summaryrefslogtreecommitdiff
path: root/kern/slab.h
diff options
context:
space:
mode:
Diffstat (limited to 'kern/slab.h')
-rw-r--r--kern/slab.h222
1 files changed, 222 insertions, 0 deletions
diff --git a/kern/slab.h b/kern/slab.h
new file mode 100644
index 0000000..14c820b
--- /dev/null
+++ b/kern/slab.h
@@ -0,0 +1,222 @@
+/*
+ * Copyright (c) 2009, 2010, 2011 Richard Braun.
+ * Copyright (c) 2011 Maksym Planeta.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+
+#ifndef _KERN_SLAB_H
+#define _KERN_SLAB_H
+
+#include <kern/lock.h>
+#include <kern/list.h>
+#include <kern/rbtree.h>
+#include <mach/machine/vm_types.h>
+#include <sys/types.h>
+#include <vm/vm_types.h>
+
+#if SLAB_USE_CPU_POOLS
+/*
+ * L1 cache line size.
+ */
+#define CPU_L1_SIZE (1 << CPU_L1_SHIFT)
+
+/*
+ * Per-processor cache of pre-constructed objects.
+ *
+ * The flags member is a read-only CPU-local copy of the parent cache flags.
+ */
+struct kmem_cpu_pool {
+ simple_lock_data_t lock;
+ int flags;
+ int size;
+ int transfer_size;
+ int nr_objs;
+ void **array;
+} __attribute__((aligned(CPU_L1_SIZE)));
+
+/*
+ * When a cache is created, its CPU pool type is determined from the buffer
+ * size. For small buffer sizes, many objects can be cached in a CPU pool.
+ * Conversely, for large buffer sizes, this would incur much overhead, so only
+ * a few objects are stored in a CPU pool.
+ */
+struct kmem_cpu_pool_type {
+ size_t buf_size;
+ int array_size;
+ size_t array_align;
+ struct kmem_cache *array_cache;
+};
+#endif /* SLAB_USE_CPU_POOLS */
+
+/*
+ * Buffer descriptor.
+ *
+ * For normal caches (i.e. without SLAB_CF_VERIFY), bufctls are located at the
+ * end of (but inside) each buffer. If SLAB_CF_VERIFY is set, bufctls are
+ * located after each buffer.
+ *
+ * When an object is allocated to a client, its bufctl isn't used. This memory
+ * is instead used for redzoning if cache debugging is in effect.
+ */
+union kmem_bufctl {
+ union kmem_bufctl *next;
+ unsigned long redzone;
+};
+
+/*
+ * Buffer tag.
+ *
+ * This structure is only used for SLAB_CF_VERIFY caches. It is located after
+ * the bufctl and includes information about the state of the buffer it
+ * describes (allocated or not). It should be thought of as a debugging
+ * extension of the bufctl.
+ */
+struct kmem_buftag {
+ unsigned long state;
+};
+
+/*
+ * Page-aligned collection of unconstructed buffers.
+ */
+struct kmem_slab {
+ struct list list_node;
+ struct rbtree_node tree_node;
+ unsigned long nr_refs;
+ union kmem_bufctl *first_free;
+ void *addr;
+};
+
+/*
+ * Type for constructor functions.
+ *
+ * The pre-constructed state of an object is supposed to include only
+ * elements such as e.g. linked lists, locks, reference counters. Therefore
+ * constructors are expected to 1) never fail and 2) not need any
+ * user-provided data. The first constraint implies that object construction
+ * never performs dynamic resource allocation, which also means there is no
+ * need for destructors.
+ */
+typedef void (*kmem_cache_ctor_t)(void *obj);
+
+/*
+ * Types for slab allocation/free functions.
+ *
+ * All addresses and sizes must be page-aligned.
+ */
+typedef vm_offset_t (*kmem_slab_alloc_fn_t)(vm_size_t);
+typedef void (*kmem_slab_free_fn_t)(vm_offset_t, vm_size_t);
+
+/*
+ * Cache name buffer size.
+ */
+#define KMEM_CACHE_NAME_SIZE 32
+
+/*
+ * Cache of objects.
+ *
+ * Locking order : cpu_pool -> cache. CPU pools locking is ordered by CPU ID.
+ *
+ * The partial slabs list is sorted by slab references. Slabs with a high
+ * number of references are placed first on the list to reduce fragmentation.
+ * Sorting occurs at insertion/removal of buffers in a slab. As the list
+ * is maintained sorted, and the number of references only changes by one,
+ * this is a very cheap operation in the average case and the worst (linear)
+ * case is very unlikely.
+ */
+struct kmem_cache {
+#if SLAB_USE_CPU_POOLS
+ /* CPU pool layer */
+ struct kmem_cpu_pool cpu_pools[NCPUS];
+ struct kmem_cpu_pool_type *cpu_pool_type;
+#endif /* SLAB_USE_CPU_POOLS */
+
+ /* Slab layer */
+ simple_lock_data_t lock;
+ struct list node; /* Cache list linkage */
+ struct list partial_slabs;
+ struct list free_slabs;
+ struct rbtree active_slabs;
+ int flags;
+ size_t obj_size; /* User-provided size */
+ size_t align;
+ size_t buf_size; /* Aligned object size */
+ size_t bufctl_dist; /* Distance from buffer to bufctl */
+ size_t slab_size;
+ size_t color;
+ size_t color_max;
+ unsigned long bufs_per_slab;
+ unsigned long nr_objs; /* Number of allocated objects */
+ unsigned long nr_bufs; /* Total number of buffers */
+ unsigned long nr_slabs;
+ unsigned long nr_free_slabs;
+ kmem_cache_ctor_t ctor;
+ kmem_slab_alloc_fn_t slab_alloc_fn;
+ kmem_slab_free_fn_t slab_free_fn;
+ char name[KMEM_CACHE_NAME_SIZE];
+ size_t buftag_dist; /* Distance from buffer to buftag */
+ size_t redzone_pad; /* Bytes from end of object to redzone word */
+};
+
+/*
+ * Mach-style declarations for struct kmem_cache.
+ */
+typedef struct kmem_cache *kmem_cache_t;
+#define KMEM_CACHE_NULL ((kmem_cache_t) 0)
+
+/*
+ * VM submap for slab allocations.
+ */
+extern vm_map_t kmem_map;
+
+/*
+ * Cache initialization flags.
+ */
+#define KMEM_CACHE_NOCPUPOOL 0x1 /* Don't use the per-cpu pools */
+#define KMEM_CACHE_NOOFFSLAB 0x2 /* Don't allocate external slab data */
+#define KMEM_CACHE_NORECLAIM 0x4 /* Never give slabs back to their source,
+ implies KMEM_CACHE_NOOFFSLAB */
+#define KMEM_CACHE_VERIFY 0x8 /* Use debugging facilities */
+
+/*
+ * Initialize a cache.
+ */
+void kmem_cache_init(struct kmem_cache *cache, const char *name,
+ size_t obj_size, size_t align, kmem_cache_ctor_t ctor,
+ kmem_slab_alloc_fn_t slab_alloc_fn,
+ kmem_slab_free_fn_t slab_free_fn, int flags);
+
+/*
+ * Allocate an object from a cache.
+ */
+vm_offset_t kmem_cache_alloc(struct kmem_cache *cache);
+
+/*
+ * Release an object to its cache.
+ */
+void kmem_cache_free(struct kmem_cache *cache, vm_offset_t obj);
+
+/*
+ * Initialize the memory allocator module.
+ */
+void slab_bootstrap(void);
+void slab_init(void);
+
+/*
+ * Release free slabs to the VM system.
+ */
+void slab_collect(void);
+
+#endif /* _KERN_SLAB_H */