/* * Mach Operating System * Copyright (c) 1991,1990,1989 Carnegie Mellon University * All Rights Reserved. * * Permission to use, copy, modify and distribute this software and its * documentation is hereby granted, provided that both the copyright * notice and this permission notice appear in all copies of the * software, derivative works or modified versions, and any portions * thereof, and that both notices appear in supporting documentation. * * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. * * Carnegie Mellon requests users of this software to return to * * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU * School of Computer Science * Carnegie Mellon University * Pittsburgh PA 15213-3890 * * any improvements or extensions that they make and grant Carnegie Mellon * the rights to redistribute these changes. */ /* * Olivetti Mach Console driver v0.0 * Copyright Ing. C. Olivetti & C. S.p.A. 1988, 1989 * All rights reserved. * */ /* Copyright 1988, 1989 by Olivetti Advanced Technology Center, Inc., Cupertino, California. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies and that both the copyright notice and this permission notice appear in supporting documentation, and that the name of Olivetti not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. OLIVETTI DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL OLIVETTI BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUR OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* Copyright 1988, 1989 by Intel Corporation, Santa Clara, California. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appears in all copies and that both the copyright notice and this permission notice appear in supporting documentation, and that the name of Intel not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. INTEL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL INTEL BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT, NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /* $ Header: $ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEBUG 1 /* export feep() */ #if 0 #define BROKEN_KEYBOARD_RESET #endif struct tty kd_tty; extern boolean_t rebootflag; static void charput(), charmvup(), charmvdown(), charclear(), charsetcursor(); static void kd_noopreset(); /* * These routines define the interface to the device-specific layer. * See kdsoft.h for a more complete description of what each routine does. */ void (*kd_dput)() = charput; /* put attributed char */ void (*kd_dmvup)() = charmvup; /* block move up */ void (*kd_dmvdown)() = charmvdown; /* block move down */ void (*kd_dclear)() = charclear; /* block clear */ void (*kd_dsetcursor)() = charsetcursor; /* set cursor position on displayed page */ void (*kd_dreset)() = kd_noopreset; /* prepare for reboot */ /* * Globals used for both character-based controllers and bitmap-based * controllers. Default is EGA. */ vm_offset_t kd_bitmap_start = (vm_offset_t)0xa0000; /* XXX - put in kd.h */ u_char *vid_start = (u_char *)EGA_START; /* VM start of video RAM or frame buffer */ csrpos_t kd_curpos = 0; /* set indirectly by kd_setpos--see kdsoft.h */ short kd_lines = 25; short kd_cols = 80; char kd_attr = KA_NORMAL; /* current attribute */ char kd_color = KA_NORMAL; char kd_attrflags = 0; /* Not reverse, underline, blink */ /* * kd_state shows the state of the modifier keys (ctrl, caps lock, * etc.) It should normally be changed by calling set_kd_state(), so * that the keyboard status LEDs are updated correctly. */ int kd_state = KS_NORMAL; int kb_mode = KB_ASCII; /* event/ascii */ /* * State for the keyboard "mouse". */ int kd_kbd_mouse = 0; int kd_kbd_magic_scale = 6; int kd_kbd_magic_button = 0; /* * Some keyboard commands work by sending a command, waiting for an * ack (handled by kdintr), then sending data, which generates a * second ack. If we are in the middle of such a sequence, kd_ack * shows what the ack is for. * * When a byte is sent to the keyboard, it is kept around in last_sent * in case it needs to be resent. * * The rest of the variables here hold the data required to complete * the sequence. * * XXX - the System V driver keeps a command queue, I guess in case we * want to start a command while another is in progress. Is this * something we should worry about? */ enum why_ack {NOT_WAITING, SET_LEDS, DATA_ACK}; enum why_ack kd_ack = NOT_WAITING; u_char last_sent = 0; u_char kd_nextled = 0; /* * We don't provide any mutex protection for this flag because we know * that this module will have been initialized by the time multiple * threads are running. */ boolean_t kd_initialized = FALSE; /* driver initialized? */ boolean_t kd_extended = FALSE; /* Array for processing escape sequences. */ #define K_MAXESC 32 u_char esc_seq[K_MAXESC]; u_char *esc_spt = (u_char *)0; /* * This array maps scancodes to Ascii characters (or character * sequences). * Each row corresponds to one key. There are NUMOUTPUT bytes per key * state. The states are ordered: Normal, SHIFT, CTRL, ALT, * SHIFT/ALT. */ /* This new keymap from Tudor Hulubei (tudor@cs.unh.edu) makes the following changes to the keyboard driver: - Alt + key (m-key) returns `ESC key' instead of `ESC N key'. - Backspace returns 0x7f instead of 0x08. - Delete returns `ESC [ 9' instead of 0x7f. - Alt + function keys return key sequences that are different from the key sequences returned by the function keys alone. This is done with the idea of alowing a terminal server to implement multiple virtual consoles mapped on Alt+F1, Alt+F2, etc, as in Linux. -- Derek Upham 1997/06/25 */ unsigned char key_map[NUMKEYS][WIDTH_KMAP] = { {NC,NC,NC, NC,NC,NC, NC,NC,NC, NC,NC,NC, NC,NC,NC}, {K_ESC,NC,NC, K_ESC,NC,NC, K_ESC,NC,NC, 0x1b,K_ESC,NC, K_ESC,NC,NC}, {K_ONE,NC,NC, K_BANG,NC,NC, K_ONE,NC,NC, 0x1b,K_ONE,NC, 0x1b,0x4e,K_BANG}, {K_TWO,NC,NC, K_ATSN,NC,NC, K_NUL,NC,NC, 0x1b,K_TWO,NC, 0x1b,0x4e,K_ATSN}, {K_THREE,NC,NC, K_POUND,NC,NC, K_THREE,NC,NC, 0x1b,K_THREE,NC, 0x1b,0x4e,K_POUND}, {K_FOUR,NC,NC, K_DOLLAR,NC,NC, K_FOUR,NC,NC, 0x1b,K_FOUR,NC, 0x1b,0x4e,K_DOLLAR}, {K_FIVE,NC,NC, K_PERC,NC,NC, K_FIVE,NC,NC, 0x1b,K_FIVE,NC, 0x1b,0x4e,K_PERC}, {K_SIX,NC,NC, K_CARET,NC,NC, K_RS,NC,NC, 0x1b,K_SIX,NC, 0x1b,0x4e,K_CARET}, {K_SEVEN,NC,NC, K_AMPER,NC,NC, K_SEVEN,NC,NC, 0x1b,K_SEVEN,NC, 0x1b,0x4e,K_AMPER}, {K_EIGHT,NC,NC, K_ASTER,NC,NC, K_EIGHT,NC,NC, 0x1b,K_EIGHT,NC, 0x1b,0x4e,K_ASTER}, {K_NINE,NC,NC, K_LPAREN,NC,NC, K_NINE,NC,NC, 0x1b,K_NINE,NC, 0x1b,0x4e,K_LPAREN}, {K_ZERO,NC,NC, K_RPAREN,NC,NC, K_ZERO,NC,NC, 0x1b,K_ZERO,NC, 0x1b,0x4e,K_RPAREN}, {K_MINUS,NC,NC, K_UNDSC,NC,NC, K_US,NC,NC, 0x1b,K_MINUS,NC, 0x1b,0x4e,K_UNDSC}, {K_EQL,NC,NC, K_PLUS,NC,NC, K_EQL,NC,NC, 0x1b,K_EQL,NC, 0x1b,0x4e,K_PLUS}, {K_DEL,NC,NC, K_DEL,NC,NC, K_DEL,NC,NC, 0x1b,K_DEL,NC, K_DEL,NC,NC}, {K_HT,NC,NC, K_GS,NC,NC, K_HT,NC,NC, 0x1b,K_HT,NC, K_GS,NC,NC}, {K_q,NC,NC, K_Q,NC,NC, K_DC1,NC,NC, 0x1b,K_q,NC, 0x1b,0x4e,K_Q}, {K_w,NC,NC, K_W,NC,NC, K_ETB,NC,NC, 0x1b,K_w,NC, 0x1b,0x4e,K_W}, {K_e,NC,NC, K_E,NC,NC, K_ENQ,NC,NC, 0x1b,K_e,NC, 0x1b,0x4e,K_E}, {K_r,NC,NC, K_R,NC,NC, K_DC2,NC,NC, 0x1b,K_r,NC, 0x1b,0x4e,K_R}, {K_t,NC,NC, K_T,NC,NC, K_DC4,NC,NC, 0x1b,K_t,NC, 0x1b,0x4e,K_T}, {K_y,NC,NC, K_Y,NC,NC, K_EM,NC,NC, 0x1b,K_y,NC, 0x1b,0x4e,K_Y}, {K_u,NC,NC, K_U,NC,NC, K_NAK,NC,NC, 0x1b,K_u,NC, 0x1b,0x4e,K_U}, {K_i,NC,NC, K_I,NC,NC, K_HT,NC,NC, 0x1b,K_i,NC, 0x1b,0x4e,K_I}, {K_o,NC,NC, K_O,NC,NC, K_SI,NC,NC, 0x1b,K_o,NC, 0x1b,0x4e,K_O}, {K_p,NC,NC, K_P,NC,NC, K_DLE,NC,NC, 0x1b,K_p,NC, 0x1b,0x4e,K_P}, {K_LBRKT,NC,NC, K_LBRACE,NC,NC, K_ESC,NC,NC, 0x1b,K_LBRKT,NC, 0x1b,0x4e,K_LBRACE}, {K_RBRKT,NC,NC, K_RBRACE,NC,NC, K_GS,NC,NC, 0x1b,K_RBRKT,NC, 0x1b,0x4e,K_RBRACE}, {K_CR,NC,NC, K_CR,NC,NC, K_CR,NC,NC, 0x1b,K_CR,NC, K_CR,NC,NC}, {K_SCAN,K_CTLSC,NC, K_SCAN,K_CTLSC,NC, K_SCAN,K_CTLSC,NC, K_SCAN,K_CTLSC,NC, K_SCAN,K_CTLSC,NC}, {K_a,NC,NC, K_A,NC,NC, K_SOH,NC,NC, 0x1b,K_a,NC, 0x1b,0x4e,K_A}, {K_s,NC,NC, K_S,NC,NC, K_DC3,NC,NC, 0x1b,K_s,NC, 0x1b,0x4e,K_S}, {K_d,NC,NC, K_D,NC,NC, K_EOT,NC,NC, 0x1b,K_d,NC, 0x1b,0x4e,K_D}, {K_f,NC,NC, K_F,NC,NC, K_ACK,NC,NC, 0x1b,K_f,NC, 0x1b,0x4e,K_F}, {K_g,NC,NC, K_G,NC,NC, K_BEL,NC,NC, 0x1b,K_g,NC, 0x1b,0x4e,K_G}, {K_h,NC,NC, K_H,NC,NC, K_BS,NC,NC, 0x1b,K_h,NC, 0x1b,0x4e,K_H}, {K_j,NC,NC, K_J,NC,NC, K_LF,NC,NC, 0x1b,K_j,NC, 0x1b,0x4e,K_J}, {K_k,NC,NC, K_K,NC,NC, K_VT,NC,NC, 0x1b,K_k,NC, 0x1b,0x4e,K_K}, {K_l,NC,NC, K_L,NC,NC, K_FF,NC,NC, 0x1b,K_l,NC, 0x1b,0x4e,K_L}, {K_SEMI,NC,NC, K_COLON,NC,NC, K_SEMI,NC,NC, 0x1b,K_SEMI,NC, 0x1b,0x4e,K_COLON}, {K_SQUOTE,NC,NC,K_DQUOTE,NC,NC, K_SQUOTE,NC,NC,0x1b,K_SQUOTE,NC, 0x1b,0x4e,K_DQUOTE}, {K_GRAV,NC,NC, K_TILDE,NC,NC, K_RS,NC,NC, 0x1b,K_GRAV,NC, 0x1b,0x4e,K_TILDE}, {K_SCAN,K_LSHSC,NC, K_SCAN,K_LSHSC,NC, K_SCAN,K_LSHSC,NC, K_SCAN,K_LSHSC,NC, K_SCAN,K_LSHSC,NC}, {K_BSLSH,NC,NC, K_PIPE,NC,NC, K_FS,NC,NC, 0x1b,K_BSLSH,NC, 0x1b,0x4e,K_PIPE}, {K_z,NC,NC, K_Z,NC,NC, K_SUB,NC,NC, 0x1b,K_z,NC, 0x1b,0x4e,K_Z}, {K_x,NC,NC, K_X,NC,NC, K_CAN,NC,NC, 0x1b,K_x,NC, 0x1b,0x4e,K_X}, {K_c,NC,NC, K_C,NC,NC, K_ETX,NC,NC, 0x1b,K_c,NC, 0x1b,0x4e,K_C}, {K_v,NC,NC, K_V,NC,NC, K_SYN,NC,NC, 0x1b,K_v,NC, 0x1b,0x4e,K_V}, {K_b,NC,NC, K_B,NC,NC, K_STX,NC,NC, 0x1b,K_b,NC, 0x1b,0x4e,K_B}, {K_n,NC,NC, K_N,NC,NC, K_SO,NC,NC, 0x1b,K_n,NC, 0x1b,0x4e,K_N}, {K_m,NC,NC, K_M,NC,NC, K_CR,NC,NC, 0x1b,K_m,NC, 0x1b,0x4e,K_M}, {K_COMMA,NC,NC, K_LTHN,NC,NC, K_COMMA,NC,NC, 0x1b,K_COMMA,NC, 0x1b,0x4e,K_LTHN}, {K_PERIOD,NC,NC,K_GTHN,NC,NC, K_PERIOD,NC,NC,0x1b,K_PERIOD,NC, 0x1b,0x4e,K_GTHN}, {K_SLASH,NC,NC, K_QUES,NC,NC, K_SLASH,NC,NC, 0x1b,K_SLASH,NC, 0x1b,0x4e,K_QUES}, {K_SCAN,K_RSHSC,NC, K_SCAN,K_RSHSC,NC, K_SCAN,K_RSHSC,NC, K_SCAN,K_RSHSC,NC, K_SCAN,K_RSHSC,NC}, {K_ASTER,NC,NC, K_ASTER,NC,NC, K_ASTER,NC,NC, 0x1b,K_ASTER,NC, 0x1b,0x4e,K_ASTER}, {K_SCAN,K_ALTSC,NC, K_SCAN,K_ALTSC,NC, K_SCAN,K_ALTSC,NC, K_SCAN,K_ALTSC,NC, K_SCAN,K_ALTSC,NC}, {K_SPACE,NC,NC, K_SPACE,NC,NC, K_NUL,NC,NC, 0x1b,K_SPACE,NC, K_SPACE,NC,NC}, {K_SCAN,K_CLCKSC,NC, K_SCAN,K_CLCKSC,NC, K_SCAN,K_CLCKSC,NC, K_SCAN,K_CLCKSC,NC, K_SCAN,K_CLCKSC,NC}, {K_F1, K_F1S, K_F1, K_F1A, K_F1S}, {K_F2, K_F2S, K_F2, K_F2A, K_F2S}, {K_F3, K_F3S, K_F3, K_F3A, K_F3S}, {K_F4, K_F4S, K_F4, K_F4A, K_F4S}, {K_F5, K_F5S, K_F5, K_F5A, K_F5S}, {K_F6, K_F6S, K_F6, K_F6A, K_F6S}, {K_F7, K_F7S, K_F7, K_F7A, K_F7S}, {K_F8, K_F8S, K_F8, K_F8A, K_F8S}, {K_F9, K_F9S, K_F9, K_F9A, K_F9S}, {K_F10, K_F10S, K_F10, K_F10A, K_F10S}, {K_SCAN,K_NLCKSC,NC, K_SCAN,K_NLCKSC,NC, K_SCAN,K_NLCKSC,NC, K_SCAN,K_NLCKSC,NC, K_SCAN,K_NLCKSC,NC}, {K_SCRL, K_NUL,NC,NC, K_SCRL, K_SCRL, K_NUL,NC,NC}, {K_HOME, K_SEVEN,NC,NC, K_HOME, K_HOME, 0x1b,0x4e,K_SEVEN}, {K_UA, K_EIGHT,NC,NC, K_UA, K_UA, 0x1b,0x4e,K_EIGHT}, {K_PUP, K_NINE,NC,NC, K_PUP, K_PUP, 0x1b,0x4e,K_NINE}, {0x1b,0x5b,0x53, K_MINUS,NC,NC, 0x1b,0x5b,0x53, 0x1b,0x5b,0x53, 0x1b,0x4e,0x2d}, {K_LA, K_FOUR,NC,NC, K_LA, K_LA, 0x1b,0x4e,K_FOUR}, {0x1b,0x5b,0x47, K_FIVE,NC,NC, 0x1b,0x5b,0x47, 0x1b,0x5b,0x47, 0x1b,0x4e,0x35}, {K_RA, K_SIX,NC,NC, K_RA, K_RA, 0x1b,0x4e,K_SIX}, {0x1b,0x5b,0x54, K_PLUS,NC,NC, 0x1b,0x5b,0x54, 0x1b,0x5b,0x54, 0x1b,0x4e,0x2b}, {K_END, K_ONE,NC,NC, K_END, K_END, 0x1b,0x4e,K_ONE}, {K_DA, K_TWO,NC,NC, K_DA, K_DA, 0x1b,0x4e,K_TWO}, {K_PDN, K_THREE,NC,NC, K_PDN, K_PDN, 0x1b,0x4e,K_THREE}, {K_INS, K_ZERO,NC,NC, K_INS, K_INS, 0x1b,0x4e,K_ZERO}, {0x1b,0x5b,0x39, K_PERIOD,NC,NC, K_DEL,NC,NC, K_DEL,NC,NC, 0x1b,0x4e,K_PERIOD}, {NC,NC,NC, NC,NC,NC, NC,NC,NC, NC,NC,NC, NC,NC,NC}, {NC,NC,NC, NC,NC,NC, NC,NC,NC, NC,NC,NC, NC,NC,NC}, {NC,NC,NC, NC,NC,NC, NC,NC,NC, NC,NC,NC, NC,NC,NC}, {K_F11, K_F11S, K_F11, K_F11A, K_F11S}, {K_F12, K_F12S, K_F12, K_F12A, K_F12S} }; /* * Globals used only for character-based controllers. */ short kd_index_reg = EGA_IDX_REG; short kd_io_reg = EGA_IO_REG; /* * Globals used only for bitmap-based controllers. See kdsoft.h for * an explanation of what some of these variables are used for. */ u_char *font_start = 0; /* starting addr of font */ short fb_width = 0; /* bits in frame buffer scan line */ short fb_height = 0; /* scan lines in frame buffer*/ short char_width = 0; /* bit width of 1 char */ short char_height = 0; /* bit height of 1 char */ short chars_in_font = 0; short cursor_height = 0; /* bit height of cursor */ /* These initial values are simply guesses. */ u_char char_black = 0; u_char char_white = 0xff; short xstart = 0; short ystart = 0; short char_byte_width = 0; /* char_width/NBBY */ short fb_byte_width = 0; /* fb_width/NBBY */ short font_byte_width = 0; /* num bytes in 1 scan line of font */ /* * Switch for poll vs. interrupt. */ int kd_pollc = 0; #ifdef DEBUG /* * feep: * * Ring the bell for a short time. * Warning: uses outb(). You may prefer to use kd_debug_put. */ void feep() { int i; kd_bellon(); for (i = 0; i < 50000; ++i) ; kd_belloff(NULL); } void pause() { int i; for (i = 0; i < 50000; ++i) ; } /* * Put a debugging character on the screen. * LOC=0 means put it in the bottom right corner, LOC=1 means put it * one column to the left, etc. */ void kd_debug_put(loc, c) int loc; char c; { csrpos_t pos = ONE_PAGE - (loc+1) * ONE_SPACE; (*kd_dput)(pos, c, KA_NORMAL); } #endif /* DEBUG */ extern boolean_t mouse_in_use; int old_kb_mode; void cnpollc(on) boolean_t on; { if (mouse_in_use) { if (on) { /* switch into X */ old_kb_mode = kb_mode; kb_mode = KB_ASCII; X_kdb_enter(); kd_pollc++; } else { --kd_pollc; /* switch out of X */ X_kdb_exit(); kb_mode = old_kb_mode; } } else { if (on) { kd_pollc++; } else { --kd_pollc; } } } /* * kdopen: * * This opens the console driver and sets up the tty and other * rudimentary stuff including calling the line discipline for * setting up the device independent stuff for a tty driver. * * input: device number 'dev', and flag * * output: device is opened and setup * */ int kdopen(dev, flag, ior) dev_t dev; int flag; io_req_t ior; { struct tty *tp; spl_t o_pri; tp = &kd_tty; o_pri = spltty(); simple_lock(&tp->t_lock); if (!(tp->t_state & (TS_ISOPEN|TS_WOPEN))) { /* XXX ttychars allocates memory */ simple_unlock(&tp->t_lock); ttychars(tp); simple_lock(&tp->t_lock); /* * Special support for boot-time rc scripts, which don't * stty the console. */ tp->t_oproc = kdstart; tp->t_stop = kdstop; tp->t_ospeed = tp->t_ispeed = B9600; tp->t_flags = ODDP|EVENP|ECHO|CRMOD|XTABS; kdinit(); } tp->t_state |= TS_CARR_ON; simple_unlock(&tp->t_lock); splx(o_pri); return (char_open(dev, tp, flag, ior)); } /* * kdclose: * * This function merely executes the device independent code for * closing the line discipline. * * input: device number 'dev', and flag * * output: device is closed * */ /*ARGSUSED*/ void kdclose(dev, flag) int dev; int flag; { struct tty *tp; tp = &kd_tty; { spl_t s = spltty(); simple_lock(&tp->t_lock); ttyclose(tp); simple_unlock(&tp->t_lock); splx(s); } return; } /* * kdread: * * This function executes the device independent code to read from * the tty. * * input: device number 'dev' * * output: characters are read from tty clists * */ /*ARGSUSED*/ int kdread(dev, uio) int dev; io_req_t uio; { struct tty *tp; tp = &kd_tty; tp->t_state |= TS_CARR_ON; return((*linesw[kd_tty.t_line].l_read)(tp, uio)); } /* * kdwrite: * * This function does the device independent write action for this * console (tty) driver. * * input: device number 'dev' * * output: characters are written to tty clists * */ /*ARGSUSED*/ int kdwrite(dev, uio) int dev; io_req_t uio; { return((*linesw[kd_tty.t_line].l_write)(&kd_tty, uio)); } /* * Mmap. */ /*ARGSUSED*/ int kdmmap(dev, off, prot) dev_t dev; off_t off; int prot; { if ((u_int) off >= (128*1024)) return(-1); /* Get page frame number for the page to be mapped. */ return(i386_btop(kd_bitmap_start+off)); } int kdportdeath(dev, port) dev_t dev; mach_port_t port; { return (tty_portdeath(&kd_tty, (ipc_port_t)port)); } /*ARGSUSED*/ io_return_t kdgetstat(dev, flavor, data, count) dev_t dev; int flavor; int * data; /* pointer to OUT array */ natural_t *count; /* OUT */ { io_return_t result; switch (flavor) { case KDGSTATE: if (*count < 1) return (D_INVALID_OPERATION); *data = kd_state; *count = 1; result = D_SUCCESS; break; case KDGKBENT: result = kdgetkbent((struct kbentry *)data); *count = sizeof(struct kbentry)/sizeof(int); break; default: result = tty_get_status(&kd_tty, flavor, data, count); break; } return (result); } /*ARGSUSED*/ io_return_t kdsetstat(dev, flavor, data, count) dev_t dev; int flavor; int * data; natural_t count; { io_return_t result; switch (flavor) { case KDSKBENT: if (count < sizeof(struct kbentry)/sizeof(int)) { return (D_INVALID_OPERATION); } result = kdsetkbent((struct kbentry *)data, 0); break; case KDSETBELL: if (count < 1) return (D_INVALID_OPERATION); result = kdsetbell(*data, 0); break; default: result = tty_set_status(&kd_tty, flavor, data, count); } return (result); } /* * kdsetbell: * * Turn the bell on or off. Returns error code, if given bogus * on/off value. */ int kdsetbell(val, flags) int val; /* on or off */ int flags; /* flags set for console */ { int err = 0; if (val == KD_BELLON) kd_bellon(); else if (val == KD_BELLOFF) kd_belloff(NULL); else err = D_INVALID_OPERATION; return(err); } /* * kdgetkbent: * * Get entry from key mapping table. Returns error code, if any. */ int kdgetkbent(kbent) struct kbentry * kbent; { u_char *cp; spl_t o_pri = SPLKD(); /* probably superfluous */ cp = &key_map[kbent->kb_index][CHARIDX(kbent->kb_state)]; kbent->kb_value[0] = *cp++; kbent->kb_value[1] = *cp++; kbent->kb_value[2] = *cp; (void)splx(o_pri); return(0); } /* * kdsetkbent: * * Set entry in key mapping table. Return error code, if any. */ int kdsetkbent(kbent, flags) struct kbentry * kbent; int flags; /* flags set for console */ { u_char *cp; spl_t o_pri; o_pri = SPLKD(); cp = &key_map[kbent->kb_index][CHARIDX(kbent->kb_state)]; *cp++ = kbent->kb_value[0]; *cp++ = kbent->kb_value[1]; *cp = kbent->kb_value[2]; (void)splx(o_pri); return(0); } /* * kdintr: * * This function is the interrupt code for the driver. Since this is * a special tty (console), interrupts are only for input, so we read in * the character. If in ascii mode, we then do the mapping translation * from the keyboard switch table and place the characters on the tty's * input switch table. If in event mode, we create and queue a kd_event. * * input: interrupt vector 'vec' * * output: character or sequence is placed on appropriate queue * */ /*ARGSUSED*/ void kdintr(vec) int vec; { struct tty *tp; unsigned char c; unsigned char scancode; int char_idx; boolean_t up = FALSE; /* key-up event */ if (kd_pollc) return; /* kdb polling kbd */ if (!kd_initialized) return; tp = &kd_tty; #ifdef old while ((inb(K_STATUS) & K_OBUF_FUL) == 0); /* this should never loop */ #else /* old */ { /* * Allow for keyboards that raise interrupt before * the character gets to the buffer. But don't wait * forever if grabbing the character by polling leaves * the interrupt on but buffer empty. */ /* * Micronics VLB motherboard with 486DX2 can report keyboard * interrupt before K_STATUS register indicates that the * output buffer is full. Moreover, the bus won't settle w * while we poll K_STATUS at speed. Temporary fix is to break * out after safety runs out and pick up keyboard event. This * should be fixed eventually by putting a 1us timout between * inb's to K_STATUS and fix the pic initialization order to * avoid bootup keyboard wedging (ie make kd a real device) */ int safety = 1000; while ((inb(K_STATUS) & K_OBUF_FUL) == 0) if (!safety--) break; /* XXX */ } #endif /* old */ /* * We may have seen a mouse event. */ if ((inb(K_STATUS) & 0x20) == 0x20) { if (mouse_in_use) { mouse_handle_byte((u_char)inb(K_RDWR)); return; } else { printf("M%xI", inb(K_RDWR)); return; } } scancode = inb(K_RDWR); if (scancode == K_EXTEND && kb_mode != KB_EVENT) { kd_extended = TRUE; goto done; } else if (scancode == K_RESEND) { kd_resend(); goto done; } else if (scancode == K_ACKSC) { kd_handle_ack(); goto done; } else if (kd_kbd_mouse && kd_kbd_magic(scancode)) { goto done; } else if (kdcheckmagic(scancode)) { goto done; } else if (kb_mode == KB_EVENT) { kd_enqsc(scancode); goto done; } /* else... */ if (scancode & K_UP) { up = TRUE; scancode &= ~K_UP; } if (scancode < NUMKEYS) { /* Lookup in map, then process. */ char_idx = kdstate2idx(kd_state, kd_extended); c = key_map[scancode][char_idx]; if (c == K_SCAN) { c = key_map[scancode][++char_idx]; set_kd_state(do_modifier(kd_state, c, up)); } else if (!up) { /* regular key-down */ int max; /* max index for char sequence */ max = char_idx + NUMOUTPUT; char_idx++; if (!kd_extended) { if (kd_state&KS_CLKED) { if (kd_isupper(c)) { c += ('a' - 'A'); max = char_idx; } else if (kd_islower(c)) { c -= ('a' - 'A'); max = char_idx; } } /* * Notice that even if the keypad is remapped, * NumLock only effects the keys that are * physically part of the keypad. Is this * The Right Thing? */ if ((kd_state&KS_NLKED) && (((K_HOMESC) <= scancode) && (scancode <= (K_DELSC)))) { char_idx = CHARIDX(SHIFT_STATE); c = key_map[scancode][char_idx]; max = char_idx + NUMOUTPUT; char_idx++; } } /* * here's where we actually put the char (or * char sequence, for function keys) onto the * input queue. */ for ( ; (c != K_DONE) && (char_idx <= max); c = key_map[scancode][char_idx++]) { (*linesw[tp->t_line].l_rint)(c, tp); } kd_extended = FALSE; } } done: return; } /* * kd_handle_ack: * * For pending commands, complete the command. For data bytes, * drop the ack on the floor. */ void kd_handle_ack() { switch (kd_ack) { case SET_LEDS: kd_setleds2(); kd_ack = DATA_ACK; break; case DATA_ACK: kd_ack = NOT_WAITING; break; case NOT_WAITING: printf("unexpected ACK from keyboard\n"); break; default: panic("bogus kd_ack\n"); break; } } /* * kd_resend: * * Resend a missed keyboard command or data byte. */ void kd_resend() { if (kd_ack == NOT_WAITING) printf("unexpected RESEND from keyboard\n"); else kd_senddata(last_sent); } /* * do_modifier: * * Change keyboard state according to which modifier key and * whether it went down or up. * * input: the current state, the key, and the key's direction. * The key can be any key, not just a modifier key. * * output: the new state */ int do_modifier(state, c, up) int state; Scancode c; boolean_t up; { switch (c) { case (K_ALTSC): if (up) state &= ~KS_ALTED; else state |= KS_ALTED; kd_extended = FALSE; break; #ifndef ORC case (K_CLCKSC): #endif /* ORC */ case (K_CTLSC): if (up) state &= ~KS_CTLED; else state |= KS_CTLED; kd_extended = FALSE; break; #ifdef ORC case (K_CLCKSC): if (!up) state ^= KS_CLKED; break; #endif /* ORC */ case (K_NLCKSC): if (!up) state ^= KS_NLKED; break; case (K_LSHSC): case (K_RSHSC): if (up) state &= ~KS_SHIFTED; else state |= KS_SHIFTED; kd_extended = FALSE; break; } return(state); } /* * kdcheckmagic: * * Check for magic keystrokes for invoking the debugger or * rebooting or ... * * input: an unprocessed scancode * * output: TRUE if a magic key combination was recognized and * processed. FALSE otherwise. * * side effects: * various actions possible, depending on which keys are * pressed. If the debugger is called, steps are taken * to ensure that the system doesn't think the magic keys * are still held down. */ boolean_t kdcheckmagic(scancode) Scancode scancode; { static int magic_state = KS_NORMAL; /* like kd_state */ boolean_t up = FALSE; if (scancode == 0x46) /* scroll lock */ /* if (scancode == 0x52) ** insert key */ { kd_kbd_mouse = !kd_kbd_mouse; kd_kbd_magic_button = 0; return(TRUE); } if (scancode & K_UP) { up = TRUE; scancode &= ~K_UP; } magic_state = do_modifier(magic_state, scancode, up); if ((magic_state&(KS_CTLED|KS_ALTED)) == (KS_CTLED|KS_ALTED)) { switch (scancode) { #if MACH_KDB case K_dSC: /* ctl-alt-d */ kdb_kintr(); /* invoke debugger */ /* Returned from debugger, so reset kbd state. */ (void)SPLKD(); magic_state = KS_NORMAL; if (kb_mode == KB_ASCII) kd_state = KS_NORMAL; /* setting leds kills kbd */ else { kd_enqsc(K_ALTSC | K_UP); kd_enqsc(K_CTLSC | K_UP); kd_enqsc(K_dSC | K_UP); } return(TRUE); break; #endif /* MACH_KDB */ case K_DELSC: /* ctl-alt-del */ /* if rebootflag is on, reboot the system */ if (rebootflag) kdreboot(); break; } } return(FALSE); } /* * kdstate2idx: * * Return the value for the 2nd index into key_map that * corresponds to the given state. */ int kdstate2idx(state, extended) int state; /* bit vector, not a state index */ boolean_t extended; { int state_idx = NORM_STATE; if ((!extended) && state != KS_NORMAL) { if ((state&(KS_SHIFTED|KS_ALTED)) == (KS_SHIFTED|KS_ALTED)) state_idx = SHIFT_ALT; /* CTRL should have higher priority than SHIFT. That way, CTRL-SHIFT-2 and CTRL-2 produce the same keycode. --Derek Upham 1997/06/25 */ else if (state&KS_CTLED) state_idx = CTRL_STATE; else if (state&KS_SHIFTED) state_idx = SHIFT_STATE; else if (state&KS_ALTED) state_idx = ALT_STATE; } return (CHARIDX(state_idx)); } /* * kdstart: * * This function does the general processing of characters and other * operations for the device driver. The device independent portion of * the tty driver calls this routine (it's setup in kdinit) with a * given command. That command is then processed, and control is passed * back to the kernel. * * input: tty pointer 'tp', and command to execute 'cmd' * * output: command is executed * * Entered and left at spltty. Drops priority to spl0 to display character. * ASSUMES that it is never called from interrupt-driven code. */ void kdstart(tp) struct tty *tp; { spl_t o_pri; int ch; unsigned char c; if (tp->t_state & TS_TTSTOP) return; for ( ; ; ) { tp->t_state &= ~TS_BUSY; if (tp->t_state & TS_TTSTOP) break; if ((tp->t_outq.c_cc <= 0) || (ch = getc(&tp->t_outq)) == -1) break; c = ch; /* * Drop priority for long screen updates. ttstart() calls us at * spltty. */ o_pri = splsoftclock(); /* block timeout */ if (c == (K_ESC)) { if (esc_spt == esc_seq) { *(esc_spt++)=(K_ESC); *(esc_spt) = '\0'; } else { kd_putc((K_ESC)); esc_spt = esc_seq; } } else { if (esc_spt - esc_seq) { if (esc_spt - esc_seq > K_MAXESC - 1) esc_spt = esc_seq; else { *(esc_spt++) = c; *(esc_spt) = '\0'; kd_parseesc(); } } else { kd_putc(c); } } splx(o_pri); } if (tp->t_outq.c_cc <= TTLOWAT(tp)) { tt_write_wakeup(tp); } } /*ARGSUSED*/ void kdstop(tp, flags) struct tty *tp; int flags; { /* * do nothing - all characters are output by one call to * kdstart. */ } /* * kdinit: * * This code initializes the structures and sets up the port registers * for the console driver. * * Each bitmap-based graphics card is likely to require a unique * way to determine the card's presence. The driver runs through * each "special" card that it knows about and uses the first one * that it finds. If it doesn't find any, it assumes that an * EGA-like card is installed. * * input : None. Interrupts are assumed to be disabled * output : Driver is initialized * */ void kdinit() { void kd_xga_init(); unsigned char k_comm; /* keyboard command byte */ if (kd_initialized) return; esc_spt = esc_seq; kd_attr = KA_NORMAL; kd_attrflags = 0; kd_color = KA_NORMAL; /* * board specific initialization: set up globals and kd_dxxx * pointers, and synch displayed cursor with logical cursor. */ kd_xga_init(); /* get rid of any garbage in output buffer */ if (inb(K_STATUS) & K_OBUF_FUL) (void)inb(K_RDWR); kd_sendcmd(KC_CMD_READ); /* ask for the ctlr command byte */ k_comm = kd_getdata(); k_comm &= ~K_CB_DISBLE; /* clear keyboard disable bit */ k_comm |= K_CB_ENBLIRQ; /* enable interrupt */ kd_sendcmd(KC_CMD_WRITE); /* write new ctlr command byte */ kd_senddata(k_comm); kd_initialized = TRUE; #ifdef ENABLE_IMMEDIATE_CONSOLE /* Now that we're set up, we no longer need or want the immediate console. */ { extern boolean_t immediate_console_enable; immediate_console_enable = FALSE; } /* The immediate console printed stuff at the bottom of the screen rather than at the cursor position, so that's where we should start. */ kd_setpos(ONE_PAGE - ONE_LINE); printf("\n"); #endif /* ENABLE_IMMEDIATE_CONSOLE */ cnsetleds(kd_state = KS_NORMAL); /* clear the LEDs AFTER we enable the keyboard controller. This keeps NUM-LOCK from being set on the NEC Versa. */ /* Allocate the input buffer. */ ttychars(&kd_tty); } /* * kd_belloff: * * This routine shuts the bell off, by sending the appropriate code * to the speaker port. * * input : None * output : bell is turned off * */ static boolean_t kd_bellstate = FALSE; void kd_belloff(void * param) { unsigned char status; status = (inb(K_PORTB) & ~(K_SPKRDATA | K_ENABLETMR2)); outb(K_PORTB, status); kd_bellstate = FALSE; return; } /* * kd_bellon: * * This routine turns the bell on. * * input : None * output : bell is turned on * */ void kd_bellon() { unsigned char status; /* program timer 2 */ outb(K_TMRCTL, K_SELTMR2 | K_RDLDTWORD | K_TSQRWAVE | K_TBINARY); outb(K_TMR2, 1500 & 0xff); /* LSB */ outb(K_TMR2, (int)1500 >> 8); /* MSB */ /* start speaker - why must we turn on K_SPKRDATA? */ status = (inb(K_PORTB)| K_ENABLETMR2 | K_SPKRDATA); outb(K_PORTB, status); return; } /* * * Function kd_putc(): * * This function simply puts a character on the screen. It does some * special processing for linefeed, carriage return, backspace and * the bell. * * input : character to be displayed * output : character is displayed, or some action is taken * */ int sit_for_0 = 1; void kd_putc(ch) u_char ch; { if ((!ch) && sit_for_0) return; switch (ch) { case ((K_LF)): kd_down(); break; case ((K_CR)): kd_cr(); break; case ((K_BS)): kd_left(); break; case ((K_HT)): kd_tab(); break; case ((K_BEL)): /* * Similar problem to K_BS here (behavior might depend * on tty setting). Also check LF and CR. */ if (!kd_bellstate) { kd_bellon(); timeout(kd_belloff, 0, hz/8 ); kd_bellstate = TRUE; } break; default: (*kd_dput)(kd_curpos, ch, kd_attr); kd_right(); break; } return; } /* * kd_setpos: * * This function sets the software and hardware cursor position * on the screen, using device-specific code to actually move and * display the cursor. * * input : position on (or off) screen to move the cursor to * output : cursor position is updated, screen has been scrolled * if necessary to bring cursor position back onto * screen. * */ void kd_setpos(newpos) csrpos_t newpos; { if (newpos > ONE_PAGE) { kd_scrollup(); newpos = BOTTOM_LINE; } if (newpos < 0) { kd_scrolldn(); newpos = 0; } (*kd_dsetcursor)(newpos); } /* * kd_scrollup: * * This function scrolls the screen up one line using a DMA memory * copy. * * input : None * output : lines on screen appear to be shifted up one line * */ void kd_scrollup() { csrpos_t to; csrpos_t from; int count; /* scroll up */ to = 0; from = ONE_LINE; count = (ONE_PAGE - ONE_LINE)/ONE_SPACE; (*kd_dmvup)(from, to, count); /* clear bottom line */ to = BOTTOM_LINE; count = ONE_LINE/ONE_SPACE; (*kd_dclear)(to, count, kd_attr); return; } /* * kd_scrolldn: * * Scrolls the characters on the screen down one line. * * input : None * output : Lines on screen appear to be moved down one line * */ void kd_scrolldn() { csrpos_t to; csrpos_t from; int count; /* move down */ to = ONE_PAGE - ONE_SPACE; from = ONE_PAGE - ONE_LINE - ONE_SPACE; count = (ONE_PAGE - ONE_LINE) / ONE_SPACE; (*kd_dmvdown)(from, to, count); /* clear top line */ to = 0; count = ONE_LINE/ONE_SPACE; (*kd_dclear)(to, count, kd_attr); return; } /* * kd_parseesc: * * This routine begins the parsing of an escape sequence. It uses the * escape sequence array and the escape spot pointer to handle * asynchronous parsing of escape sequences. * * input : String of characters prepended by an escape * output : Appropriate actions are taken depending on the string as * defined by the ansi terminal specification * */ void kd_parseesc() { u_char *escp; escp = esc_seq + 1; /* point to char following ESC */ switch(*(escp)) { case 'c': kd_cls(); kd_home(); esc_spt = esc_seq; /* reset spot in ESC sequence */ break; case '[': escp++; kd_parserest(escp); break; case '\0': break; /* not enough info yet */ default: kd_putc(*escp); esc_spt = esc_seq; /* inv sequence char, reset */ break; } return; } /* kd_update_kd_attr: * * Updates kd_attr according to kd_attrflags and kd_color. * This code has its origin from console.c and selection.h in * linux 2.2 drivers/char/. * Modified for GNU Mach by Marcus Brinkmann. */ #define reverse_video_char(a) (((a) & 0x88) | ((((a) >> 4) | ((a) << 4)) & 0x77)) void kd_update_kd_attr(void) { kd_attr = kd_color; if (kd_attrflags & KAX_UNDERLINE) kd_attr = (kd_attr & 0xf0) | KAX_COL_UNDERLINE; else if (kd_attrflags & KAX_DIM) kd_attr = (kd_attr & 0xf0) | KAX_COL_DIM; if (kd_attrflags & KAX_REVERSE) kd_attr = reverse_video_char(kd_attr); if (kd_attrflags & KAX_BLINK) kd_attr ^= 0x80; if (kd_attrflags & KAX_BOLD) kd_attr ^= 0x08; } /* color_table added by Julio Merino to take proper color order. * I get this code from Linux 2.2 source code in file: * linux/drivers/char/console.c */ unsigned char color_table[] = { 0, 4, 2, 6, 1, 5, 3, 7, 8,12,10,14, 9,13,11,15 }; /* * kd_parserest: * * This function will complete the parsing of an escape sequence and * call the appropriate support routine if it matches a character. This * function could be greatly improved by using a function jump table, and * removing this bulky switch statement. * * input : An string * output : Appropriate action based on whether the string matches a * sequence acceptable to the ansi terminal specification * */ void kd_parserest(cp) u_char *cp; { int number[16], npar = 0, i; csrpos_t newpos; for(i=0;i<=15;i++) number[i] = MACH_ATOI_DEFAULT; do { cp += mach_atoi(cp, &number[npar]); } while (*cp == ';' && ++npar <= 15 && cp++); switch(*cp) { case 'm': for (i=0;i<=npar;i++) switch(number[i]) { case MACH_ATOI_DEFAULT: case 0: kd_attrflags = 0; kd_color = KA_NORMAL; break; case 1: kd_attrflags |= KAX_BOLD; kd_attrflags &= ~KAX_DIM; break; case 2: kd_attrflags |= KAX_DIM; kd_attrflags &= ~KAX_BOLD; break; case 4: kd_attrflags |= KAX_UNDERLINE; break; case 5: kd_attrflags |= KAX_BLINK; break; case 7: kd_attrflags |= KAX_REVERSE; break; case 8: kd_attrflags |= KAX_INVISIBLE; break; case 21: case 22: kd_attrflags &= ~(KAX_BOLD | KAX_DIM); break; case 24: kd_attrflags &= ~KAX_UNDERLINE; break; case 25: kd_attrflags &= ~KAX_BLINK; break; case 27: kd_attrflags &= ~KAX_REVERSE; break; case 38: kd_attrflags |= KAX_UNDERLINE; kd_color = (kd_color & 0xf0) | (KA_NORMAL & 0x0f); break; case 39: kd_attrflags &= ~KAX_UNDERLINE; kd_color = (kd_color & 0xf0) | (KA_NORMAL & 0x0f); break; default: if (number[i] >= 30 && number[i] <= 37) { /* foreground color */ kd_color = (kd_color & 0xf0) | color_table[(number[i] - 30)]; } else if (number[i] >= 40 && number[i] <= 47) { /* background color */ kd_color = (kd_color & 0x0f) | (color_table[(number[i] - 40)] << 4); } break; } kd_update_kd_attr(); esc_spt = esc_seq; break; case '@': if (number[0] == MACH_ATOI_DEFAULT) kd_insch(1); else kd_insch(number[0]); esc_spt = esc_seq; break; case 'A': if (number[0] == MACH_ATOI_DEFAULT) kd_up(); else while (number[0]--) kd_up(); esc_spt = esc_seq; break; case 'B': if (number[0] == MACH_ATOI_DEFAULT) kd_down(); else while (number[0]--) kd_down(); esc_spt = esc_seq; break; case 'C': if (number[0] == MACH_ATOI_DEFAULT) kd_right(); else while (number[0]--) kd_right(); esc_spt = esc_seq; break; case 'D': if (number[0] == MACH_ATOI_DEFAULT) kd_left(); else while (number[0]--) kd_left(); esc_spt = esc_seq; break; case 'E': kd_cr(); if (number[0] == MACH_ATOI_DEFAULT) kd_down(); else while (number[0]--) kd_down(); esc_spt = esc_seq; break; case 'F': kd_cr(); if (number[0] == MACH_ATOI_DEFAULT) kd_up(); else while (number[0]--) kd_up(); esc_spt = esc_seq; break; case 'G': if (number[0] == MACH_ATOI_DEFAULT) number[0] = 0; else if (number[0] > 0) --number[0]; /* because number[0] is from 1 */ kd_setpos(BEG_OF_LINE(kd_curpos) + number[0] * ONE_SPACE); esc_spt = esc_seq; break; case 'f': case 'H': if (number[0] == MACH_ATOI_DEFAULT && number[1] == MACH_ATOI_DEFAULT) { kd_home(); esc_spt = esc_seq; break; } if (number[0] == MACH_ATOI_DEFAULT) number[0] = 0; else if (number[0] > 0) --number[0]; /* numbered from 1 */ newpos = (number[0] * ONE_LINE); /* setup row */ if (number[1] == MACH_ATOI_DEFAULT) number[1] = 0; else if (number[1] > 0) number[1]--; newpos += (number[1] * ONE_SPACE); /* setup column */ if (newpos < 0) newpos = 0; /* upper left */ if (newpos > ONE_PAGE) newpos = (ONE_PAGE - ONE_SPACE); /* lower right */ kd_setpos(newpos); esc_spt = esc_seq; break; /* done or not ready */ case 'J': switch(number[0]) { case MACH_ATOI_DEFAULT: case 0: kd_cltobcur(); /* clears from current pos to bottom. */ break; case 1: kd_cltopcur(); /* clears from top to current pos. */ break; case 2: kd_cls(); break; default: break; } esc_spt = esc_seq; /* reset it */ break; case 'K': switch(number[0]) { case MACH_ATOI_DEFAULT: case 0: kd_cltoecur(); /* clears from current pos to eoln. */ break; case 1: kd_clfrbcur(); /* clears from begin of line to current pos. */ break; case 2: kd_eraseln(); /* clear entire line */ break; default: break; } esc_spt = esc_seq; break; case 'L': if (number[0] == MACH_ATOI_DEFAULT) kd_insln(1); else kd_insln(number[0]); esc_spt = esc_seq; break; case 'M': if (number[0] == MACH_ATOI_DEFAULT) kd_delln(1); else kd_delln(number[0]); esc_spt = esc_seq; break; case 'P': if (number[0] == MACH_ATOI_DEFAULT) kd_delch(1); else kd_delch(number[0]); esc_spt = esc_seq; break; case 'S': if (number[0] == MACH_ATOI_DEFAULT) kd_scrollup(); else while (number[0]--) kd_scrollup(); esc_spt = esc_seq; break; case 'T': if (number[0] == MACH_ATOI_DEFAULT) kd_scrolldn(); else while (number[0]--) kd_scrolldn(); esc_spt = esc_seq; break; case 'X': if (number[0] == MACH_ATOI_DEFAULT) kd_erase(1); else kd_erase(number[0]); esc_spt = esc_seq; break; case '\0': break; /* not enough yet */ default: kd_putc(*cp); /* show inv character */ esc_spt = esc_seq; /* inv entry, reset */ break; } return; } void kd_tab() { int i; for (i = 8 - (CURRENT_COLUMN(kd_curpos) % 8); i > 0; i--) { kd_putc(' '); } } /* * kd_cls: * * This function clears the screen with spaces and the current attribute. * * input : None * output : Screen is cleared * */ void kd_cls() { (*kd_dclear)(0, ONE_PAGE/ONE_SPACE, kd_attr); return; } /* * kd_home: * * This function will move the cursor to the home position on the screen, * as well as set the internal cursor position (kd_curpos) to home. * * input : None * output : Cursor position is moved * */ void kd_home() { kd_setpos(0); return; } /* * kd_up: * * This function moves the cursor up one line position. * * input : None * output : Cursor moves up one line, or screen is scrolled * */ void kd_up() { if (kd_curpos < ONE_LINE) kd_scrolldn(); else kd_setpos(kd_curpos - ONE_LINE); return; } /* * kd_down: * * This function moves the cursor down one line position. * * input : None * output : Cursor moves down one line or the screen is scrolled * */ void kd_down() { if (kd_curpos >= (ONE_PAGE - ONE_LINE)) kd_scrollup(); else kd_setpos(kd_curpos + ONE_LINE); return; } /* * kd_right: * * This function moves the cursor one position to the right. * * input : None * output : Cursor moves one position to the right * */ void kd_right() { if (kd_curpos < (ONE_PAGE - ONE_SPACE)) kd_setpos(kd_curpos + ONE_SPACE); else { kd_scrollup(); kd_setpos(BEG_OF_LINE(kd_curpos)); } return; } /* * kd_left: * * This function moves the cursor one position to the left. * * input : None * output : Cursor moves one position to the left * */ void kd_left() { if (0 < kd_curpos) kd_setpos(kd_curpos - ONE_SPACE); return; } /* * kd_cr: * * This function moves the cursor to the beginning of the current * line. * * input : None * output : Cursor moves to the beginning of the current line * */ void kd_cr() { kd_setpos(BEG_OF_LINE(kd_curpos)); return; } /* * kd_cltobcur: * * This function clears from the current cursor position to the bottom * of the screen. * * input : None * output : Screen is cleared from current cursor postion to bottom * */ void kd_cltobcur() { csrpos_t start; int count; start = kd_curpos; count = (ONE_PAGE - kd_curpos)/ONE_SPACE; (*kd_dclear)(start, count, kd_attr); return; } /* * kd_cltopcur: * * This function clears from the current cursor position to the top * of the screen. * * input : None * output : Screen is cleared from current cursor postion to top * */ void kd_cltopcur() { int count; count = (kd_curpos + ONE_SPACE) / ONE_SPACE; (*kd_dclear)(0, count, kd_attr); return; } /* * kd_cltoecur: * * This function clears from the current cursor position to eoln. * * input : None * output : Line is cleared from current cursor position to eoln * */ void kd_cltoecur() { csrpos_t i; csrpos_t hold; hold = BEG_OF_LINE(kd_curpos) + ONE_LINE; for (i = kd_curpos; i < hold; i += ONE_SPACE) { (*kd_dput)(i, K_SPACE, kd_attr); } } /* * kd_clfrbcur: * * This function clears from the beginning of the line to the current * cursor position. * * input : None * output : Line is cleared from beginning to current position * */ void kd_clfrbcur() { csrpos_t i; for (i = BEG_OF_LINE(kd_curpos); i <= kd_curpos; i += ONE_SPACE) { (*kd_dput)(i, K_SPACE, kd_attr); } } /* * kd_delln: * * This function deletes 'number' lines on the screen by effectively * scrolling the lines up and replacing the old lines with spaces. * * input : number of lines to delete * output : lines appear to be deleted * */ void kd_delln(number) int number; { csrpos_t to; csrpos_t from; int delbytes; /* num of bytes to delete */ int count; /* num of words to move or fill */ if (number <= 0) return; delbytes = number * ONE_LINE; to = BEG_OF_LINE(kd_curpos); if (to + delbytes >= ONE_PAGE) delbytes = ONE_PAGE - to; if (to + delbytes < ONE_PAGE) { from = to + delbytes; count = (ONE_PAGE - from) / ONE_SPACE; (*kd_dmvup)(from, to, count); } to = ONE_PAGE - delbytes; count = delbytes / ONE_SPACE; (*kd_dclear)(to, count, kd_attr); return; } /* * kd_insln: * * This function inserts a line above the current one by * scrolling the current line and all the lines below it down. * * input : number of lines to insert * output : New lines appear to be inserted * */ void kd_insln(number) int number; { csrpos_t to; csrpos_t from; int count; csrpos_t top; /* top of block to be moved */ int insbytes; /* num of bytes inserted */ if (number <= 0) return; top = BEG_OF_LINE(kd_curpos); insbytes = number * ONE_LINE; if (top + insbytes > ONE_PAGE) insbytes = ONE_PAGE - top; to = ONE_PAGE - ONE_SPACE; from = to - insbytes; if (from > top) { count = (from - top + ONE_SPACE) / ONE_SPACE; (*kd_dmvdown)(from, to, count); } count = insbytes / ONE_SPACE; (*kd_dclear)(top, count, kd_attr); return; } /* * kd_delch: * * This function deletes a number of characters from the current * position in the line. * * input : number of characters to delete * output : characters appear to be deleted * */ void kd_delch(number) int number; { int count; /* num words moved/filled */ int delbytes; /* bytes to delete */ csrpos_t to; csrpos_t from; csrpos_t nextline; /* start of next line */ if (number <= 0) return; nextline = BEG_OF_LINE(kd_curpos) + ONE_LINE; delbytes = number * ONE_SPACE; if (kd_curpos + delbytes > nextline) delbytes = nextline - kd_curpos; if (kd_curpos + delbytes < nextline) { from = kd_curpos + delbytes; to = kd_curpos; count = (nextline - from) / ONE_SPACE; (*kd_dmvup)(from, to, count); } to = nextline - delbytes; count = delbytes / ONE_SPACE; (*kd_dclear)(to, count, kd_attr); return; } /* * kd_erase: * * This function overwrites characters with a space starting with the * current cursor position and ending in number spaces away. * * input : number of characters to erase * output : characters appear to be blanked or erased * */ void kd_erase(number) int number; { csrpos_t i; csrpos_t stop; stop = kd_curpos + (ONE_SPACE * number); if (stop > BEG_OF_LINE(kd_curpos) + ONE_LINE) stop = BEG_OF_LINE(kd_curpos) + ONE_LINE; for (i = kd_curpos; i < stop; i += ONE_SPACE) { (*kd_dput)(i, K_SPACE, kd_attr); } return; } /* * kd_eraseln: * * This function erases the current line with spaces. * * input : None * output : Current line is erased * */ void kd_eraseln() { csrpos_t i; csrpos_t stop; stop = BEG_OF_LINE(kd_curpos) + ONE_LINE; for (i = BEG_OF_LINE(kd_curpos); i < stop; i += ONE_SPACE) { (*kd_dput)(i, K_SPACE, kd_attr); } return; } /* * kd_insch: * * This function inserts a blank at the current cursor position * and moves all other characters on the line over. * * input : number of blanks to insert * output : Blanks are inserted at cursor position * */ void kd_insch(number) int number; { csrpos_t to; csrpos_t from; int count; csrpos_t nextline; /* start of next line */ int insbytes; /* num of bytes inserted */ if (number <= 0) return; nextline = BEG_OF_LINE(kd_curpos) + ONE_LINE; insbytes = number * ONE_SPACE; if (kd_curpos + insbytes > nextline) insbytes = nextline - kd_curpos; to = nextline - ONE_SPACE; from = to - insbytes; if (from >= kd_curpos) { count = (from - kd_curpos + ONE_SPACE) / ONE_SPACE; (*kd_dmvdown)(from, to, count); } count = insbytes / ONE_SPACE; (*kd_dclear)(kd_curpos, count, kd_attr); return; } /* * kd_isupper, kd_islower: * * Didn't want to include ctype.h because it brings in stdio.h, and * only want to see if the darn character is uppercase or lowercase. * * input : Character 'c' * output : isuuper gives TRUE if character is uppercase, islower * returns TRUE if character is lowercase * */ boolean_t kd_isupper(c) u_char c; { if (('A' <= c) && (c <= 'Z')) return(TRUE); return(FALSE); } boolean_t kd_islower(c) u_char c; { if (('a' <= c) && (c <= 'z')) return(TRUE); return(FALSE); } /* * kd_senddata: * * This function sends a byte to the keyboard RDWR port, but * first waits until the input/output data buffer is clear before * sending the data. Note that this byte can be either data or a * keyboard command. * */ void kd_senddata(ch) unsigned char ch; { while (inb(K_STATUS) & K_IBUF_FUL); outb(K_RDWR, ch); last_sent = ch; return; } /* * kd_sendcmd: * * This function sends a command byte to the keyboard command * port, but first waits until the input/output data buffer is * clear before sending the data. * */ void kd_sendcmd(ch) unsigned char ch; { while (inb(K_STATUS) & K_IBUF_FUL); outb(K_CMD, ch); return; } /* * kd_getdata: * * This function returns a data byte from the keyboard RDWR port, * after waiting until the port is flagged as having something to * read. */ unsigned char kd_getdata() { while ((inb(K_STATUS) & K_OBUF_FUL) == 0); return(inb(K_RDWR)); } unsigned char kd_cmdreg_read() { int ch=KC_CMD_READ; while (inb(K_STATUS) & K_IBUF_FUL); outb(K_CMD, ch); while ((inb(K_STATUS) & K_OBUF_FUL) == 0); return(inb(K_RDWR)); } void kd_cmdreg_write(val) { int ch=KC_CMD_WRITE; while (inb(K_STATUS) & K_IBUF_FUL); outb(K_CMD, ch); while (inb(K_STATUS) & K_IBUF_FUL); outb(K_RDWR, val); } void kd_mouse_drain() { int i; while(inb(K_STATUS) & K_IBUF_FUL); while((i = inb(K_STATUS)) & K_OBUF_FUL) printf("kbd: S = %x D = %x\n", i, inb(K_RDWR)); } /* * set_kd_state: * * Set kd_state and update the keyboard status LEDs. */ void set_kd_state(newstate) int newstate; { kd_state = newstate; kd_setleds1(state2leds(newstate)); } /* * state2leds: * * Return a byte containing LED settings for the keyboard, given * a state vector. */ u_char state2leds(state) int state; { u_char result = 0; if (state & KS_NLKED) result |= K_LED_NUMLK; if (state & KS_CLKED) result |= K_LED_CAPSLK; return(result); } /* * kd_setleds[12]: * * Set the keyboard LEDs according to the given byte. */ void kd_setleds1(val) u_char val; { if (kd_ack != NOT_WAITING) { #ifdef MACH_KBD printf("kd_setleds1: unexpected state (%d)\n", kd_ack); #endif return; } kd_ack = SET_LEDS; kd_nextled = val; kd_senddata(K_CMD_LEDS); } void kd_setleds2() { kd_senddata(kd_nextled); } /* * cnsetleds: * * like kd_setleds[12], but not interrupt-based. * Currently disabled because cngetc ignores caps lock and num * lock anyway. */ void cnsetleds(val) u_char val; { kd_senddata(K_CMD_LEDS); (void)kd_getdata(); /* XXX - assume is ACK */ kd_senddata(val); (void)kd_getdata(); /* XXX - assume is ACK */ } void kdreboot() { (*kd_dreset)(); #ifndef BROKEN_KEYBOARD_RESET kd_sendcmd(0xFE); /* XXX - magic # */ delay(1000000); /* wait to see if anything happens */ #endif /* * If that didn't work, then we'll just have to try and * do it the hard way. */ cpu_shutdown(); } static int which_button[] = {0, MOUSE_LEFT, MOUSE_MIDDLE, MOUSE_RIGHT}; static struct mouse_motion moved; int kd_kbd_magic(scancode) { int new_button = 0; if (kd_kbd_mouse == 2) printf("sc = %x\n", scancode); switch (scancode) { /* f1 f2 f3 */ case 0x3d: new_button++; case 0x3c: new_button++; case 0x3b: new_button++; if (kd_kbd_magic_button && (new_button != kd_kbd_magic_button)) { /* down w/o up */ mouse_button(which_button[kd_kbd_magic_button], 1); } /* normal */ if (kd_kbd_magic_button == new_button) { mouse_button(which_button[new_button], 1); kd_kbd_magic_button = 0; } else { mouse_button(which_button[new_button], 0); kd_kbd_magic_button = new_button; } break; /* right left up down */ case 0x4d: moved.mm_deltaX = kd_kbd_magic_scale; moved.mm_deltaY = 0; mouse_moved(moved); break; case 0x4b: moved.mm_deltaX = -kd_kbd_magic_scale; moved.mm_deltaY = 0; mouse_moved(moved); break; case 0x48: moved.mm_deltaX = 0; moved.mm_deltaY = kd_kbd_magic_scale; mouse_moved(moved); break; case 0x50: moved.mm_deltaX = 0; moved.mm_deltaY = -kd_kbd_magic_scale; mouse_moved(moved); break; /* home pageup end pagedown */ case 0x47: moved.mm_deltaX = -2*kd_kbd_magic_scale; moved.mm_deltaY = 2*kd_kbd_magic_scale; mouse_moved(moved); break; case 0x49: moved.mm_deltaX = 2*kd_kbd_magic_scale; moved.mm_deltaY = 2*kd_kbd_magic_scale; mouse_moved(moved); break; case 0x4f: moved.mm_deltaX = -2*kd_kbd_magic_scale; moved.mm_deltaY = -2*kd_kbd_magic_scale; mouse_moved(moved); break; case 0x51: moved.mm_deltaX = 2*kd_kbd_magic_scale; moved.mm_deltaY = -2*kd_kbd_magic_scale; mouse_moved(moved); break; default: return 0; } return 1; } /* * Code specific to EGA/CGA/VGA boards. This code relies on the fact * that the "slam" functions take a word count and ONE_SPACE takes up * 1 word. */ #define SLAMBPW 2 /* bytes per word for "slam" fcns */ /* * kd_xga_init: * * Initialization specific to character-based graphics adapters. */ void kd_xga_init() { csrpos_t xga_getpos(); unsigned char screen; outb(CMOS_ADDR, CMOS_EB); screen = inb(CMOS_DATA) & CM_SCRMSK; switch(screen) { case CM_EGA_VGA: /* * Here we'll want to query to bios on the card * itself, because then we can figure out what * type we have exactly. At this point we only * know that the card is NOT CGA or MONO. For * now, however, we assume backwards compatibility * with 0xb8000 as the starting screen offset * memory location for these cards. * */ vid_start = (u_char *)phystokv(EGA_START); kd_index_reg = EGA_IDX_REG; kd_io_reg = EGA_IO_REG; kd_lines = 25; kd_cols = 80; kd_bitmap_start = 0xa0000; /* XXX - magic numbers */ { /* XXX - is there a cleaner way to do this? */ char *addr = (char *)phystokv(kd_bitmap_start); int i; for (i = 0; i < 200; i++) addr[i] = 0x00; } break; case CM_CGA_40: vid_start = (u_char *)phystokv(CGA_START); kd_index_reg = CGA_IDX_REG; kd_io_reg = CGA_IO_REG; kd_lines = 25; kd_cols = 40; break; case CM_CGA_80: vid_start = (u_char *)phystokv(CGA_START); kd_index_reg = CGA_IDX_REG; kd_io_reg = CGA_IO_REG; kd_lines = 25; kd_cols = 80; break; case CM_MONO_80: vid_start = (u_char *)phystokv(MONO_START); kd_index_reg = MONO_IDX_REG; kd_io_reg = MONO_IO_REG; kd_lines = 25; kd_cols = 80; break; default: printf("kd: unknown screen type, defaulting to EGA\n"); } kd_setpos(xga_getpos()); } /* * xga_getpos: * * This function returns the current hardware cursor position on the * screen, scaled for compatibility with kd_curpos. * * input : None * output : returns the value of cursor position on screen * */ csrpos_t xga_getpos() { unsigned char low; unsigned char high; short pos; outb(kd_index_reg, C_HIGH); high = inb(kd_io_reg); outb(kd_index_reg, C_LOW); low = inb(kd_io_reg); pos = (0xff&low) + ((unsigned short)high<<8); return(ONE_SPACE * (csrpos_t)pos); } /* * charput: * * Put attributed character for EGA/CGA/etc. */ static void charput(pos, ch, chattr) csrpos_t pos; /* where to put it */ char ch; /* the character */ char chattr; /* its attribute */ { *(vid_start + pos) = ch; *(vid_start + pos + 1) = chattr; } /* * charsetcursor: * * Set hardware cursor position for EGA/CGA/etc. */ static void charsetcursor(newpos) csrpos_t newpos; { short curpos; /* position, not scaled for attribute byte */ curpos = newpos / ONE_SPACE; outb(kd_index_reg, C_HIGH); outb(kd_io_reg, (u_char)(curpos>>8)); outb(kd_index_reg, C_LOW); outb(kd_io_reg, (u_char)(curpos&0xff)); kd_curpos = newpos; } /* * charmvup: * * Block move up for EGA/CGA/etc. */ static void charmvup(from, to, count) csrpos_t from, to; int count; { kd_slmscu(vid_start+from, vid_start+to, count); } /* * charmvdown: * * Block move down for EGA/CGA/etc. */ static void charmvdown(from, to, count) csrpos_t from, to; int count; { kd_slmscd(vid_start+from, vid_start+to, count); } /* * charclear: * * Fast clear for CGA/EGA/etc. */ static void charclear(to, count, chattr) csrpos_t to; int count; char chattr; { kd_slmwd(vid_start+to, count, ((unsigned short)chattr<<8)+K_SPACE); } /* * kd_noopreset: * * No-op reset routine for kd_dreset. */ static void kd_noopreset() { } /* * bmpput: Copy a character from the font to the frame buffer. */ void bmpput(pos, ch, chattr) csrpos_t pos; char ch, chattr; { short xbit, ybit; /* u/l corner of char pos */ u_char *to, *from; short i, j; u_char mask = (chattr == KA_REVERSE ? 0xff : 0); if ((u_char)ch >= chars_in_font) ch = K_QUES; bmpch2bit(pos, &xbit, &ybit); to = bit2fbptr(xbit, ybit); from = font_start + ch * char_byte_width; for (i = 0; i < char_height; ++i) { for (j = 0; j < char_byte_width; ++j) *(to+j) = *(from+j) ^ mask; to += fb_byte_width; from += font_byte_width; } } /* * bmpcp1char: copy 1 char from one place in the frame buffer to * another. */ void bmpcp1char(from, to) csrpos_t from, to; { short from_xbit, from_ybit; short to_xbit, to_ybit; u_char *tp, *fp; short i, j; bmpch2bit(from, &from_xbit, &from_ybit); bmpch2bit(to, &to_xbit, &to_ybit); tp = bit2fbptr(to_xbit, to_ybit); fp = bit2fbptr(from_xbit, from_ybit); for (i = 0; i < char_height; ++i) { for (j = 0; j < char_byte_width; ++j) *(tp+j) = *(fp+j); tp += fb_byte_width; fp += fb_byte_width; } } /* * bmpvmup: Copy a block of character positions upwards. */ void bmpmvup(from, to, count) csrpos_t from, to; int count; { short from_xbit, from_ybit; short to_xbit, to_ybit; short i; bmpch2bit(from, &from_xbit, &from_ybit); bmpch2bit(to, &to_xbit, &to_ybit); if (from_xbit == xstart && to_xbit == xstart && count%kd_cols == 0) { /* fast case - entire lines */ from_xbit = to_xbit = 0; bmppaintcsr(kd_curpos, char_black); /* don't copy cursor */ count /= kd_cols; /* num lines */ count *= fb_byte_width * (char_height+cursor_height); kd_slmscu(bit2fbptr(from_xbit, from_ybit), bit2fbptr(to_xbit, to_ybit), count/SLAMBPW); bmppaintcsr(kd_curpos, char_white); } else { /* slow case - everything else */ for (i=0; i < count; ++i) { bmpcp1char(from, to); from += ONE_SPACE; to += ONE_SPACE; } } } /* * bmpmvdown: copy a block of characters down. */ void bmpmvdown(from, to, count) csrpos_t from, to; int count; { short from_xbit, from_ybit; short to_xbit, to_ybit; short i; bmpch2bit(from, &from_xbit, &from_ybit); bmpch2bit(to, &to_xbit, &to_ybit); if (from_xbit == xstart + (kd_cols - 1) * char_width && to_xbit == xstart + (kd_cols - 1) * char_width && count%kd_cols == 0) { /* fast case - entire lines*/ from_xbit = to_xbit = 8 * (fb_byte_width - 1); /* last byte on line */ bmppaintcsr(kd_curpos, char_black); /* don't copy cursor */ count /= kd_cols; /* num lines */ count *= fb_byte_width * (char_height+cursor_height); kd_slmscd(bit2fbptr(from_xbit, from_ybit), bit2fbptr(to_xbit, to_ybit), count/SLAMBPW); bmppaintcsr(kd_curpos, char_white); } else { /* slow case - everything else */ for (i=0; i < count; ++i) { bmpcp1char(from, to); from -= ONE_SPACE; to -= ONE_SPACE; } } } /* * bmpclear: clear one or more character positions. */ void bmpclear(to, count, chattr) csrpos_t to; /* 1st char */ int count; /* num chars */ char chattr; /* reverse or normal */ { short i; u_short clearval; u_short clearbyte = (chattr == KA_REVERSE ? char_white : char_black); clearval = (u_short)(clearbyte<<8) + clearbyte; if (to == 0 && count >= kd_lines * kd_cols) { /* fast case - entire page */ kd_slmwd(vid_start, (fb_byte_width * fb_height)/SLAMBPW, clearval); } else /* slow case */ for (i = 0; i < count; ++i) { bmpput(to, K_SPACE, chattr); to += ONE_SPACE; } } /* * bmpsetcursor: update the display and set the logical cursor. */ void bmpsetcursor(pos) csrpos_t pos; { /* erase old cursor & paint new one */ bmppaintcsr(kd_curpos, char_black); bmppaintcsr(pos, char_white); kd_curpos = pos; } /* * bmppaintcsr: paint cursor bits. */ void bmppaintcsr(pos, val) csrpos_t pos; u_char val; { short xbit, ybit; u_char *cp; short line, byte; bmpch2bit(pos, &xbit, &ybit); ybit += char_height; /* position at bottom of line */ cp = bit2fbptr(xbit, ybit); for (line = 0; line < cursor_height; ++line) { for (byte = 0; byte < char_byte_width; ++byte) *(cp+byte) = val; cp += fb_byte_width; } } /* * bmpch2bit: convert character position to x and y bit addresses. * (0, 0) is the upper left corner. */ void bmpch2bit(pos, xb, yb) csrpos_t pos; short *xb, *yb; /* x, y bit positions, u/l corner */ { short xch, ych; xch = (pos / ONE_SPACE) % kd_cols; ych = pos / (ONE_SPACE * kd_cols); *xb = xstart + xch * char_width; *yb = ystart + ych * (char_height + cursor_height); } /* * bit2fbptr: return a pointer into the frame buffer corresponding to * the bit address (x, y). * Assumes that xb and yb don't point to the middle of a * byte. */ u_char * bit2fbptr(xb, yb) short xb, yb; { return(vid_start + yb * fb_byte_width + xb/8); } /* * console stuff */ /* * XXX we assume that pcs *always* have a console */ int kdcnprobe(struct consdev *cp) { int maj, unit, pri; maj = 0; unit = 0; pri = CN_INTERNAL; cp->cn_dev = makedev(maj, unit); cp->cn_pri = pri; return 0; } int kdcninit(struct consdev *cp) { kdinit(); return 0; } int kdcngetc(dev_t dev, int wait) { if (wait) { int c; while ((c = kdcnmaygetc()) < 0) continue; return c; } else return kdcnmaygetc(); } int kdcnputc(dev_t dev, int c) { if (!kd_initialized) return -1; /* Note that tab is handled in kd_putc */ if (c == '\n') kd_putc('\r'); kd_putc(c); return 0; } /* * kdcnmaygetc: * * Get one character using polling, rather than interrupts. Used * by the kernel debugger. Note that Caps Lock is ignored. * Normally this routine is called with interrupts already * disabled, but there is code in place so that it will be more * likely to work even if interrupts are turned on. */ int kdcnmaygetc(void) { unsigned char c; unsigned char scancode; unsigned int char_idx; #ifdef notdef spl_t o_pri; #endif boolean_t up; if (! kd_initialized) return -1; kd_extended = FALSE; #ifdef notdef o_pri = splhi(); #endif for ( ; ; ) { if (!(inb(K_STATUS) & K_OBUF_FUL)) return -1; up = FALSE; /* * We'd come here for mouse events in debugger, if * the mouse were on. */ if ((inb(K_STATUS) & 0x20) == 0x20) { printf("M%xP", inb(K_RDWR)); continue; } scancode = inb(K_RDWR); /* * Handle extend modifier and * ack/resend, otherwise we may never receive * a key. */ if (scancode == K_EXTEND) { kd_extended = TRUE; continue; } else if (scancode == K_RESEND) { printf("cngetc: resend"); kd_resend(); continue; } else if (scancode == K_ACKSC) { printf("cngetc: handle_ack"); kd_handle_ack(); continue; } if (scancode & K_UP) { up = TRUE; scancode &= ~K_UP; } if (kd_kbd_mouse) kd_kbd_magic(scancode); if (scancode < NUMKEYS) { /* Lookup in map, then process. */ char_idx = kdstate2idx(kd_state, kd_extended); c = key_map[scancode][char_idx]; if (c == K_SCAN) { c = key_map[scancode][++char_idx]; kd_state = do_modifier(kd_state, c, up); #ifdef notdef cnsetleds(state2leds(kd_state)); #endif } else if (!up) { /* regular key-down */ if (c == K_CR) c = K_LF; #ifdef notdef splx(o_pri); #endif return(c & 0177); } } } }