/* * linux/drivers/block/ide.c Version 5.28 Feb 11, 1996 * * Copyright (C) 1994-1996 Linus Torvalds & authors (see below) */ #define _IDE_C /* needed by */ /* * This is the multiple IDE interface driver, as evolved from hd.c. * It supports up to four IDE interfaces, on one or more IRQs (usually 14 & 15). * There can be up to two drives per interface, as per the ATA-2 spec. * * Primary i/f: ide0: major=3; (hda) minor=0; (hdb) minor=64 * Secondary i/f: ide1: major=22; (hdc or hd1a) minor=0; (hdd or hd1b) minor=64 * Tertiary i/f: ide2: major=33; (hde) minor=0; (hdf) minor=64 * Quaternary i/f: ide3: major=34; (hdg) minor=0; (hdh) minor=64 * * It is easy to extend ide.c to handle more than four interfaces: * * Change the MAX_HWIFS constant in ide.h. * * Define some new major numbers (in major.h), and insert them into * the ide_hwif_to_major table in ide.c. * * Fill in the extra values for the new interfaces into the two tables * inside ide.c: default_io_base[] and default_irqs[]. * * Create the new request handlers by cloning "do_ide3_request()" * for each new interface, and add them to the switch statement * in the ide_init() function in ide.c. * * Recompile, create the new /dev/ entries, and it will probably work. * * From hd.c: * | * | It traverses the request-list, using interrupts to jump between functions. * | As nearly all functions can be called within interrupts, we may not sleep. * | Special care is recommended. Have Fun! * | * | modified by Drew Eckhardt to check nr of hd's from the CMOS. * | * | Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug * | in the early extended-partition checks and added DM partitions. * | * | Early work on error handling by Mika Liljeberg (liljeber@cs.Helsinki.FI). * | * | IRQ-unmask, drive-id, multiple-mode, support for ">16 heads", * | and general streamlining by Mark Lord (mlord@bnr.ca). * * October, 1994 -- Complete line-by-line overhaul for linux 1.1.x, by: * * Mark Lord (mlord@bnr.ca) (IDE Perf.Pkg) * Delman Lee (delman@mipg.upenn.edu) ("Mr. atdisk2") * Petri Mattila (ptjmatti@kruuna.helsinki.fi) (EIDE stuff) * Scott Snyder (snyder@fnald0.fnal.gov) (ATAPI IDE cd-rom) * * Maintained by Mark Lord (mlord@bnr.ca): ide.c, ide.h, triton.c, hd.c, .. * * This was a rewrite of just about everything from hd.c, though some original * code is still sprinkled about. Think of it as a major evolution, with * inspiration from lots of linux users, esp. hamish@zot.apana.org.au * * Version 1.0 ALPHA initial code, primary i/f working okay * Version 1.3 BETA dual i/f on shared irq tested & working! * Version 1.4 BETA added auto probing for irq(s) * Version 1.5 BETA added ALPHA (untested) support for IDE cd-roms, * ... * Version 3.5 correct the bios_cyl field if it's too small * (linux 1.1.76) (to help fdisk with brain-dead BIOSs) * Version 3.6 cosmetic corrections to comments and stuff * (linux 1.1.77) reorganise probing code to make it understandable * added halfway retry to probing for drive identification * added "hdx=noprobe" command line option * allow setting multmode even when identification fails * Version 3.7 move set_geometry=1 from do_identify() to ide_init() * increase DRQ_WAIT to eliminate nuisance messages * wait for DRQ_STAT instead of DATA_READY during probing * (courtesy of Gary Thomas gary@efland.UU.NET) * Version 3.8 fixed byte-swapping for confused Mitsumi cdrom drives * update of ide-cd.c from Scott, allows blocksize=1024 * cdrom probe fixes, inspired by jprang@uni-duisburg.de * Version 3.9 don't use LBA if lba_capacity looks funny * correct the drive capacity calculations * fix probing for old Seagates without IDE_ALTSTATUS_REG * fix byte-ordering for some NEC cdrom drives * Version 3.10 disable multiple mode by default; was causing trouble * Version 3.11 fix mis-identification of old WD disks as cdroms * Version 3,12 simplify logic for selecting initial mult_count * (fixes problems with buggy WD drives) * Version 3.13 remove excess "multiple mode disabled" messages * Version 3.14 fix ide_error() handling of BUSY_STAT * fix byte-swapped cdrom strings (again.. arghh!) * ignore INDEX bit when checking the ALTSTATUS reg * Version 3.15 add SINGLE_THREADED flag for use with dual-CMD i/f * ignore WRERR_STAT for non-write operations * added vlb_sync support for DC-2000A & others, * (incl. some Promise chips), courtesy of Frank Gockel * Version 3.16 convert vlb_32bit and vlb_sync into runtime flags * add ioctls to get/set VLB flags (HDIO_[SG]ET_CHIPSET) * rename SINGLE_THREADED to SUPPORT_SERIALIZE, * add boot flag to "serialize" operation for CMD i/f * add optional support for DTC2278 interfaces, * courtesy of andy@cercle.cts.com (Dyan Wile). * add boot flag to enable "dtc2278" probe * add probe to avoid EATA (SCSI) interfaces, * courtesy of neuffer@goofy.zdv.uni-mainz.de. * Version 4.00 tidy up verify_area() calls - heiko@colossus.escape.de * add flag to ignore WRERR_STAT for some drives * courtesy of David.H.West@um.cc.umich.edu * assembly syntax tweak to vlb_sync * removeable drive support from scuba@cs.tu-berlin.de * add transparent support for DiskManager-6.0x "Dynamic * Disk Overlay" (DDO), most of this is in genhd.c * eliminate "multiple mode turned off" message at boot * Version 4.10 fix bug in ioctl for "hdparm -c3" * fix DM6:DDO support -- now works with LILO, fdisk, ... * don't treat some naughty WD drives as removeable * Version 4.11 updated DM6 support using info provided by OnTrack * Version 5.00 major overhaul, multmode setting fixed, vlb_sync fixed * added support for 3rd/4th/alternative IDE ports * created ide.h; ide-cd.c now compiles separate from ide.c * hopefully fixed infinite "unexpected_intr" from cdroms * zillions of other changes and restructuring * somehow reduced overall memory usage by several kB * probably slowed things down slightly, but worth it * Version 5.01 AT LAST!! Finally understood why "unexpected_intr" * was happening at various times/places: whenever the * ide-interface's ctl_port was used to "mask" the irq, * it also would trigger an edge in the process of masking * which would result in a self-inflicted interrupt!! * (such a stupid way to build a hardware interrupt mask). * This is now fixed (after a year of head-scratching). * Version 5.02 got rid of need for {enable,disable}_irq_list() * Version 5.03 tune-ups, comments, remove "busy wait" from drive resets * removed PROBE_FOR_IRQS option -- no longer needed * OOOPS! fixed "bad access" bug for 2nd drive on an i/f * Version 5.04 changed "ira %d" to "irq %d" in DEBUG message * added more comments, cleaned up unexpected_intr() * OOOPS! fixed null pointer problem in ide reset code * added autodetect for Triton chipset -- no effect yet * Version 5.05 OOOPS! fixed bug in revalidate_disk() * OOOPS! fixed bug in ide_do_request() * added ATAPI reset sequence for cdroms * Version 5.10 added Bus-Mastered DMA support for Triton Chipset * some (mostly) cosmetic changes * Version 5.11 added ht6560b support by malafoss@snakemail.hut.fi * reworked PCI scanning code * added automatic RZ1000 detection/support * added automatic PCI CMD640 detection/support * added option for VLB CMD640 support * tweaked probe to find cdrom on hdb with disks on hda,hdc * Version 5.12 some performance tuning * added message to alert user to bad /dev/hd[cd] entries * OOOPS! fixed bug in atapi reset * driver now forces "serialize" again for all cmd640 chips * noticed REALLY_SLOW_IO had no effect, moved it to ide.c * made do_drive_cmd() into public ide_do_drive_cmd() * Version 5.13 fixed typo ('B'), thanks to houston@boyd.geog.mcgill.ca * fixed ht6560b support * Version 5.13b (sss) fix problem in calling ide_cdrom_setup() * don't bother invalidating nonexistent partitions * Version 5.14 fixes to cmd640 support.. maybe it works now(?) * added & tested full EZ-DRIVE support -- don't use LILO! * don't enable 2nd CMD640 PCI port during init - conflict * Version 5.15 bug fix in init_cmd640_vlb() * bug fix in interrupt sharing code * Version 5.16 ugh.. fix "serialize" support, broken in 5.15 * remove "Huh?" from cmd640 code * added qd6580 interface speed select from Colten Edwards * Version 5.17 kludge around bug in BIOS32 on Intel triton motherboards * Version 5.18 new CMD640 code, moved to cmd640.c, #include'd for now * new UMC8672 code, moved to umc8672.c, #include'd for now * disallow turning on DMA when h/w not capable of DMA * Version 5.19 fix potential infinite timeout on resets * extend reset poll into a general purpose polling scheme * add atapi tape drive support from Gadi Oxman * simplify exit from _intr routines -- no IDE_DO_REQUEST * Version 5.20 leave current rq on blkdev request list during I/O * generalized ide_do_drive_cmd() for tape/cdrom driver use * Version 5.21 fix nasty cdrom/tape bug (ide_preempt was messed up) * Version 5.22 fix ide_xlate_1024() to work with/without drive->id * Version 5.23 miscellaneous touch-ups * Version 5.24 fix #if's for SUPPORT_CMD640 * Version 5.25 more touch-ups, fix cdrom resets, ... * cmd640.c now configs/compiles separate from ide.c * Version 5.26 keep_settings now maintains the using_dma flag * fix [EZD] remap message to only output at boot time * fix "bad /dev/ entry" message to say hdc, not hdc0 * fix ide_xlate_1024() to respect user specified CHS * use CHS from partn table if it looks translated * re-merged flags chipset,vlb_32bit,vlb_sync into io_32bit * keep track of interface chipset type, when known * add generic PIO mode "tuneproc" mechanism * fix cmd640_vlb option * fix ht6560b support (was completely broken) * umc8672.c now configures/compiles separate from ide.c * move dtc2278 support to dtc2278.c * move ht6560b support to ht6560b.c * move qd6580 support to qd6580.c * add ali14xx support in ali14xx.c * Version 5.27 add [no]autotune parameters to help cmd640 * move rz1000 support to rz1000.c * Version 5.28 #include "ide_modes.h" * fix disallow_unmask: now per-interface "no_unmask" bit * force io_32bit to be the same on drive pairs of dtc2278 * improved IDE tape error handling, and tape DMA support * bugfix in ide_do_drive_cmd() for cdroms + serialize * * Some additional driver compile-time options are in ide.h * * To do, in likely order of completion: * - add Promise DC4030VL support from peterd@pnd-pc.demon.co.uk * - modify kernel to obtain BIOS geometry for drives on 2nd/3rd/4th i/f */ #if defined (MACH) && !defined (LINUX_IDE_DEBUG) #undef DEBUG #endif #undef REALLY_SLOW_IO /* most systems can safely undef this */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_PCI #include #include #endif /* CONFIG_PCI */ #include "ide.h" #include "ide_modes.h" static ide_hwgroup_t *irq_to_hwgroup [NR_IRQS]; static const byte ide_hwif_to_major[MAX_HWIFS] = {IDE0_MAJOR, IDE1_MAJOR, IDE2_MAJOR, IDE3_MAJOR}; static const unsigned short default_io_base[MAX_HWIFS] = {0x1f0, 0x170, 0x1e8, 0x168}; static const byte default_irqs[MAX_HWIFS] = {14, 15, 11, 10}; #if (DISK_RECOVERY_TIME > 0) /* * For really screwy hardware (hey, at least it *can* be used with Linux) * we can enforce a minimum delay time between successive operations. */ static unsigned long read_timer(void) { unsigned long t, flags; int i; save_flags(flags); cli(); t = jiffies * 11932; outb_p(0, 0x43); i = inb_p(0x40); i |= inb(0x40) << 8; restore_flags(flags); return (t - i); } static void set_recovery_timer (ide_hwif_t *hwif) { hwif->last_time = read_timer(); } #define SET_RECOVERY_TIMER(drive) set_recovery_timer (drive) #else #define SET_RECOVERY_TIMER(drive) #endif /* DISK_RECOVERY_TIME */ /* * init_ide_data() sets reasonable default values into all fields * of all instances of the hwifs and drives, but only on the first call. * Subsequent calls have no effect (they don't wipe out anything). * * This routine is normally called at driver initialization time, * but may also be called MUCH earlier during kernel "command-line" * parameter processing. As such, we cannot depend on any other parts * of the kernel (such as memory allocation) to be functioning yet. * * This is too bad, as otherwise we could dynamically allocate the * ide_drive_t structs as needed, rather than always consuming memory * for the max possible number (MAX_HWIFS * MAX_DRIVES) of them. */ #define MAGIC_COOKIE 0x12345678 static void init_ide_data (void) { byte *p; unsigned int h, unit; static unsigned long magic_cookie = MAGIC_COOKIE; if (magic_cookie != MAGIC_COOKIE) return; /* already initialized */ magic_cookie = 0; for (h = 0; h < NR_IRQS; ++h) irq_to_hwgroup[h] = NULL; /* bulk initialize hwif & drive info with zeros */ p = ((byte *) ide_hwifs) + sizeof(ide_hwifs); do { *--p = 0; } while (p > (byte *) ide_hwifs); /* fill in any non-zero initial values */ for (h = 0; h < MAX_HWIFS; ++h) { ide_hwif_t *hwif = &ide_hwifs[h]; hwif->index = h; hwif->noprobe = (h > 1); hwif->io_base = default_io_base[h]; hwif->ctl_port = hwif->io_base ? hwif->io_base+0x206 : 0x000; #ifdef CONFIG_BLK_DEV_HD if (hwif->io_base == HD_DATA) hwif->noprobe = 1; /* may be overriden by ide_setup() */ #endif /* CONFIG_BLK_DEV_HD */ hwif->major = ide_hwif_to_major[h]; hwif->name[0] = 'i'; hwif->name[1] = 'd'; hwif->name[2] = 'e'; hwif->name[3] = '0' + h; #ifdef CONFIG_BLK_DEV_IDETAPE hwif->tape_drive = NULL; #endif /* CONFIG_BLK_DEV_IDETAPE */ for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; drive->select.all = (unit<<4)|0xa0; drive->hwif = hwif; drive->ctl = 0x08; drive->ready_stat = READY_STAT; drive->bad_wstat = BAD_W_STAT; drive->special.b.recalibrate = 1; drive->special.b.set_geometry = 1; drive->name[0] = 'h'; drive->name[1] = 'd'; drive->name[2] = 'a' + (h * MAX_DRIVES) + unit; } } } #if SUPPORT_VLB_SYNC /* * Some localbus EIDE interfaces require a special access sequence * when using 32-bit I/O instructions to transfer data. We call this * the "vlb_sync" sequence, which consists of three successive reads * of the sector count register location, with interrupts disabled * to ensure that the reads all happen together. */ static inline void do_vlb_sync (unsigned short port) { (void) inb (port); (void) inb (port); (void) inb (port); } #endif /* SUPPORT_VLB_SYNC */ /* * This is used for most PIO data transfers *from* the IDE interface */ void ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount) { unsigned short io_base = HWIF(drive)->io_base; unsigned short data_reg = io_base+IDE_DATA_OFFSET; byte io_32bit = drive->io_32bit; if (io_32bit) { #if SUPPORT_VLB_SYNC if (io_32bit & 2) { cli(); do_vlb_sync(io_base+IDE_NSECTOR_OFFSET); insl(data_reg, buffer, wcount); if (drive->unmask) sti(); } else #endif /* SUPPORT_VLB_SYNC */ insl(data_reg, buffer, wcount); } else insw(data_reg, buffer, wcount<<1); } /* * This is used for most PIO data transfers *to* the IDE interface */ void ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount) { unsigned short io_base = HWIF(drive)->io_base; unsigned short data_reg = io_base+IDE_DATA_OFFSET; byte io_32bit = drive->io_32bit; if (io_32bit) { #if SUPPORT_VLB_SYNC if (io_32bit & 2) { cli(); do_vlb_sync(io_base+IDE_NSECTOR_OFFSET); outsl(data_reg, buffer, wcount); if (drive->unmask) sti(); } else #endif /* SUPPORT_VLB_SYNC */ outsl(data_reg, buffer, wcount); } else outsw(data_reg, buffer, wcount<<1); } /* * This should get invoked any time we exit the driver to * wait for an interrupt response from a drive. handler() points * at the appropriate code to handle the next interrupt, and a * timer is started to prevent us from waiting forever in case * something goes wrong (see the timer_expiry() handler later on). */ void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, unsigned int timeout) { ide_hwgroup_t *hwgroup = HWGROUP(drive); #ifdef DEBUG if (hwgroup->handler != NULL) { printk("%s: ide_set_handler: handler not null; old=%p, new=%p\n", drive->name, hwgroup->handler, handler); } #endif hwgroup->handler = handler; hwgroup->timer.expires = jiffies + timeout; add_timer(&(hwgroup->timer)); } /* * lba_capacity_is_ok() performs a sanity check on the claimed "lba_capacity" * value for this drive (from its reported identification information). * * Returns: 1 if lba_capacity looks sensible * 0 otherwise */ static int lba_capacity_is_ok (struct hd_driveid *id) { unsigned long lba_sects = id->lba_capacity; unsigned long chs_sects = id->cyls * id->heads * id->sectors; unsigned long _10_percent = chs_sects / 10; /* perform a rough sanity check on lba_sects: within 10% is "okay" */ if ((lba_sects - chs_sects) < _10_percent) return 1; /* lba_capacity is good */ /* some drives have the word order reversed */ lba_sects = (lba_sects << 16) | (lba_sects >> 16); if ((lba_sects - chs_sects) < _10_percent) { id->lba_capacity = lba_sects; /* fix it */ return 1; /* lba_capacity is (now) good */ } return 0; /* lba_capacity value is bad */ } /* * current_capacity() returns the capacity (in sectors) of a drive * according to its current geometry/LBA settings. */ static unsigned long current_capacity (ide_drive_t *drive) { struct hd_driveid *id = drive->id; unsigned long capacity; if (!drive->present) return 0; if (drive->media != ide_disk) return 0x7fffffff; /* cdrom or tape */ /* Determine capacity, and use LBA if the drive properly supports it */ if (id != NULL && (id->capability & 2) && lba_capacity_is_ok(id)) { drive->select.b.lba = 1; capacity = id->lba_capacity; } else { drive->select.b.lba = 0; capacity = drive->cyl * drive->head * drive->sect; } return (capacity - drive->sect0); } /* * ide_geninit() is called exactly *once* for each major, from genhd.c, * at the beginning of the initial partition check for the drives. */ static void ide_geninit (struct gendisk *gd) { unsigned int unit; ide_hwif_t *hwif = gd->real_devices; for (unit = 0; unit < gd->nr_real; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; #ifdef CONFIG_BLK_DEV_IDECD if (drive->present && drive->media == ide_cdrom) ide_cdrom_setup(drive); #endif /* CONFIG_BLK_DEV_IDECD */ #ifdef CONFIG_BLK_DEV_IDETAPE if (drive->present && drive->media == ide_tape) idetape_setup(drive); #endif /* CONFIG_BLK_DEV_IDETAPE */ drive->part[0].nr_sects = current_capacity(drive); if (!drive->present || drive->media != ide_disk) { drive->part[0].start_sect = -1; /* skip partition check */ } } /* * The partition check in genhd.c needs this string to identify * our minor devices by name for display purposes. * Note that doing this will prevent us from working correctly * if ever called a second time for this major (never happens). */ gd->real_devices = hwif->drives[0].name; /* name of first drive */ } /* * init_gendisk() (as opposed to ide_geninit) is called for each major device, * after probing for drives, to allocate partition tables and other data * structures needed for the routines in genhd.c. ide_geninit() gets called * somewhat later, during the partition check. */ static void init_gendisk (ide_hwif_t *hwif) { struct gendisk *gd; unsigned int unit, units, minors; int *bs; /* figure out maximum drive number on the interface */ for (units = MAX_DRIVES; units > 0; --units) { if (hwif->drives[units-1].present) break; } minors = units * (1<sizes = kmalloc (minors * sizeof(int), GFP_KERNEL); gd->part = kmalloc (minors * sizeof(struct hd_struct), GFP_KERNEL); bs = kmalloc (minors*sizeof(int), GFP_KERNEL); /* cdroms and msdos f/s are examples of non-1024 blocksizes */ blksize_size[hwif->major] = bs; for (unit = 0; unit < minors; ++unit) *bs++ = BLOCK_SIZE; for (unit = 0; unit < units; ++unit) hwif->drives[unit].part = &gd->part[unit << PARTN_BITS]; gd->major = hwif->major; /* our major device number */ gd->major_name = IDE_MAJOR_NAME; /* treated special in genhd.c */ gd->minor_shift = PARTN_BITS; /* num bits for partitions */ gd->max_p = 1<max_nr = units; /* max num real drives */ gd->nr_real = units; /* current num real drives */ gd->init = ide_geninit; /* initialization function */ gd->real_devices= hwif; /* ptr to internal data */ gd->next = gendisk_head; /* link new major into list */ hwif->gd = gendisk_head = gd; } static void do_reset1 (ide_drive_t *, int); /* needed below */ #ifdef CONFIG_BLK_DEV_IDEATAPI /* * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms * during an atapi drive reset operation. If the drive has not yet responded, * and we have not yet hit our maximum waiting time, then the timer is restarted * for another 50ms. */ static void atapi_reset_pollfunc (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); byte stat; OUT_BYTE (drive->select.all, IDE_SELECT_REG); udelay (10); if (OK_STAT(stat=GET_STAT(), 0, BUSY_STAT)) { printk("%s: ATAPI reset complete\n", drive->name); } else { if (jiffies < hwgroup->poll_timeout) { ide_set_handler (drive, &atapi_reset_pollfunc, HZ/20); return; /* continue polling */ } hwgroup->poll_timeout = 0; /* end of polling */ printk("%s: ATAPI reset timed-out, status=0x%02x\n", drive->name, stat); do_reset1 (drive, 1); /* do it the old fashioned way */ } hwgroup->poll_timeout = 0; /* done polling */ } #endif /* CONFIG_BLK_DEV_IDEATAPI */ /* * reset_pollfunc() gets invoked to poll the interface for completion every 50ms * during an ide reset operation. If the drives have not yet responded, * and we have not yet hit our maximum waiting time, then the timer is restarted * for another 50ms. */ static void reset_pollfunc (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); ide_hwif_t *hwif = HWIF(drive); byte tmp; if (!OK_STAT(tmp=GET_STAT(), 0, BUSY_STAT)) { if (jiffies < hwgroup->poll_timeout) { ide_set_handler (drive, &reset_pollfunc, HZ/20); return; /* continue polling */ } printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); } else { printk("%s: reset: ", hwif->name); if ((tmp = GET_ERR()) == 1) printk("success\n"); else { printk("master: "); switch (tmp & 0x7f) { case 1: printk("passed"); break; case 2: printk("formatter device error"); break; case 3: printk("sector buffer error"); break; case 4: printk("ECC circuitry error"); break; case 5: printk("controlling MPU error"); break; default:printk("error (0x%02x?)", tmp); } if (tmp & 0x80) printk("; slave: failed"); printk("\n"); } } hwgroup->poll_timeout = 0; /* done polling */ } /* * do_reset1() attempts to recover a confused drive by resetting it. * Unfortunately, resetting a disk drive actually resets all devices on * the same interface, so it can really be thought of as resetting the * interface rather than resetting the drive. * * ATAPI devices have their own reset mechanism which allows them to be * individually reset without clobbering other devices on the same interface. * * Unfortunately, the IDE interface does not generate an interrupt to let * us know when the reset operation has finished, so we must poll for this. * Equally poor, though, is the fact that this may a very long time to complete, * (up to 30 seconds worstcase). So, instead of busy-waiting here for it, * we set a timer to poll at 50ms intervals. */ static void do_reset1 (ide_drive_t *drive, int do_not_try_atapi) { unsigned int unit; unsigned long flags; ide_hwif_t *hwif = HWIF(drive); ide_hwgroup_t *hwgroup = HWGROUP(drive); save_flags(flags); cli(); /* Why ? */ #ifdef CONFIG_BLK_DEV_IDEATAPI /* For an ATAPI device, first try an ATAPI SRST. */ if (drive->media != ide_disk) { if (!do_not_try_atapi) { if (!drive->keep_settings) drive->unmask = 0; OUT_BYTE (drive->select.all, IDE_SELECT_REG); udelay (20); OUT_BYTE (WIN_SRST, IDE_COMMAND_REG); hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; ide_set_handler (drive, &atapi_reset_pollfunc, HZ/20); restore_flags (flags); return; } } #endif /* CONFIG_BLK_DEV_IDEATAPI */ /* * First, reset any device state data we were maintaining * for any of the drives on this interface. */ for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *rdrive = &hwif->drives[unit]; rdrive->special.all = 0; rdrive->special.b.set_geometry = 1; rdrive->special.b.recalibrate = 1; if (OK_TO_RESET_CONTROLLER) rdrive->mult_count = 0; if (!rdrive->keep_settings) { rdrive->using_dma = 0; rdrive->mult_req = 0; rdrive->unmask = 0; } if (rdrive->mult_req != rdrive->mult_count) rdrive->special.b.set_multmode = 1; } #if OK_TO_RESET_CONTROLLER /* * Note that we also set nIEN while resetting the device, * to mask unwanted interrupts from the interface during the reset. * However, due to the design of PC hardware, this will cause an * immediate interrupt due to the edge transition it produces. * This single interrupt gives us a "fast poll" for drives that * recover from reset very quickly, saving us the first 50ms wait time. */ OUT_BYTE(drive->ctl|6,IDE_CONTROL_REG); /* set SRST and nIEN */ udelay(5); /* more than enough time */ OUT_BYTE(drive->ctl|2,IDE_CONTROL_REG); /* clear SRST, leave nIEN */ hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; ide_set_handler (drive, &reset_pollfunc, HZ/20); #endif /* OK_TO_RESET_CONTROLLER */ restore_flags (flags); } /* * ide_do_reset() is the entry point to the drive/interface reset code. */ void ide_do_reset (ide_drive_t *drive) { do_reset1 (drive, 0); #ifdef CONFIG_BLK_DEV_IDETAPE if (drive->media == ide_tape) drive->tape.reset_issued=1; #endif /* CONFIG_BLK_DEV_IDETAPE */ } /* * Clean up after success/failure of an explicit drive cmd */ void ide_end_drive_cmd (ide_drive_t *drive, byte stat, byte err) { unsigned long flags; struct request *rq = HWGROUP(drive)->rq; if (rq->cmd == IDE_DRIVE_CMD) { byte *args = (byte *) rq->buffer; rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); if (args) { args[0] = stat; args[1] = err; args[2] = IN_BYTE(IDE_NSECTOR_REG); } } save_flags(flags); cli(); blk_dev[MAJOR(rq->rq_dev)].current_request = rq->next; HWGROUP(drive)->rq = NULL; rq->rq_status = RQ_INACTIVE; if (rq->sem != NULL) up(rq->sem); restore_flags(flags); } /* * Error reporting, in human readable form (luxurious, but a memory hog). */ byte ide_dump_status (ide_drive_t *drive, const char *msg, byte stat) { unsigned long flags; byte err = 0; save_flags (flags); sti(); printk("%s: %s: status=0x%02x", drive->name, msg, stat); #if FANCY_STATUS_DUMPS if (drive->media == ide_disk) { printk(" { "); if (stat & BUSY_STAT) printk("Busy "); else { if (stat & READY_STAT) printk("DriveReady "); if (stat & WRERR_STAT) printk("DeviceFault "); if (stat & SEEK_STAT) printk("SeekComplete "); if (stat & DRQ_STAT) printk("DataRequest "); if (stat & ECC_STAT) printk("CorrectedError "); if (stat & INDEX_STAT) printk("Index "); if (stat & ERR_STAT) printk("Error "); } printk("}"); } #endif /* FANCY_STATUS_DUMPS */ printk("\n"); if ((stat & (BUSY_STAT|ERR_STAT)) == ERR_STAT) { err = GET_ERR(); printk("%s: %s: error=0x%02x", drive->name, msg, err); #if FANCY_STATUS_DUMPS if (drive->media == ide_disk) { printk(" { "); if (err & BBD_ERR) printk("BadSector "); if (err & ECC_ERR) printk("UncorrectableError "); if (err & ID_ERR) printk("SectorIdNotFound "); if (err & ABRT_ERR) printk("DriveStatusError "); if (err & TRK0_ERR) printk("TrackZeroNotFound "); if (err & MARK_ERR) printk("AddrMarkNotFound "); printk("}"); if (err & (BBD_ERR|ECC_ERR|ID_ERR|MARK_ERR)) { byte cur = IN_BYTE(IDE_SELECT_REG); if (cur & 0x40) { /* using LBA? */ printk(", LBAsect=%ld", (unsigned long) ((cur&0xf)<<24) |(IN_BYTE(IDE_HCYL_REG)<<16) |(IN_BYTE(IDE_LCYL_REG)<<8) | IN_BYTE(IDE_SECTOR_REG)); } else { printk(", CHS=%d/%d/%d", (IN_BYTE(IDE_HCYL_REG)<<8) + IN_BYTE(IDE_LCYL_REG), cur & 0xf, IN_BYTE(IDE_SECTOR_REG)); } if (HWGROUP(drive)->rq) printk(", sector=%ld", HWGROUP(drive)->rq->sector); } } #endif /* FANCY_STATUS_DUMPS */ printk("\n"); } restore_flags (flags); return err; } /* * try_to_flush_leftover_data() is invoked in response to a drive * unexpectedly having its DRQ_STAT bit set. As an alternative to * resetting the drive, this routine tries to clear the condition * by read a sector's worth of data from the drive. Of course, * this may not help if the drive is *waiting* for data from *us*. */ static void try_to_flush_leftover_data (ide_drive_t *drive) { int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; while (i > 0) { unsigned long buffer[16]; unsigned int wcount = (i > 16) ? 16 : i; i -= wcount; ide_input_data (drive, buffer, wcount); } } /* * ide_error() takes action based on the error returned by the controller. */ void ide_error (ide_drive_t *drive, const char *msg, byte stat) { struct request *rq; byte err; err = ide_dump_status(drive, msg, stat); if ((rq = HWGROUP(drive)->rq) == NULL || drive == NULL) return; /* retry only "normal" I/O: */ if (rq->cmd == IDE_DRIVE_CMD || (rq->cmd != READ && rq->cmd != WRITE && drive->media == ide_disk)) { rq->errors = 1; ide_end_drive_cmd(drive, stat, err); return; } if (stat & BUSY_STAT) { /* other bits are useless when BUSY */ rq->errors |= ERROR_RESET; } else { if (drive->media == ide_disk && (stat & ERR_STAT)) { /* err has different meaning on cdrom and tape */ if (err & (BBD_ERR | ECC_ERR)) /* retries won't help these */ rq->errors = ERROR_MAX; else if (err & TRK0_ERR) /* help it find track zero */ rq->errors |= ERROR_RECAL; } if ((stat & DRQ_STAT) && rq->cmd != WRITE) try_to_flush_leftover_data(drive); } if (GET_STAT() & (BUSY_STAT|DRQ_STAT)) rq->errors |= ERROR_RESET; /* Mmmm.. timing problem */ if (rq->errors >= ERROR_MAX) { #ifdef CONFIG_BLK_DEV_IDETAPE if (drive->media == ide_tape) { rq->errors = 0; idetape_end_request(0, HWGROUP(drive)); } else #endif /* CONFIG_BLK_DEV_IDETAPE */ ide_end_request(0, HWGROUP(drive)); } else { if ((rq->errors & ERROR_RESET) == ERROR_RESET) { ++rq->errors; ide_do_reset(drive); return; } else if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) drive->special.b.recalibrate = 1; ++rq->errors; } } /* * read_intr() is the handler for disk read/multread interrupts */ static void read_intr (ide_drive_t *drive) { byte stat; int i; unsigned int msect, nsect; struct request *rq; if (!OK_STAT(stat=GET_STAT(),DATA_READY,BAD_R_STAT)) { ide_error(drive, "read_intr", stat); return; } msect = drive->mult_count; read_next: rq = HWGROUP(drive)->rq; if (msect) { if ((nsect = rq->current_nr_sectors) > msect) nsect = msect; msect -= nsect; } else nsect = 1; ide_input_data(drive, rq->buffer, nsect * SECTOR_WORDS); #ifdef DEBUG printk("%s: read: sectors(%ld-%ld), buffer=0x%08lx, remaining=%ld\n", drive->name, rq->sector, rq->sector+nsect-1, (unsigned long) rq->buffer+(nsect<<9), rq->nr_sectors-nsect); #endif rq->sector += nsect; rq->buffer += nsect<<9; rq->errors = 0; i = (rq->nr_sectors -= nsect); if ((rq->current_nr_sectors -= nsect) <= 0) ide_end_request(1, HWGROUP(drive)); if (i > 0) { if (msect) goto read_next; ide_set_handler (drive, &read_intr, WAIT_CMD); } } /* * write_intr() is the handler for disk write interrupts */ static void write_intr (ide_drive_t *drive) { byte stat; int i; ide_hwgroup_t *hwgroup = HWGROUP(drive); struct request *rq = hwgroup->rq; if (OK_STAT(stat=GET_STAT(),DRIVE_READY,drive->bad_wstat)) { #ifdef DEBUG printk("%s: write: sector %ld, buffer=0x%08lx, remaining=%ld\n", drive->name, rq->sector, (unsigned long) rq->buffer, rq->nr_sectors-1); #endif if ((rq->nr_sectors == 1) ^ ((stat & DRQ_STAT) != 0)) { rq->sector++; rq->buffer += 512; rq->errors = 0; i = --rq->nr_sectors; --rq->current_nr_sectors; if (rq->current_nr_sectors <= 0) ide_end_request(1, hwgroup); if (i > 0) { ide_output_data (drive, rq->buffer, SECTOR_WORDS); ide_set_handler (drive, &write_intr, WAIT_CMD); } return; } } ide_error(drive, "write_intr", stat); } /* * multwrite() transfers a block of one or more sectors of data to a drive * as part of a disk multwrite operation. */ static void multwrite (ide_drive_t *drive) { struct request *rq = &HWGROUP(drive)->wrq; unsigned int mcount = drive->mult_count; do { unsigned int nsect = rq->current_nr_sectors; if (nsect > mcount) nsect = mcount; mcount -= nsect; ide_output_data(drive, rq->buffer, nsect<<7); #ifdef DEBUG printk("%s: multwrite: sector %ld, buffer=0x%08lx, count=%d, remaining=%ld\n", drive->name, rq->sector, (unsigned long) rq->buffer, nsect, rq->nr_sectors - nsect); #endif if ((rq->nr_sectors -= nsect) <= 0) break; if ((rq->current_nr_sectors -= nsect) == 0) { if ((rq->bh = rq->bh->b_reqnext) != NULL) { rq->current_nr_sectors = rq->bh->b_size>>9; rq->buffer = rq->bh->b_data; } else { panic("%s: buffer list corrupted\n", drive->name); break; } } else { rq->buffer += nsect << 9; } } while (mcount); } /* * multwrite_intr() is the handler for disk multwrite interrupts */ static void multwrite_intr (ide_drive_t *drive) { byte stat; int i; ide_hwgroup_t *hwgroup = HWGROUP(drive); struct request *rq = &hwgroup->wrq; if (OK_STAT(stat=GET_STAT(),DRIVE_READY,drive->bad_wstat)) { if (stat & DRQ_STAT) { if (rq->nr_sectors) { multwrite(drive); ide_set_handler (drive, &multwrite_intr, WAIT_CMD); return; } } else { if (!rq->nr_sectors) { /* all done? */ rq = hwgroup->rq; for (i = rq->nr_sectors; i > 0;){ i -= rq->current_nr_sectors; ide_end_request(1, hwgroup); } return; } } } ide_error(drive, "multwrite_intr", stat); } /* * Issue a simple drive command * The drive must be selected beforehand. */ static void ide_cmd(ide_drive_t *drive, byte cmd, byte nsect, ide_handler_t *handler) { ide_set_handler (drive, handler, WAIT_CMD); OUT_BYTE(drive->ctl,IDE_CONTROL_REG); OUT_BYTE(nsect,IDE_NSECTOR_REG); OUT_BYTE(cmd,IDE_COMMAND_REG); } /* * set_multmode_intr() is invoked on completion of a WIN_SETMULT cmd. */ static void set_multmode_intr (ide_drive_t *drive) { byte stat = GET_STAT(); sti(); if (OK_STAT(stat,READY_STAT,BAD_STAT)) { drive->mult_count = drive->mult_req; } else { drive->mult_req = drive->mult_count = 0; drive->special.b.recalibrate = 1; (void) ide_dump_status(drive, "set_multmode", stat); } } /* * set_geometry_intr() is invoked on completion of a WIN_SPECIFY cmd. */ static void set_geometry_intr (ide_drive_t *drive) { byte stat = GET_STAT(); sti(); if (!OK_STAT(stat,READY_STAT,BAD_STAT)) ide_error(drive, "set_geometry_intr", stat); } /* * recal_intr() is invoked on completion of a WIN_RESTORE (recalibrate) cmd. */ static void recal_intr (ide_drive_t *drive) { byte stat = GET_STAT(); sti(); if (!OK_STAT(stat,READY_STAT,BAD_STAT)) ide_error(drive, "recal_intr", stat); } /* * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. */ static void drive_cmd_intr (ide_drive_t *drive) { byte stat = GET_STAT(); sti(); if (OK_STAT(stat,READY_STAT,BAD_STAT)) ide_end_drive_cmd (drive, stat, GET_ERR()); else ide_error(drive, "drive_cmd", stat); /* calls ide_end_drive_cmd */ } /* * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT * commands to a drive. It used to do much more, but has been scaled back. */ static inline void do_special (ide_drive_t *drive) { special_t *s = &drive->special; next: #ifdef DEBUG printk("%s: do_special: 0x%02x\n", drive->name, s->all); #endif if (s->b.set_geometry) { s->b.set_geometry = 0; if (drive->media == ide_disk) { OUT_BYTE(drive->sect,IDE_SECTOR_REG); OUT_BYTE(drive->cyl,IDE_LCYL_REG); OUT_BYTE(drive->cyl>>8,IDE_HCYL_REG); OUT_BYTE(((drive->head-1)|drive->select.all)&0xBF,IDE_SELECT_REG); ide_cmd(drive, WIN_SPECIFY, drive->sect, &set_geometry_intr); } } else if (s->b.recalibrate) { s->b.recalibrate = 0; if (drive->media == ide_disk) { ide_cmd(drive, WIN_RESTORE, drive->sect, &recal_intr); } } else if (s->b.set_pio) { ide_tuneproc_t *tuneproc = HWIF(drive)->tuneproc; s->b.set_pio = 0; if (tuneproc != NULL) tuneproc(drive, drive->pio_req); goto next; } else if (s->b.set_multmode) { s->b.set_multmode = 0; if (drive->media == ide_disk) { if (drive->id && drive->mult_req > drive->id->max_multsect) drive->mult_req = drive->id->max_multsect; ide_cmd(drive, WIN_SETMULT, drive->mult_req, &set_multmode_intr); } else drive->mult_req = 0; } else if (s->all) { s->all = 0; printk("%s: bad special flag: 0x%02x\n", drive->name, s->all); } } /* * This routine busy-waits for the drive status to be not "busy". * It then checks the status for all of the "good" bits and none * of the "bad" bits, and if all is okay it returns 0. All other * cases return 1 after invoking ide_error() -- caller should just return. * * This routine should get fixed to not hog the cpu during extra long waits.. * That could be done by busy-waiting for the first jiffy or two, and then * setting a timer to wake up at half second intervals thereafter, * until timeout is achieved, before timing out. */ int ide_wait_stat (ide_drive_t *drive, byte good, byte bad, unsigned long timeout) { byte stat; unsigned long flags; test: udelay(1); /* spec allows drive 400ns to change "BUSY" */ if (OK_STAT((stat = GET_STAT()), good, bad)) return 0; /* fast exit for most frequent case */ if (!(stat & BUSY_STAT)) { ide_error(drive, "status error", stat); return 1; } save_flags(flags); sti(); timeout += jiffies; do { if (!((stat = GET_STAT()) & BUSY_STAT)) { restore_flags(flags); goto test; } } while (jiffies <= timeout); restore_flags(flags); ide_error(drive, "status timeout", GET_STAT()); return 1; } /* * do_rw_disk() issues WIN_{MULT}READ and WIN_{MULT}WRITE commands to a disk, * using LBA if supported, or CHS otherwise, to address sectors. It also takes * care of issuing special DRIVE_CMDs. */ static inline void do_rw_disk (ide_drive_t *drive, struct request *rq, unsigned long block) { unsigned short io_base = HWIF(drive)->io_base; OUT_BYTE(drive->ctl,IDE_CONTROL_REG); OUT_BYTE(rq->nr_sectors,io_base+IDE_NSECTOR_OFFSET); if (drive->select.b.lba) { #ifdef DEBUG printk("%s: %sing: LBAsect=%ld, sectors=%ld, buffer=0x%08lx\n", drive->name, (rq->cmd==READ)?"read":"writ", block, rq->nr_sectors, (unsigned long) rq->buffer); #endif OUT_BYTE(block,io_base+IDE_SECTOR_OFFSET); OUT_BYTE(block>>=8,io_base+IDE_LCYL_OFFSET); OUT_BYTE(block>>=8,io_base+IDE_HCYL_OFFSET); OUT_BYTE(((block>>8)&0x0f)|drive->select.all,io_base+IDE_SELECT_OFFSET); } else { unsigned int sect,head,cyl,track; track = block / drive->sect; sect = block % drive->sect + 1; OUT_BYTE(sect,io_base+IDE_SECTOR_OFFSET); head = track % drive->head; cyl = track / drive->head; OUT_BYTE(cyl,io_base+IDE_LCYL_OFFSET); OUT_BYTE(cyl>>8,io_base+IDE_HCYL_OFFSET); OUT_BYTE(head|drive->select.all,io_base+IDE_SELECT_OFFSET); #ifdef DEBUG printk("%s: %sing: CHS=%d/%d/%d, sectors=%ld, buffer=0x%08lx\n", drive->name, (rq->cmd==READ)?"read":"writ", cyl, head, sect, rq->nr_sectors, (unsigned long) rq->buffer); #endif } if (rq->cmd == READ) { #ifdef CONFIG_BLK_DEV_TRITON if (drive->using_dma && !(HWIF(drive)->dmaproc(ide_dma_read, drive))) return; #endif /* CONFIG_BLK_DEV_TRITON */ ide_set_handler(drive, &read_intr, WAIT_CMD); OUT_BYTE(drive->mult_count ? WIN_MULTREAD : WIN_READ, io_base+IDE_COMMAND_OFFSET); return; } if (rq->cmd == WRITE) { #ifdef CONFIG_BLK_DEV_TRITON if (drive->using_dma && !(HWIF(drive)->dmaproc(ide_dma_write, drive))) return; #endif /* CONFIG_BLK_DEV_TRITON */ OUT_BYTE(drive->mult_count ? WIN_MULTWRITE : WIN_WRITE, io_base+IDE_COMMAND_OFFSET); if (ide_wait_stat(drive, DATA_READY, drive->bad_wstat, WAIT_DRQ)) { printk("%s: no DRQ after issuing %s\n", drive->name, drive->mult_count ? "MULTWRITE" : "WRITE"); return; } if (!drive->unmask) cli(); if (drive->mult_count) { HWGROUP(drive)->wrq = *rq; /* scratchpad */ ide_set_handler (drive, &multwrite_intr, WAIT_CMD); multwrite(drive); } else { ide_set_handler (drive, &write_intr, WAIT_CMD); ide_output_data(drive, rq->buffer, SECTOR_WORDS); } return; } if (rq->cmd == IDE_DRIVE_CMD) { byte *args = rq->buffer; if (args) { #ifdef DEBUG printk("%s: DRIVE_CMD cmd=0x%02x sc=0x%02x fr=0x%02x\n", drive->name, args[0], args[1], args[2]); #endif OUT_BYTE(args[2],io_base+IDE_FEATURE_OFFSET); ide_cmd(drive, args[0], args[1], &drive_cmd_intr); return; } else { /* * NULL is actually a valid way of waiting for * all current requests to be flushed from the queue. */ #ifdef DEBUG printk("%s: DRIVE_CMD (null)\n", drive->name); #endif ide_end_drive_cmd(drive, GET_STAT(), GET_ERR()); return; } } printk("%s: bad command: %d\n", drive->name, rq->cmd); ide_end_request(0, HWGROUP(drive)); } /* * do_request() initiates handling of a new I/O request */ static inline void do_request (ide_hwif_t *hwif, struct request *rq) { unsigned int minor, unit; unsigned long block, blockend; ide_drive_t *drive; sti(); #ifdef DEBUG printk("%s: do_request: current=0x%08lx\n", hwif->name, (unsigned long) rq); #endif minor = MINOR(rq->rq_dev); unit = minor >> PARTN_BITS; if (MAJOR(rq->rq_dev) != hwif->major || unit >= MAX_DRIVES) { printk("%s: bad device number: %s\n", hwif->name, kdevname(rq->rq_dev)); goto kill_rq; } drive = &hwif->drives[unit]; #ifdef DEBUG if (rq->bh && !buffer_locked(rq->bh)) { printk("%s: block not locked\n", drive->name); goto kill_rq; } #endif block = rq->sector; blockend = block + rq->nr_sectors; if ((blockend < block) || (blockend > drive->part[minor&PARTN_MASK].nr_sects)) { printk("%s%c: bad access: block=%ld, count=%ld\n", drive->name, (minor&PARTN_MASK)?'0'+(minor&PARTN_MASK):' ', block, rq->nr_sectors); goto kill_rq; } block += drive->part[minor&PARTN_MASK].start_sect + drive->sect0; #if FAKE_FDISK_FOR_EZDRIVE if (block == 0 && drive->remap_0_to_1) block = 1; /* redirect MBR access to EZ-Drive partn table */ #endif /* FAKE_FDISK_FOR_EZDRIVE */ ((ide_hwgroup_t *)hwif->hwgroup)->drive = drive; #ifdef CONFIG_BLK_DEV_HT6560B if (hwif->selectproc) hwif->selectproc (drive); #endif /* CONFIG_BLK_DEV_HT6560B */ #if (DISK_RECOVERY_TIME > 0) while ((read_timer() - hwif->last_time) < DISK_RECOVERY_TIME); #endif #ifdef CONFIG_BLK_DEV_IDETAPE POLL_HWIF_TAPE_DRIVE; /* macro from ide-tape.h */ #endif /* CONFIG_BLK_DEV_IDETAPE */ OUT_BYTE(drive->select.all,IDE_SELECT_REG); if (ide_wait_stat(drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { printk("%s: drive not ready for command\n", drive->name); return; } if (!drive->special.all) { #ifdef CONFIG_BLK_DEV_IDEATAPI switch (drive->media) { case ide_disk: do_rw_disk (drive, rq, block); return; #ifdef CONFIG_BLK_DEV_IDECD case ide_cdrom: ide_do_rw_cdrom (drive, block); return; #endif /* CONFIG_BLK_DEV_IDECD */ #ifdef CONFIG_BLK_DEV_IDETAPE case ide_tape: if (rq->cmd == IDE_DRIVE_CMD) { byte *args = (byte *) rq->buffer; OUT_BYTE(args[2],IDE_FEATURE_REG); ide_cmd(drive, args[0], args[1], &drive_cmd_intr); return; } idetape_do_request (drive, rq, block); return; #endif /* CONFIG_BLK_DEV_IDETAPE */ default: printk("%s: media type %d not supported\n", drive->name, drive->media); goto kill_rq; } #else do_rw_disk (drive, rq, block); /* simpler and faster */ return; #endif /* CONFIG_BLK_DEV_IDEATAPI */; } do_special(drive); return; kill_rq: ide_end_request(0, hwif->hwgroup); } /* * The driver enables interrupts as much as possible. In order to do this, * (a) the device-interrupt is always masked before entry, and * (b) the timeout-interrupt is always disabled before entry. * * If we enter here from, say irq14, and then start a new request for irq15, * (possible with "serialize" option) then we cannot ensure that we exit * before the irq15 hits us. So, we must be careful not to let this bother us. * * Interrupts are still masked (by default) whenever we are exchanging * data/cmds with a drive, because some drives seem to have very poor * tolerance for latency during I/O. For devices which don't suffer from * this problem (most don't), the unmask flag can be set using the "hdparm" * utility, to permit other interrupts during data/cmd transfers. */ void ide_do_request (ide_hwgroup_t *hwgroup) { cli(); /* paranoia */ if (hwgroup->handler != NULL) { printk("%s: EEeekk!! handler not NULL in ide_do_request()\n", hwgroup->hwif->name); return; } do { ide_hwif_t *hwif = hwgroup->hwif; struct request *rq; if ((rq = hwgroup->rq) == NULL) { do { rq = blk_dev[hwif->major].current_request; if (rq != NULL && rq->rq_status != RQ_INACTIVE) goto got_rq; } while ((hwif = hwif->next) != hwgroup->hwif); return; /* no work left for this hwgroup */ } got_rq: do_request(hwgroup->hwif = hwif, hwgroup->rq = rq); cli(); } while (hwgroup->handler == NULL); } /* * do_hwgroup_request() invokes ide_do_request() after first masking * all possible interrupts for the current hwgroup. This prevents race * conditions in the event that an unexpected interrupt occurs while * we are in the driver. * * Note that when an interrupt is used to reenter the driver, the first level * handler will already have masked the irq that triggered, but any other ones * for the hwgroup will still be unmasked. The driver tries to be careful * about such things. */ static void do_hwgroup_request (ide_hwgroup_t *hwgroup) { if (hwgroup->handler == NULL) { ide_hwif_t *hgif = hwgroup->hwif; ide_hwif_t *hwif = hgif; do { disable_irq(hwif->irq); } while ((hwif = hwif->next) != hgif); ide_do_request (hwgroup); do { enable_irq(hwif->irq); } while ((hwif = hwif->next) != hgif); } } static void do_ide0_request (void) /* invoked with cli() */ { do_hwgroup_request (ide_hwifs[0].hwgroup); } static void do_ide1_request (void) /* invoked with cli() */ { do_hwgroup_request (ide_hwifs[1].hwgroup); } static void do_ide2_request (void) /* invoked with cli() */ { do_hwgroup_request (ide_hwifs[2].hwgroup); } static void do_ide3_request (void) /* invoked with cli() */ { do_hwgroup_request (ide_hwifs[3].hwgroup); } static void timer_expiry (unsigned long data) { ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; ide_drive_t *drive = hwgroup->drive; unsigned long flags; save_flags(flags); cli(); if (hwgroup->poll_timeout != 0) { /* polling in progress? */ ide_handler_t *handler = hwgroup->handler; hwgroup->handler = NULL; handler(drive); } else if (hwgroup->handler == NULL) { /* not waiting for anything? */ sti(); /* drive must have responded just as the timer expired */ printk("%s: marginal timeout\n", drive->name); } else { hwgroup->handler = NULL; /* abort the operation */ if (hwgroup->hwif->dmaproc) (void) hwgroup->hwif->dmaproc (ide_dma_abort, drive); ide_error(drive, "irq timeout", GET_STAT()); } if (hwgroup->handler == NULL) do_hwgroup_request (hwgroup); restore_flags(flags); } /* * There's nothing really useful we can do with an unexpected interrupt, * other than reading the status register (to clear it), and logging it. * There should be no way that an irq can happen before we're ready for it, * so we needn't worry much about losing an "important" interrupt here. * * On laptops (and "green" PCs), an unexpected interrupt occurs whenever the * drive enters "idle", "standby", or "sleep" mode, so if the status looks * "good", we just ignore the interrupt completely. * * This routine assumes cli() is in effect when called. * * If an unexpected interrupt happens on irq15 while we are handling irq14 * and if the two interfaces are "serialized" (CMD640B), then it looks like * we could screw up by interfering with a new request being set up for irq15. * * In reality, this is a non-issue. The new command is not sent unless the * drive is ready to accept one, in which case we know the drive is not * trying to interrupt us. And ide_set_handler() is always invoked before * completing the issuance of any new drive command, so we will not be * accidently invoked as a result of any valid command completion interrupt. * */ static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) { byte stat; unsigned int unit; ide_hwif_t *hwif = hwgroup->hwif; /* * handle the unexpected interrupt */ do { if (hwif->irq == irq) { for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; if (!drive->present) continue; #ifdef CONFIG_BLK_DEV_HT6560B if (hwif->selectproc) hwif->selectproc (drive); #endif /* CONFIG_BLK_DEV_HT6560B */ if (!OK_STAT(stat=GET_STAT(), drive->ready_stat, BAD_STAT)) (void) ide_dump_status(drive, "unexpected_intr", stat); if ((stat & DRQ_STAT)) try_to_flush_leftover_data(drive); } } } while ((hwif = hwif->next) != hwgroup->hwif); #ifdef CONFIG_BLK_DEV_HT6560B if (hwif->selectproc) hwif->selectproc (hwgroup->drive); #endif /* CONFIG_BLK_DEV_HT6560B */ } /* * entry point for all interrupts, caller does cli() for us */ static void ide_intr (int irq, struct pt_regs *regs) { ide_hwgroup_t *hwgroup = irq_to_hwgroup[irq]; ide_handler_t *handler; if (irq == hwgroup->hwif->irq && (handler = hwgroup->handler) != NULL) { ide_drive_t *drive = hwgroup->drive; hwgroup->handler = NULL; del_timer(&(hwgroup->timer)); if (drive->unmask) sti(); handler(drive); cli(); /* this is necessary, as next rq may be different irq */ if (hwgroup->handler == NULL) { SET_RECOVERY_TIMER(HWIF(drive)); ide_do_request(hwgroup); } } else { unexpected_intr(irq, hwgroup); } cli(); } /* * get_info_ptr() returns the (ide_drive_t *) for a given device number. * It returns NULL if the given device number does not match any present drives. */ static ide_drive_t *get_info_ptr (kdev_t i_rdev) { int major = MAJOR(i_rdev); unsigned int h; for (h = 0; h < MAX_HWIFS; ++h) { ide_hwif_t *hwif = &ide_hwifs[h]; if (hwif->present && major == hwif->major) { unsigned unit = DEVICE_NR(i_rdev); if (unit < MAX_DRIVES) { ide_drive_t *drive = &hwif->drives[unit]; if (drive->present) return drive; } else if (major == IDE0_MAJOR && unit < 4) { printk("ide: probable bad entry for /dev/hd%c\n", 'a'+unit); printk("ide: to fix it, run: /usr/src/linux/drivers/block/MAKEDEV.ide\n"); } break; } } return NULL; } /* * This function is intended to be used prior to invoking ide_do_drive_cmd(). */ void ide_init_drive_cmd (struct request *rq) { rq->buffer = NULL; rq->cmd = IDE_DRIVE_CMD; rq->sector = 0; rq->nr_sectors = 0; rq->current_nr_sectors = 0; rq->sem = NULL; rq->bh = NULL; rq->bhtail = NULL; rq->next = NULL; #if 0 /* these are done each time through ide_do_drive_cmd() */ rq->errors = 0; rq->rq_status = RQ_ACTIVE; rq->rq_dev = ????; #endif } /* * This function issues a special IDE device request * onto the request queue. * * If action is ide_wait, then then rq is queued at the end of * the request queue, and the function sleeps until it has been * processed. This is for use when invoked from an ioctl handler. * * If action is ide_preempt, then the rq is queued at the head of * the request queue, displacing the currently-being-processed * request and this function returns immediately without waiting * for the new rq to be completed. This is VERY DANGEROUS, and is * intended for careful use by the ATAPI tape/cdrom driver code. * * If action is ide_next, then the rq is queued immediately after * the currently-being-processed-request (if any), and the function * returns without waiting for the new rq to be completed. As above, * This is VERY DANGEROUS, and is intended for careful use by the * ATAPI tape/cdrom driver code. * * If action is ide_end, then the rq is queued at the end of the * request queue, and the function returns immediately without waiting * for the new rq to be completed. This is again intended for careful * use by the ATAPI tape/cdrom driver code. (Currently used by ide-tape.c, * when operating in the pipelined operation mode). */ int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) { unsigned long flags; unsigned int major = HWIF(drive)->major; struct request *cur_rq; struct blk_dev_struct *bdev = &blk_dev[major]; struct semaphore sem = MUTEX_LOCKED; rq->errors = 0; rq->rq_status = RQ_ACTIVE; rq->rq_dev = MKDEV(major,(drive->select.b.unit)<sem = &sem; save_flags(flags); cli(); cur_rq = bdev->current_request; if (cur_rq == NULL || action == ide_preempt) { rq->next = cur_rq; bdev->current_request = rq; if (action == ide_preempt) { HWGROUP(drive)->rq = NULL; } else if (HWGROUP(drive)->rq == NULL) { /* is this necessary (?) */ bdev->request_fn(); cli(); } } else { if (action == ide_wait || action == ide_end) { while (cur_rq->next != NULL) /* find end of list */ cur_rq = cur_rq->next; } rq->next = cur_rq->next; cur_rq->next = rq; } if (action == ide_wait && rq->rq_status != RQ_INACTIVE) down(&sem); /* wait for it to be serviced */ restore_flags(flags); return rq->errors ? -EIO : 0; /* return -EIO if errors */ } static int ide_open(struct inode * inode, struct file * filp) { ide_drive_t *drive; unsigned long flags; if ((drive = get_info_ptr(inode->i_rdev)) == NULL) return -ENODEV; save_flags(flags); cli(); while (drive->busy) sleep_on(&drive->wqueue); drive->usage++; restore_flags(flags); #ifdef CONFIG_BLK_DEV_IDECD if (drive->media == ide_cdrom) return ide_cdrom_open (inode, filp, drive); #endif /* CONFIG_BLK_DEV_IDECD */ #ifdef CONFIG_BLK_DEV_IDETAPE if (drive->media == ide_tape) return idetape_blkdev_open (inode, filp, drive); #endif /* CONFIG_BLK_DEV_IDETAPE */ if (drive->removeable) { byte door_lock[] = {WIN_DOORLOCK,0,0,0}; struct request rq; check_disk_change(inode->i_rdev); ide_init_drive_cmd (&rq); rq.buffer = door_lock; /* * Ignore the return code from door_lock, * since the open() has already succeeded, * and the door_lock is irrelevant at this point. */ (void) ide_do_drive_cmd(drive, &rq, ide_wait); } return 0; } /* * Releasing a block device means we sync() it, so that it can safely * be forgotten about... */ static void ide_release(struct inode * inode, struct file * file) { ide_drive_t *drive; if ((drive = get_info_ptr(inode->i_rdev)) != NULL) { sync_dev(inode->i_rdev); drive->usage--; #ifdef CONFIG_BLK_DEV_IDECD if (drive->media == ide_cdrom) { ide_cdrom_release (inode, file, drive); return; } #endif /* CONFIG_BLK_DEV_IDECD */ #ifdef CONFIG_BLK_DEV_IDETAPE if (drive->media == ide_tape) { idetape_blkdev_release (inode, file, drive); return; } #endif /* CONFIG_BLK_DEV_IDETAPE */ if (drive->removeable) { byte door_unlock[] = {WIN_DOORUNLOCK,0,0,0}; struct request rq; invalidate_buffers(inode->i_rdev); ide_init_drive_cmd (&rq); rq.buffer = door_unlock; (void) ide_do_drive_cmd(drive, &rq, ide_wait); } } } /* * This routine is called to flush all partitions and partition tables * for a changed disk, and then re-read the new partition table. * If we are revalidating a disk because of a media change, then we * enter with usage == 0. If we are using an ioctl, we automatically have * usage == 1 (we need an open channel to use an ioctl :-), so this * is our limit. */ static int revalidate_disk(kdev_t i_rdev) { ide_drive_t *drive; unsigned int p, major, minor; long flags; if ((drive = get_info_ptr(i_rdev)) == NULL) return -ENODEV; major = MAJOR(i_rdev); minor = drive->select.b.unit << PARTN_BITS; save_flags(flags); cli(); if (drive->busy || (drive->usage > 1)) { restore_flags(flags); return -EBUSY; }; drive->busy = 1; restore_flags(flags); for (p = 0; p < (1<part[p].nr_sects > 0) { kdev_t devp = MKDEV(major, minor+p); sync_dev (devp); invalidate_inodes (devp); invalidate_buffers (devp); } drive->part[p].start_sect = 0; drive->part[p].nr_sects = 0; }; drive->part[0].nr_sects = current_capacity(drive); if (drive->media == ide_disk) resetup_one_dev(HWIF(drive)->gd, drive->select.b.unit); drive->busy = 0; wake_up(&drive->wqueue); return 0; } static int write_fs_long (unsigned long useraddr, long value) { int err; if (NULL == (long *)useraddr) return -EINVAL; if ((err = verify_area(VERIFY_WRITE, (long *)useraddr, sizeof(long)))) return err; put_user((unsigned)value, (long *) useraddr); return 0; } static int ide_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { struct hd_geometry *loc = (struct hd_geometry *) arg; int err; ide_drive_t *drive; unsigned long flags; struct request rq; ide_init_drive_cmd (&rq); if (!inode || !(inode->i_rdev)) return -EINVAL; if ((drive = get_info_ptr(inode->i_rdev)) == NULL) return -ENODEV; switch (cmd) { case HDIO_GETGEO: if (!loc || drive->media != ide_disk) return -EINVAL; err = verify_area(VERIFY_WRITE, loc, sizeof(*loc)); if (err) return err; put_user(drive->bios_head, (byte *) &loc->heads); put_user(drive->bios_sect, (byte *) &loc->sectors); put_user(drive->bios_cyl, (unsigned short *) &loc->cylinders); put_user((unsigned)drive->part[MINOR(inode->i_rdev)&PARTN_MASK].start_sect, (unsigned long *) &loc->start); return 0; case BLKFLSBUF: if(!suser()) return -EACCES; fsync_dev(inode->i_rdev); invalidate_buffers(inode->i_rdev); return 0; case BLKRASET: if(!suser()) return -EACCES; if(arg > 0xff) return -EINVAL; read_ahead[MAJOR(inode->i_rdev)] = arg; return 0; case BLKRAGET: return write_fs_long(arg, read_ahead[MAJOR(inode->i_rdev)]); case BLKGETSIZE: /* Return device size */ return write_fs_long(arg, drive->part[MINOR(inode->i_rdev)&PARTN_MASK].nr_sects); case BLKRRPART: /* Re-read partition tables */ return revalidate_disk(inode->i_rdev); case HDIO_GET_KEEPSETTINGS: return write_fs_long(arg, drive->keep_settings); case HDIO_GET_UNMASKINTR: return write_fs_long(arg, drive->unmask); case HDIO_GET_DMA: return write_fs_long(arg, drive->using_dma); case HDIO_GET_32BIT: return write_fs_long(arg, drive->io_32bit); case HDIO_GET_MULTCOUNT: return write_fs_long(arg, drive->mult_count); case HDIO_GET_IDENTITY: if (!arg || (MINOR(inode->i_rdev) & PARTN_MASK)) return -EINVAL; if (drive->id == NULL) return -ENOMSG; err = verify_area(VERIFY_WRITE, (char *)arg, sizeof(*drive->id)); if (!err) memcpy_tofs((char *)arg, (char *)drive->id, sizeof(*drive->id)); return err; case HDIO_GET_NOWERR: return write_fs_long(arg, drive->bad_wstat == BAD_R_STAT); case HDIO_SET_DMA: #ifdef CONFIG_BLK_DEV_IDECD if (drive->media == ide_cdrom) return -EPERM; #endif /* CONFIG_BLK_DEV_IDECD */ if (!drive->id || !(drive->id->capability & 1) || !HWIF(drive)->dmaproc) return -EPERM; case HDIO_SET_KEEPSETTINGS: case HDIO_SET_UNMASKINTR: case HDIO_SET_NOWERR: if (arg > 1) return -EINVAL; case HDIO_SET_32BIT: if (!suser()) return -EACCES; if ((MINOR(inode->i_rdev) & PARTN_MASK)) return -EINVAL; save_flags(flags); cli(); switch (cmd) { case HDIO_SET_DMA: if (!(HWIF(drive)->dmaproc)) { restore_flags(flags); return -EPERM; } drive->using_dma = arg; break; case HDIO_SET_KEEPSETTINGS: drive->keep_settings = arg; break; case HDIO_SET_UNMASKINTR: if (arg && HWIF(drive)->no_unmask) { restore_flags(flags); return -EPERM; } drive->unmask = arg; break; case HDIO_SET_NOWERR: drive->bad_wstat = arg ? BAD_R_STAT : BAD_W_STAT; break; case HDIO_SET_32BIT: if (arg > (1 + (SUPPORT_VLB_SYNC<<1))) return -EINVAL; drive->io_32bit = arg; #ifdef CONFIG_BLK_DEV_DTC2278 if (HWIF(drive)->chipset == ide_dtc2278) HWIF(drive)->drives[!drive->select.b.unit].io_32bit = arg; #endif /* CONFIG_BLK_DEV_DTC2278 */ break; } restore_flags(flags); return 0; case HDIO_SET_MULTCOUNT: if (!suser()) return -EACCES; if (MINOR(inode->i_rdev) & PARTN_MASK) return -EINVAL; if (drive->id && arg > drive->id->max_multsect) return -EINVAL; save_flags(flags); cli(); if (drive->special.b.set_multmode) { restore_flags(flags); return -EBUSY; } drive->mult_req = arg; drive->special.b.set_multmode = 1; restore_flags(flags); (void) ide_do_drive_cmd (drive, &rq, ide_wait); return (drive->mult_count == arg) ? 0 : -EIO; case HDIO_DRIVE_CMD: { unsigned long args; if (NULL == (long *) arg) err = ide_do_drive_cmd(drive, &rq, ide_wait); else { if (!(err = verify_area(VERIFY_READ,(long *)arg,sizeof(long)))) { args = get_user((long *)arg); if (!(err = verify_area(VERIFY_WRITE,(long *)arg,sizeof(long)))) { rq.buffer = (char *) &args; err = ide_do_drive_cmd(drive, &rq, ide_wait); put_user(args,(long *)arg); } } } return err; } case HDIO_SET_PIO_MODE: if (!suser()) return -EACCES; if (MINOR(inode->i_rdev) & PARTN_MASK) return -EINVAL; if (!HWIF(drive)->tuneproc) return -ENOSYS; save_flags(flags); cli(); drive->pio_req = (int) arg; drive->special.b.set_pio = 1; restore_flags(flags); return 0; RO_IOCTLS(inode->i_rdev, arg); default: #ifdef CONFIG_BLK_DEV_IDECD if (drive->media == ide_cdrom) return ide_cdrom_ioctl(drive, inode, file, cmd, arg); #endif /* CONFIG_BLK_DEV_IDECD */ #ifdef CONFIG_BLK_DEV_IDETAPE if (drive->media == ide_tape) return idetape_blkdev_ioctl(drive, inode, file, cmd, arg); #endif /* CONFIG_BLK_DEV_IDETAPE */ return -EPERM; } } static int ide_check_media_change (kdev_t i_rdev) { ide_drive_t *drive; if ((drive = get_info_ptr(i_rdev)) == NULL) return -ENODEV; #ifdef CONFIG_BLK_DEV_IDECD if (drive->media == ide_cdrom) return ide_cdrom_check_media_change (drive); #endif /* CONFIG_BLK_DEV_IDECD */ if (drive->removeable) /* for disks */ return 1; /* always assume it was changed */ return 0; } void ide_fixstring (byte *s, const int bytecount, const int byteswap) { byte *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ if (byteswap) { /* convert from big-endian to host byte order */ for (p = end ; p != s;) { unsigned short *pp = (unsigned short *) (p -= 2); *pp = ntohs(*pp); } } /* strip leading blanks */ while (s != end && *s == ' ') ++s; /* compress internal blanks and strip trailing blanks */ while (s != end && *s) { if (*s++ != ' ' || (s != end && *s && *s != ' ')) *p++ = *(s-1); } /* wipe out trailing garbage */ while (p != end) *p++ = '\0'; } static inline void do_identify (ide_drive_t *drive, byte cmd) { int bswap; struct hd_driveid *id; unsigned long capacity, check; id = drive->id = kmalloc (SECTOR_WORDS*4, GFP_KERNEL); ide_input_data(drive, id, SECTOR_WORDS); /* read 512 bytes of id info */ sti(); /* * EATA SCSI controllers do a hardware ATA emulation: ignore them */ if ((id->model[0] == 'P' && id->model[1] == 'M') || (id->model[0] == 'S' && id->model[1] == 'K')) { printk("%s: EATA SCSI HBA %.10s\n", drive->name, id->model); drive->present = 0; return; } /* * WIN_IDENTIFY returns little-endian info, * WIN_PIDENTIFY *usually* returns little-endian info. */ bswap = 1; if (cmd == WIN_PIDENTIFY) { if ((id->model[0] == 'N' && id->model[1] == 'E') /* NEC */ || (id->model[0] == 'F' && id->model[1] == 'X') /* Mitsumi */ || (id->model[0] == 'P' && id->model[1] == 'i'))/* Pioneer */ bswap = 0; /* Vertos drives may still be weird */ } ide_fixstring (id->model, sizeof(id->model), bswap); ide_fixstring (id->fw_rev, sizeof(id->fw_rev), bswap); ide_fixstring (id->serial_no, sizeof(id->serial_no), bswap); /* * Check for an ATAPI device */ if (cmd == WIN_PIDENTIFY) { byte type = (id->config >> 8) & 0x1f; printk("%s: %s, ATAPI ", drive->name, id->model); switch (type) { case 0: /* Early cdrom models used zero */ case 5: #ifdef CONFIG_BLK_DEV_IDECD printk ("CDROM drive\n"); drive->media = ide_cdrom; drive->present = 1; drive->removeable = 1; return; #else printk ("CDROM "); break; #endif /* CONFIG_BLK_DEV_IDECD */ case 1: #ifdef CONFIG_BLK_DEV_IDETAPE printk ("TAPE drive"); if (idetape_identify_device (drive,id)) { drive->media = ide_tape; drive->present = 1; drive->removeable = 1; if (HWIF(drive)->dmaproc != NULL && !HWIF(drive)->dmaproc(ide_dma_check, drive)) printk(", DMA"); printk("\n"); } else { drive->present = 0; printk ("\nide-tape: the tape is not supported by this version of the driver\n"); } return; #else printk ("TAPE "); break; #endif /* CONFIG_BLK_DEV_IDETAPE */ default: drive->present = 0; printk("Type %d - Unknown device\n", type); return; } drive->present = 0; printk("- not supported by this kernel\n"); return; } /* check for removeable disks (eg. SYQUEST), ignore 'WD' drives */ if (id->config & (1<<7)) { /* removeable disk ? */ if (id->model[0] != 'W' || id->model[1] != 'D') drive->removeable = 1; } drive->media = ide_disk; /* Extract geometry if we did not already have one for the drive */ if (!drive->present) { drive->present = 1; drive->cyl = drive->bios_cyl = id->cyls; drive->head = drive->bios_head = id->heads; drive->sect = drive->bios_sect = id->sectors; } /* Handle logical geometry translation by the drive */ if ((id->field_valid & 1) && id->cur_cyls && id->cur_heads && (id->cur_heads <= 16) && id->cur_sectors) { /* * Extract the physical drive geometry for our use. * Note that we purposely do *not* update the bios info. * This way, programs that use it (like fdisk) will * still have the same logical view as the BIOS does, * which keeps the partition table from being screwed. * * An exception to this is the cylinder count, * which we reexamine later on to correct for 1024 limitations. */ drive->cyl = id->cur_cyls; drive->head = id->cur_heads; drive->sect = id->cur_sectors; /* check for word-swapped "capacity" field in id information */ capacity = drive->cyl * drive->head * drive->sect; check = (id->cur_capacity0 << 16) | id->cur_capacity1; if (check == capacity) { /* was it swapped? */ /* yes, bring it into little-endian order: */ id->cur_capacity0 = (capacity >> 0) & 0xffff; id->cur_capacity1 = (capacity >> 16) & 0xffff; } } /* Use physical geometry if what we have still makes no sense */ if ((!drive->head || drive->head > 16) && id->heads && id->heads <= 16) { drive->cyl = id->cyls; drive->head = id->heads; drive->sect = id->sectors; } /* Correct the number of cyls if the bios value is too small */ if (drive->sect == drive->bios_sect && drive->head == drive->bios_head) { if (drive->cyl > drive->bios_cyl) drive->bios_cyl = drive->cyl; } (void) current_capacity (drive); /* initialize LBA selection */ printk ("%s: %.40s, %ldMB w/%dKB Cache, %sCHS=%d/%d/%d", drive->name, id->model, current_capacity(drive)/2048L, id->buf_size/2, drive->select.b.lba ? "LBA, " : "", drive->bios_cyl, drive->bios_head, drive->bios_sect); drive->mult_count = 0; if (id->max_multsect) { drive->mult_req = INITIAL_MULT_COUNT; if (drive->mult_req > id->max_multsect) drive->mult_req = id->max_multsect; if (drive->mult_req || ((id->multsect_valid & 1) && id->multsect)) drive->special.b.set_multmode = 1; } if (HWIF(drive)->dmaproc != NULL) { /* hwif supports DMA? */ if (!(HWIF(drive)->dmaproc(ide_dma_check, drive))) printk(", DMA"); } printk("\n"); } /* * Delay for *at least* 10ms. As we don't know how much time is left * until the next tick occurs, we wait an extra tick to be safe. * This is used only during the probing/polling for drives at boot time. */ static void delay_10ms (void) { unsigned long timer = jiffies + (HZ + 99)/100 + 1; while (timer > jiffies); } /* * try_to_identify() sends an ATA(PI) IDENTIFY request to a drive * and waits for a response. It also monitors irqs while this is * happening, in hope of automatically determining which one is * being used by the interface. * * Returns: 0 device was identified * 1 device timed-out (no response to identify request) * 2 device aborted the command (refused to identify itself) */ static int try_to_identify (ide_drive_t *drive, byte cmd) { int hd_status, rc; unsigned long timeout; int irqs = 0; if (!HWIF(drive)->irq) { /* already got an IRQ? */ probe_irq_off(probe_irq_on()); /* clear dangling irqs */ irqs = probe_irq_on(); /* start monitoring irqs */ OUT_BYTE(drive->ctl,IDE_CONTROL_REG); /* enable device irq */ } delay_10ms(); /* take a deep breath */ if ((IN_BYTE(IDE_ALTSTATUS_REG) ^ IN_BYTE(IDE_STATUS_REG)) & ~INDEX_STAT) { printk("%s: probing with STATUS instead of ALTSTATUS\n", drive->name); hd_status = IDE_STATUS_REG; /* ancient Seagate drives */ } else hd_status = IDE_ALTSTATUS_REG; /* use non-intrusive polling */ OUT_BYTE(cmd,IDE_COMMAND_REG); /* ask drive for ID */ timeout = ((cmd == WIN_IDENTIFY) ? WAIT_WORSTCASE : WAIT_PIDENTIFY) / 2; timeout += jiffies; do { if (jiffies > timeout) { if (!HWIF(drive)->irq) (void) probe_irq_off(irqs); return 1; /* drive timed-out */ } delay_10ms(); /* give drive a breather */ } while (IN_BYTE(hd_status) & BUSY_STAT); delay_10ms(); /* wait for IRQ and DRQ_STAT */ if (OK_STAT(GET_STAT(),DRQ_STAT,BAD_R_STAT)) { cli(); /* some systems need this */ do_identify(drive, cmd); /* drive returned ID */ if (drive->present && drive->media != ide_tape) { ide_tuneproc_t *tuneproc = HWIF(drive)->tuneproc; if (tuneproc != NULL && drive->autotune == 1) tuneproc(drive, 255); /* auto-tune PIO mode */ } rc = 0; /* drive responded with ID */ } else rc = 2; /* drive refused ID */ if (!HWIF(drive)->irq) { irqs = probe_irq_off(irqs); /* get irq number */ if (irqs > 0) HWIF(drive)->irq = irqs; else /* Mmmm.. multiple IRQs */ printk("%s: IRQ probe failed (%d)\n", drive->name, irqs); } return rc; } /* * do_probe() has the difficult job of finding a drive if it exists, * without getting hung up if it doesn't exist, without trampling on * ethernet cards, and without leaving any IRQs dangling to haunt us later. * * If a drive is "known" to exist (from CMOS or kernel parameters), * but does not respond right away, the probe will "hang in there" * for the maximum wait time (about 30 seconds), otherwise it will * exit much more quickly. * * Returns: 0 device was identified * 1 device timed-out (no response to identify request) * 2 device aborted the command (refused to identify itself) * 3 bad status from device (possible for ATAPI drives) * 4 probe was not attempted because failure was obvious */ static int do_probe (ide_drive_t *drive, byte cmd) { int rc; #ifdef CONFIG_BLK_DEV_IDEATAPI if (drive->present) { /* avoid waiting for inappropriate probes */ if ((drive->media != ide_disk) && (cmd == WIN_IDENTIFY)) return 4; } #endif /* CONFIG_BLK_DEV_IDEATAPI */ #ifdef DEBUG printk("probing for %s: present=%d, media=%d, probetype=%s\n", drive->name, drive->present, drive->media, (cmd == WIN_IDENTIFY) ? "ATA" : "ATAPI"); #endif #ifdef CONFIG_BLK_DEV_HT6560B if (HWIF(drive)->selectproc) HWIF(drive)->selectproc (drive); #endif /* CONFIG_BLK_DEV_HT6560B */ OUT_BYTE(drive->select.all,IDE_SELECT_REG); /* select target drive */ delay_10ms(); /* wait for BUSY_STAT */ if (IN_BYTE(IDE_SELECT_REG) != drive->select.all && !drive->present) { OUT_BYTE(0xa0,IDE_SELECT_REG); /* exit with drive0 selected */ return 3; /* no i/f present: avoid killing ethernet cards */ } if (OK_STAT(GET_STAT(),READY_STAT,BUSY_STAT) || drive->present || cmd == WIN_PIDENTIFY) { if ((rc = try_to_identify(drive,cmd))) /* send cmd and wait */ rc = try_to_identify(drive,cmd); /* failed: try again */ if (rc == 1) printk("%s: no response (status = 0x%02x)\n", drive->name, GET_STAT()); (void) GET_STAT(); /* ensure drive irq is clear */ } else { rc = 3; /* not present or maybe ATAPI */ } if (drive->select.b.unit != 0) { OUT_BYTE(0xa0,IDE_SELECT_REG); /* exit with drive0 selected */ delay_10ms(); (void) GET_STAT(); /* ensure drive irq is clear */ } return rc; } /* * probe_for_drive() tests for existance of a given drive using do_probe(). * * Returns: 0 no device was found * 1 device was found (note: drive->present might still be 0) */ static inline byte probe_for_drive (ide_drive_t *drive) { if (drive->noprobe) /* skip probing? */ return drive->present; if (do_probe(drive, WIN_IDENTIFY) >= 2) { /* if !(success||timed-out) */ #ifdef CONFIG_BLK_DEV_IDEATAPI (void) do_probe(drive, WIN_PIDENTIFY); /* look for ATAPI device */ #endif /* CONFIG_BLK_DEV_IDEATAPI */ } if (!drive->present) return 0; /* drive not found */ if (drive->id == NULL) { /* identification failed? */ if (drive->media == ide_disk) { printk ("%s: non-IDE drive, CHS=%d/%d/%d\n", drive->name, drive->cyl, drive->head, drive->sect); } #ifdef CONFIG_BLK_DEV_IDECD else if (drive->media == ide_cdrom) { printk("%s: ATAPI cdrom (?)\n", drive->name); } #endif /* CONFIG_BLK_DEV_IDECD */ else { drive->present = 0; /* nuke it */ return 1; /* drive was found */ } } if (drive->media == ide_disk && !drive->select.b.lba) { if (!drive->head || drive->head > 16) { printk("%s: INVALID GEOMETRY: %d PHYSICAL HEADS?\n", drive->name, drive->head); drive->present = 0; } } return 1; /* drive was found */ } /* * This routine only knows how to look for drive units 0 and 1 * on an interface, so any setting of MAX_DRIVES > 2 won't work here. */ static void probe_for_drives (ide_hwif_t *hwif) { unsigned int unit; if (check_region(hwif->io_base,8) || check_region(hwif->ctl_port,1)) { int msgout = 0; for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; if (drive->present) { drive->present = 0; printk("%s: ERROR, PORTS ALREADY IN USE\n", drive->name); msgout = 1; } } if (!msgout) printk("%s: ports already in use, skipping probe\n", hwif->name); } else { unsigned long flags; save_flags(flags); #if (MAX_DRIVES > 2) printk("%s: probing for first 2 of %d possible drives\n", hwif->name, MAX_DRIVES); #endif sti(); /* needed for jiffies and irq probing */ /* * Second drive should only exist if first drive was found, * but a lot of cdrom drives seem to be configured as slave-only */ for (unit = 0; unit < 2; ++unit) { /* note the hardcoded '2' */ ide_drive_t *drive = &hwif->drives[unit]; (void) probe_for_drive (drive); } for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; if (drive->present) { hwif->present = 1; request_region(hwif->io_base, 8, hwif->name); request_region(hwif->ctl_port, 1, hwif->name); break; } } restore_flags(flags); } } /* * stridx() returns the offset of c within s, * or -1 if c is '\0' or not found within s. */ static int stridx (const char *s, char c) { char *i = strchr(s, c); return (i && c) ? i - s : -1; } /* * match_parm() does parsing for ide_setup(): * * 1. the first char of s must be '='. * 2. if the remainder matches one of the supplied keywords, * the index (1 based) of the keyword is negated and returned. * 3. if the remainder is a series of no more than max_vals numbers * separated by commas, the numbers are saved in vals[] and a * count of how many were saved is returned. Base10 is assumed, * and base16 is allowed when prefixed with "0x". * 4. otherwise, zero is returned. */ static int match_parm (char *s, const char *keywords[], int vals[], int max_vals) { static const char *decimal = "0123456789"; static const char *hex = "0123456789abcdef"; int i, n; if (*s++ == '=') { /* * Try matching against the supplied keywords, * and return -(index+1) if we match one */ for (i = 0; *keywords != NULL; ++i) { if (!strcmp(s, *keywords++)) return -(i+1); } /* * Look for a series of no more than "max_vals" * numeric values separated by commas, in base10, * or base16 when prefixed with "0x". * Return a count of how many were found. */ for (n = 0; (i = stridx(decimal, *s)) >= 0;) { vals[n] = i; while ((i = stridx(decimal, *++s)) >= 0) vals[n] = (vals[n] * 10) + i; if (*s == 'x' && !vals[n]) { while ((i = stridx(hex, *++s)) >= 0) vals[n] = (vals[n] * 0x10) + i; } if (++n == max_vals) break; if (*s == ',') ++s; } if (!*s) return n; } return 0; /* zero = nothing matched */ } /* * ide_setup() gets called VERY EARLY during initialization, * to handle kernel "command line" strings beginning with "hdx=" * or "ide". Here is the complete set currently supported: * * "hdx=" is recognized for all "x" from "a" to "h", such as "hdc". * "idex=" is recognized for all "x" from "0" to "3", such as "ide1". * * "hdx=noprobe" : drive may be present, but do not probe for it * "hdx=nowerr" : ignore the WRERR_STAT bit on this drive * "hdx=cdrom" : drive is present, and is a cdrom drive * "hdx=cyl,head,sect" : disk drive is present, with specified geometry * "hdx=autotune" : driver will attempt to tune interface speed * to the fastest PIO mode supported, * if possible for this drive only. * Not fully supported by all chipset types, * and quite likely to cause trouble with * older/odd IDE drives. * * "idex=noprobe" : do not attempt to access/use this interface * "idex=base" : probe for an interface at the addr specified, * where "base" is usually 0x1f0 or 0x170 * and "ctl" is assumed to be "base"+0x206 * "idex=base,ctl" : specify both base and ctl * "idex=base,ctl,irq" : specify base, ctl, and irq number * "idex=autotune" : driver will attempt to tune interface speed * to the fastest PIO mode supported, * for all drives on this interface. * Not fully supported by all chipset types, * and quite likely to cause trouble with * older/odd IDE drives. * "idex=noautotune" : driver will NOT attempt to tune interface speed * This is the default for most chipsets, * except the cmd640. * * The following two are valid ONLY on ide0, * and the defaults for the base,ctl ports must not be altered. * * "ide0=serialize" : do not overlap operations on ide0 and ide1. * "ide0=dtc2278" : probe/support DTC2278 interface * "ide0=ht6560b" : probe/support HT6560B interface * "ide0=cmd640_vlb" : *REQUIRED* for VLB cards with the CMD640 chip * (not for PCI -- automatically detected) * "ide0=qd6580" : probe/support qd6580 interface * "ide0=ali14xx" : probe/support ali14xx chipsets (ALI M1439, M1443, M1445) * "ide0=umc8672" : probe/support umc8672 chipsets */ void ide_setup (char *s) { int i, vals[3]; ide_hwif_t *hwif; ide_drive_t *drive; unsigned int hw, unit; const char max_drive = 'a' + ((MAX_HWIFS * MAX_DRIVES) - 1); const char max_hwif = '0' + (MAX_HWIFS - 1); printk("ide_setup: %s", s); init_ide_data (); /* * Look for drive options: "hdx=" */ if (s[0] == 'h' && s[1] == 'd' && s[2] >= 'a' && s[2] <= max_drive) { const char *hd_words[] = {"noprobe", "nowerr", "cdrom", "serialize", "autotune", "noautotune", NULL}; unit = s[2] - 'a'; hw = unit / MAX_DRIVES; unit = unit % MAX_DRIVES; hwif = &ide_hwifs[hw]; drive = &hwif->drives[unit]; switch (match_parm(&s[3], hd_words, vals, 3)) { case -1: /* "noprobe" */ drive->noprobe = 1; goto done; case -2: /* "nowerr" */ drive->bad_wstat = BAD_R_STAT; hwif->noprobe = 0; goto done; case -3: /* "cdrom" */ drive->present = 1; drive->media = ide_cdrom; hwif->noprobe = 0; goto done; case -4: /* "serialize" */ printk(" -- USE \"ide%c=serialize\" INSTEAD", '0'+hw); goto do_serialize; case -5: /* "autotune" */ drive->autotune = 1; goto done; case -6: /* "noautotune" */ drive->autotune = 2; goto done; case 3: /* cyl,head,sect */ drive->media = ide_disk; drive->cyl = drive->bios_cyl = vals[0]; drive->head = drive->bios_head = vals[1]; drive->sect = drive->bios_sect = vals[2]; drive->present = 1; drive->forced_geom = 1; hwif->noprobe = 0; goto done; default: goto bad_option; } } /* * Look for interface options: "idex=" */ if (s[0] == 'i' && s[1] == 'd' && s[2] == 'e' && s[3] >= '0' && s[3] <= max_hwif) { /* * Be VERY CAREFUL changing this: note hardcoded indexes below */ const char *ide_words[] = {"noprobe", "serialize", "autotune", "noautotune", "qd6580", "ht6560b", "cmd640_vlb", "dtc2278", "umc8672", "ali14xx", NULL}; hw = s[3] - '0'; hwif = &ide_hwifs[hw]; i = match_parm(&s[4], ide_words, vals, 3); /* * Cryptic check to ensure chipset not already set for hwif: */ if (i != -1 && i != -2) { if (hwif->chipset != ide_unknown) goto bad_option; if (i < 0 && ide_hwifs[1].chipset != ide_unknown) goto bad_option; } /* * Interface keywords work only for ide0: */ if (i <= -6 && hw != 0) goto bad_hwif; switch (i) { #ifdef CONFIG_BLK_DEV_ALI14XX case -10: /* "ali14xx" */ { extern void init_ali14xx (void); init_ali14xx(); goto done; } #endif /* CONFIG_BLK_DEV_ALI14XX */ #ifdef CONFIG_BLK_DEV_UMC8672 case -9: /* "umc8672" */ { extern void init_umc8672 (void); init_umc8672(); goto done; } #endif /* CONFIG_BLK_DEV_UMC8672 */ #ifdef CONFIG_BLK_DEV_DTC2278 case -8: /* "dtc2278" */ { extern void init_dtc2278 (void); init_dtc2278(); goto done; } #endif /* CONFIG_BLK_DEV_DTC2278 */ #ifdef CONFIG_BLK_DEV_CMD640 case -7: /* "cmd640_vlb" */ { extern int cmd640_vlb; /* flag for cmd640.c */ cmd640_vlb = 1; goto done; } #endif /* CONFIG_BLK_DEV_CMD640 */ #ifdef CONFIG_BLK_DEV_HT6560B case -6: /* "ht6560b" */ { extern void init_ht6560b (void); init_ht6560b(); goto done; } #endif /* CONFIG_BLK_DEV_HT6560B */ #if CONFIG_BLK_DEV_QD6580 case -5: /* "qd6580" (no secondary i/f) */ { extern void init_qd6580 (void); init_qd6580(); goto done; } #endif /* CONFIG_BLK_DEV_QD6580 */ case -4: /* "noautotune" */ hwif->drives[0].autotune = 2; hwif->drives[1].autotune = 2; goto done; case -3: /* "autotune" */ hwif->drives[0].autotune = 1; hwif->drives[1].autotune = 1; goto done; case -2: /* "serialize" */ do_serialize: if (hw > 1) goto bad_hwif; ide_hwifs[0].serialized = 1; goto done; case -1: /* "noprobe" */ hwif->noprobe = 1; goto done; case 1: /* base */ vals[1] = vals[0] + 0x206; /* default ctl */ case 2: /* base,ctl */ vals[2] = 0; /* default irq = probe for it */ case 3: /* base,ctl,irq */ hwif->io_base = vals[0]; hwif->ctl_port = vals[1]; hwif->irq = vals[2]; hwif->noprobe = 0; hwif->chipset = ide_generic; goto done; case 0: goto bad_option; default: printk(" -- SUPPORT NOT CONFIGURED IN THIS KERNEL\n"); return; } } bad_option: printk(" -- BAD OPTION\n"); return; bad_hwif: printk("-- NOT SUPPORTED ON ide%d", hw); done: printk("\n"); } /* * This routine is called from the partition-table code in genhd.c * to "convert" a drive to a logical geometry with fewer than 1024 cyls. * * The second parameter, "xparm", determines exactly how the translation * will be handled: * 0 = convert to CHS with fewer than 1024 cyls * using the same method as Ontrack DiskManager. * 1 = same as "0", plus offset everything by 63 sectors. * -1 = similar to "0", plus redirect sector 0 to sector 1. * >1 = convert to a CHS geometry with "xparm" heads. * * Returns 0 if the translation was not possible, if the device was not * an IDE disk drive, or if a geometry was "forced" on the commandline. * Returns 1 if the geometry translation was successful. */ int ide_xlate_1024 (kdev_t i_rdev, int xparm, const char *msg) { ide_drive_t *drive; static const byte head_vals[] = {4, 8, 16, 32, 64, 128, 255, 0}; const byte *heads = head_vals; unsigned long tracks; if ((drive = get_info_ptr(i_rdev)) == NULL || drive->forced_geom) return 0; if (xparm > 1 && xparm <= drive->bios_head && drive->bios_sect == 63) return 0; /* we already have a translation */ printk("%s ", msg); if (drive->id) { drive->cyl = drive->id->cyls; drive->head = drive->id->heads; drive->sect = drive->id->sectors; } drive->bios_cyl = drive->cyl; drive->bios_head = drive->head; drive->bios_sect = drive->sect; drive->special.b.set_geometry = 1; tracks = drive->bios_cyl * drive->bios_head * drive->bios_sect / 63; drive->bios_sect = 63; if (xparm > 1) { drive->bios_head = xparm; drive->bios_cyl = tracks / drive->bios_head; } else { while (drive->bios_cyl >= 1024) { drive->bios_head = *heads; drive->bios_cyl = tracks / drive->bios_head; if (0 == *++heads) break; } #if FAKE_FDISK_FOR_EZDRIVE if (xparm == -1) { drive->remap_0_to_1 = 1; msg = "0->1"; } else #endif /* FAKE_FDISK_FOR_EZDRIVE */ if (xparm == 1) { drive->sect0 = 63; drive->bios_cyl = (tracks - 1) / drive->bios_head; msg = "+63"; } printk("[remap %s] ", msg); } drive->part[0].nr_sects = current_capacity(drive); printk("[%d/%d/%d]", drive->bios_cyl, drive->bios_head, drive->bios_sect); return 1; } /* * We query CMOS about hard disks : it could be that we have a SCSI/ESDI/etc * controller that is BIOS compatible with ST-506, and thus showing up in our * BIOS table, but not register compatible, and therefore not present in CMOS. * * Furthermore, we will assume that our ST-506 drives are the primary * drives in the system -- the ones reflected as drive 1 or 2. The first * drive is stored in the high nibble of CMOS byte 0x12, the second in the low * nibble. This will be either a 4 bit drive type or 0xf indicating use byte * 0x19 for an 8 bit type, drive 1, 0x1a for drive 2 in CMOS. A non-zero value * means we have an AT controller hard disk for that drive. * * Of course, there is no guarantee that either drive is actually on the * "primary" IDE interface, but we don't bother trying to sort that out here. * If a drive is not actually on the primary interface, then these parameters * will be ignored. This results in the user having to supply the logical * drive geometry as a boot parameter for each drive not on the primary i/f. * * The only "perfect" way to handle this would be to modify the setup.[cS] code * to do BIOS calls Int13h/Fn08h and Int13h/Fn48h to get all of the drive info * for us during initialization. I have the necessary docs -- any takers? -ml */ static void probe_cmos_for_drives (ide_hwif_t *hwif) { #ifdef __i386__ extern struct drive_info_struct drive_info; byte cmos_disks, *BIOS = (byte *) &drive_info; int unit; outb_p(0x12,0x70); /* specify CMOS address 0x12 */ cmos_disks = inb_p(0x71); /* read the data from 0x12 */ /* Extract drive geometry from CMOS+BIOS if not already setup */ for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; if ((cmos_disks & (0xf0 >> (unit*4))) && !drive->present) { drive->cyl = drive->bios_cyl = *(unsigned short *)BIOS; drive->head = drive->bios_head = *(BIOS+2); drive->sect = drive->bios_sect = *(BIOS+14); drive->ctl = *(BIOS+8); drive->present = 1; } BIOS += 16; } #endif } /* * This routine sets up the irq for an ide interface, and creates a new * hwgroup for the irq/hwif if none was previously assigned. * * The SA_INTERRUPT in sa_flags means ide_intr() is always entered with * interrupts completely disabled. This can be bad for interrupt latency, * but anything else has led to problems on some machines. We re-enable * interrupts as much as we can safely do in most places. */ static int init_irq (ide_hwif_t *hwif) { unsigned long flags; int irq = hwif->irq; ide_hwgroup_t *hwgroup = irq_to_hwgroup[irq]; save_flags(flags); cli(); /* * Grab the irq if we don't already have it from a previous hwif */ if (hwgroup == NULL) { if (request_irq(irq, ide_intr, SA_INTERRUPT|SA_SAMPLE_RANDOM, hwif->name)) { restore_flags(flags); printk(" -- FAILED!"); return 1; } } /* * Check for serialization with ide1. * This code depends on us having already taken care of ide1. */ if (hwif->serialized && hwif->name[3] == '0' && ide_hwifs[1].present) hwgroup = ide_hwifs[1].hwgroup; /* * If this is the first interface in a group, * then we need to create the hwgroup structure */ if (hwgroup == NULL) { hwgroup = kmalloc (sizeof(ide_hwgroup_t), GFP_KERNEL); hwgroup->hwif = hwif->next = hwif; hwgroup->rq = NULL; hwgroup->handler = NULL; hwgroup->drive = &hwif->drives[0]; hwgroup->poll_timeout = 0; init_timer(&hwgroup->timer); hwgroup->timer.function = &timer_expiry; hwgroup->timer.data = (unsigned long) hwgroup; } else { hwif->next = hwgroup->hwif->next; hwgroup->hwif->next = hwif; } hwif->hwgroup = hwgroup; irq_to_hwgroup[irq] = hwgroup; restore_flags(flags); /* safe now that hwif->hwgroup is set up */ printk("%s at 0x%03x-0x%03x,0x%03x on irq %d", hwif->name, hwif->io_base, hwif->io_base+7, hwif->ctl_port, irq); if (hwgroup->hwif != hwif) printk(" (serialized with %s)", hwgroup->hwif->name); printk("\n"); return 0; } static struct file_operations ide_fops = { NULL, /* lseek - default */ block_read, /* read - general block-dev read */ block_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* select */ ide_ioctl, /* ioctl */ NULL, /* mmap */ ide_open, /* open */ ide_release, /* release */ block_fsync /* fsync */ ,NULL, /* fasync */ ide_check_media_change, /* check_media_change */ revalidate_disk /* revalidate */ }; #ifdef CONFIG_PCI #if defined(CONFIG_BLK_DEV_RZ1000) || defined(CONFIG_BLK_DEV_TRITON) typedef void (ide_pci_init_proc_t)(byte, byte); /* * ide_probe_pci() scans PCI for a specific vendor/device function, * and invokes the supplied init routine for each instance detected. */ static void ide_probe_pci (unsigned short vendor, unsigned short device, ide_pci_init_proc_t *init, int func_adj) { unsigned long flags; unsigned index; byte fn, bus; save_flags(flags); cli(); for (index = 0; !pcibios_find_device (vendor, device, index, &bus, &fn); ++index) { init (bus, fn + func_adj); } restore_flags(flags); } #endif /* defined(CONFIG_BLK_DEV_RZ1000) || defined(CONFIG_BLK_DEV_TRITON) */ #endif /* CONFIG_PCI */ /* * ide_init_pci() finds/initializes "known" PCI IDE interfaces * * This routine should ideally be using pcibios_find_class() to find * all IDE interfaces, but that function causes some systems to "go weird". */ static void probe_for_hwifs (void) { #ifdef CONFIG_PCI /* * Find/initialize PCI IDE interfaces */ if (pcibios_present()) { #ifdef CONFIG_BLK_DEV_RZ1000 ide_pci_init_proc_t init_rz1000; ide_probe_pci (PCI_VENDOR_ID_PCTECH, PCI_DEVICE_ID_PCTECH_RZ1000, &init_rz1000, 0); #endif /* CONFIG_BLK_DEV_RZ1000 */ #ifdef CONFIG_BLK_DEV_TRITON /* * Apparently the BIOS32 services on Intel motherboards are * buggy and won't find the PCI_DEVICE_ID_INTEL_82371_1 for us. * So instead, we search for PCI_DEVICE_ID_INTEL_82371_0, * and then add 1. */ ide_probe_pci (PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371_0, &ide_init_triton, 1); #endif /* CONFIG_BLK_DEV_TRITON */ } #endif /* CONFIG_PCI */ #ifdef CONFIG_BLK_DEV_CMD640 { extern void ide_probe_for_cmd640x (void); ide_probe_for_cmd640x(); } #endif } /* * This is gets invoked once during initialization, to set *everything* up */ int ide_init (void) { int h; init_ide_data (); /* * Probe for special "known" interface chipsets */ probe_for_hwifs (); /* * Probe for drives in the usual way.. CMOS/BIOS, then poke at ports */ for (h = 0; h < MAX_HWIFS; ++h) { ide_hwif_t *hwif = &ide_hwifs[h]; if (!hwif->noprobe) { if (hwif->io_base == HD_DATA) probe_cmos_for_drives (hwif); probe_for_drives (hwif); } if (hwif->present) { if (!hwif->irq) { if (!(hwif->irq = default_irqs[h])) { printk("%s: DISABLED, NO IRQ\n", hwif->name); hwif->present = 0; continue; } } #ifdef CONFIG_BLK_DEV_HD if (hwif->irq == HD_IRQ && hwif->io_base != HD_DATA) { printk("%s: CANNOT SHARE IRQ WITH OLD HARDDISK DRIVER (hd.c)\n", hwif->name); hwif->present = 0; } #endif /* CONFIG_BLK_DEV_HD */ } } /* * Now we try to set up irqs and major devices for what was found */ for (h = MAX_HWIFS-1; h >= 0; --h) { void (*rfn)(void); ide_hwif_t *hwif = &ide_hwifs[h]; if (!hwif->present) continue; hwif->present = 0; /* we set it back to 1 if all is ok below */ switch (hwif->major) { case IDE0_MAJOR: rfn = &do_ide0_request; break; case IDE1_MAJOR: rfn = &do_ide1_request; break; case IDE2_MAJOR: rfn = &do_ide2_request; break; case IDE3_MAJOR: rfn = &do_ide3_request; break; default: printk("%s: request_fn NOT DEFINED\n", hwif->name); continue; } if (register_blkdev (hwif->major, hwif->name, &ide_fops)) { printk("%s: UNABLE TO GET MAJOR NUMBER %d\n", hwif->name, hwif->major); } else if (init_irq (hwif)) { printk("%s: UNABLE TO GET IRQ %d\n", hwif->name, hwif->irq); (void) unregister_blkdev (hwif->major, hwif->name); } else { init_gendisk(hwif); blk_dev[hwif->major].request_fn = rfn; read_ahead[hwif->major] = 8; /* (4kB) */ hwif->present = 1; /* success */ } } #ifdef CONFIG_BLK_DEV_IDETAPE idetape_register_chrdev(); /* Register character device interface to the ide tape */ #endif /* CONFIG_BLK_DEV_IDETAPE */ return 0; }