq->ifr_data; switch(cmd) { case 0x8947: case 0x89F0: /* SIOCGMIIPHY: Get the address of the PHY in use. */ data[0] = np->phys[0]; /* Fall Through */ case 0x8948: case 0x89F1: /* SIOCGMIIREG: Read the specified MII register. */ data[3] = mdio_read(dev, data[0], data[1]); return 0; case 0x8949: case 0x89F2: /* SIOCSMIIREG: Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; if (data[0] == np->phys[0]) { u16 value = data[2]; switch (data[1]) { case 0: /* Check for autonegotiation on or reset. */ np->medialock = (value & 0x9000) ? 0 : 1; if (np->medialock) np->full_duplex = (value & 0x0100) ? 1 : 0; break; case 4: np->advertising = value; break; } /* Perhaps check_duplex(dev), depending on chip semantics. */ } mdio_write(dev, data[0], data[1], data[2]); return 0; case SIOCGPARAMS: data32[0] = np->msg_level; data32[1] = np->multicast_filter_limit; data32[2] = np->max_interrupt_work; data32[3] = np->rx_copybreak; return 0; case SIOCSPARAMS: if (!capable(CAP_NET_ADMIN)) return -EPERM; np->msg_level = data32[0]; np->multicast_filter_limit = data32[1]; np->max_interrupt_work = data32[2]; np->rx_copybreak = data32[3]; return 0; default: return -EOPNOTSUPP; } } static int netdev_close(struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; int i; netif_stop_tx_queue(dev); if (np->msg_level & NETIF_MSG_IFDOWN) { printk(KERN_DEBUG "%s: Shutting down ethercard, status was %8.8x.\n", dev->name, (int)readl(ioaddr + RxConfig)); printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx); } /* Disable interrupts by clearing the interrupt mask. */ writel(0x0000, ioaddr + IntrEnable); /* Stop the chip's Tx and Rx processes. */ np->txrx_config = 0; writel(0, ioaddr + RxConfig); del_timer(&np->timer); #ifdef __i386__ if (np->msg_level & NETIF_MSG_IFDOWN) { printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n", (int)virt_to_bus(np->tx_ring)); for (i = 0; i < TX_RING_SIZE; i++) printk(" #%d desc. %x %x %8.8x.\n", i, np->tx_ring[i].status, np->tx_ring[i].ctrl_length, np->tx_ring[i].buf_addr); printk("\n"KERN_DEBUG " Rx ring %8.8x:\n", (int)virt_to_bus(np->rx_ring)); for (i = 0; i < RX_RING_SIZE; i++) { printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n", i, np->rx_ring[i].status, np->rx_ring[i].ctrl_length, np->rx_ring[i].buf_addr); } } #endif /* __i386__ debugging only */ free_irq(dev->irq, dev); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].status = 0; np->rx_ring[i].buf_addr = 0xBADF00D0; /* An invalid address. */ if (np->rx_skbuff[i]) { #if LINUX_VERSION_CODE < 0x20100 np->rx_skbuff[i]->free = 1; #endif dev_free_skb(np->rx_skbuff[i]); } np->rx_skbuff[i] = 0; } for (i = 0; i < TX_RING_SIZE; i++) { if (np->tx_skbuff[i]) dev_free_skb(np->tx_skbuff[i]); np->tx_skbuff[i] = 0; } MOD_DEC_USE_COUNT; return 0; } static int netdev_pwr_event(void *dev_instance, int event) { struct net_device *dev = dev_instance; struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; if (np->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Handling power event %d.\n", dev->name, event); switch(event) { case DRV_ATTACH: MOD_INC_USE_COUNT; break; case DRV_SUSPEND: /* Disable interrupts, stop Tx and Rx. */ writel(0, ioaddr + IntrEnable); writel(0, ioaddr + RxConfig); break; case DRV_RESUME: /* This is incomplete: the actions are very chip specific. */ set_rx_mode(dev); writel(np->intr_enable, ioaddr + IntrEnable); break; case DRV_DETACH: { struct net_device **devp, **next; if (dev->flags & IFF_UP) { /* Some, but not all, kernel versions close automatically. */ dev_close(dev); dev->flags &= ~(IFF_UP|IFF_RUNNING); } unregister_netdev(dev); release_region(dev->base_addr, pci_id_tbl[np->chip_id].io_size); #ifndef USE_IO_OPS iounmap((char *)dev->base_addr); #endif for (devp = &root_net_dev; *devp; devp = next) { next = &((struct netdev_private *)(*devp)->priv)->next_module; if (*devp == dev) { *devp = *next; break; } } if (np->priv_addr) kfree(np->priv_addr); kfree(dev); MOD_DEC_USE_COUNT; break; } } return 0; } #ifdef MODULE int init_module(void) { if (debug >= NETIF_MSG_DRV) /* Emit version even if no cards detected. */ printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2); return pci_drv_register(&myson803_drv_id, NULL); } void cleanup_module(void) { struct net_device *next_dev; pci_drv_unregister(&myson803_drv_id); /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_net_dev) { struct netdev_private *np = (void *)(root_net_dev->priv); unregister_netdev(root_net_dev); #ifdef USE_IO_OPS release_region(root_net_dev->base_addr, pci_id_tbl[np->chip_id].io_size); #else iounmap((char *)(root_net_dev->base_addr)); #endif next_dev = np->next_module; if (np->priv_addr) kfree(np->priv_addr); kfree(root_net_dev); root_net_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "make KERNVER=`uname -r` myson803.o" * compile-cmd: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c myson803.c" * simple-compile-command: "gcc -DMODULE -O6 -c myson803.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */