summaryrefslogtreecommitdiff
path: root/kern/slab.c
diff options
context:
space:
mode:
Diffstat (limited to 'kern/slab.c')
-rw-r--r--kern/slab.c173
1 files changed, 55 insertions, 118 deletions
diff --git a/kern/slab.c b/kern/slab.c
index ca8b44a..42af6a3 100644
--- a/kern/slab.c
+++ b/kern/slab.c
@@ -53,14 +53,11 @@
*
* The per-cache self-scaling hash table for buffer-to-bufctl conversion,
* described in 3.2.3 "Slab Layout for Large Objects", has been replaced with
- * a constant time buffer-to-slab lookup that relies on the VM system. When
- * slabs are created, their backing virtual pages are mapped to physical pages
- * that are never aliased by other virtual addresses (unless explicitely by
- * other kernel code). The lookup operation provides the associated physical
- * page descriptor which can store data private to this allocator. The main
- * drawback of this method is that it needs to walk the low level page tables,
- * but it's expected that these have already been cached by the CPU due to
- * prior access by the allocator user, depending on the hardware properties.
+ * a constant time buffer-to-slab lookup that relies on the VM system. Slabs
+ * are allocated from the direct mapping of physical memory, which enables
+ * the retrieval of physical addresses backing slabs with a simple shift.
+ * Physical addresses are then used to find page descriptors, which store
+ * data private to this allocator.
*
* This implementation uses per-cpu pools of objects, which service most
* allocation requests. These pools act as caches (but are named differently
@@ -81,6 +78,7 @@
#include <mach/vm_param.h>
#include <mach/machine/vm_types.h>
#include <vm/vm_kern.h>
+#include <vm/vm_page.h>
#include <vm/vm_types.h>
#include <sys/types.h>
@@ -135,9 +133,9 @@
#define KMEM_CPU_POOL_TRANSFER_RATIO 2
/*
- * Size of the VM submap from which default backend functions allocate.
+ * Logarithm of the size of the smallest general cache.
*/
-#define KMEM_MAP_SIZE (96 * 1024 * 1024)
+#define KMEM_CACHES_FIRST_ORDER 5
/*
* Shift for the first kalloc cache size.
@@ -204,12 +202,6 @@ static unsigned int kmem_nr_caches;
static simple_lock_data_t __attribute__((used)) kmem_cache_list_lock;
/*
- * VM submap for slab caches.
- */
-static struct vm_map kmem_map_store;
-vm_map_t kmem_map = &kmem_map_store;
-
-/*
* Time of the last memory reclaim, in clock ticks.
*/
static unsigned long kmem_gc_last_tick;
@@ -310,30 +302,12 @@ static inline void * kmem_bufctl_to_buf(union kmem_bufctl *bufctl,
return (void *)bufctl - cache->bufctl_dist;
}
-static vm_offset_t kmem_pagealloc(vm_size_t size)
-{
- vm_offset_t addr;
- kern_return_t kr;
-
- kr = kmem_alloc_wired(kmem_map, &addr, size);
-
- if (kr != KERN_SUCCESS)
- return 0;
-
- return addr;
-}
-
-static void kmem_pagefree(vm_offset_t ptr, vm_size_t size)
-{
- kmem_free(kmem_map, ptr, size);
-}
-
static void kmem_slab_create_verify(struct kmem_slab *slab,
struct kmem_cache *cache)
{
struct kmem_buftag *buftag;
- size_t buf_size;
unsigned long buffers;
+ size_t buf_size;
void *buf;
buf_size = cache->buf_size;
@@ -356,29 +330,26 @@ static void kmem_slab_create_verify(struct kmem_slab *slab,
static struct kmem_slab * kmem_slab_create(struct kmem_cache *cache,
size_t color)
{
+ struct vm_page *page;
struct kmem_slab *slab;
union kmem_bufctl *bufctl;
size_t buf_size;
unsigned long buffers;
void *slab_buf;
- if (cache->slab_alloc_fn == NULL)
- slab_buf = (void *)kmem_pagealloc(cache->slab_size);
- else
- slab_buf = (void *)cache->slab_alloc_fn(cache->slab_size);
+ page = vm_page_alloc_p(cache->slab_order, VM_PAGE_SEL_DIRECTMAP,
+ VM_PAGE_KMEM);
- if (slab_buf == NULL)
+ if (page == NULL)
return NULL;
+ slab_buf = vm_page_direct_ptr(page);
+
if (cache->flags & KMEM_CF_SLAB_EXTERNAL) {
slab = (struct kmem_slab *)kmem_cache_alloc(&kmem_slab_cache);
if (slab == NULL) {
- if (cache->slab_free_fn == NULL)
- kmem_pagefree((vm_offset_t)slab_buf, cache->slab_size);
- else
- cache->slab_free_fn((vm_offset_t)slab_buf, cache->slab_size);
-
+ vm_page_free_p(page, cache->slab_order);
return NULL;
}
} else {
@@ -438,21 +409,12 @@ static void kmem_slab_destroy_verify(struct kmem_slab *slab,
*/
static void kmem_slab_destroy(struct kmem_slab *slab, struct kmem_cache *cache)
{
- vm_offset_t slab_buf;
-
assert(slab->nr_refs == 0);
assert(slab->first_free != NULL);
if (cache->flags & KMEM_CF_VERIFY)
kmem_slab_destroy_verify(slab, cache);
- slab_buf = (vm_offset_t)P2ALIGN((unsigned long)slab->addr, PAGE_SIZE);
-
- if (cache->slab_free_fn == NULL)
- kmem_pagefree(slab_buf, cache->slab_size);
- else
- cache->slab_free_fn(slab_buf, cache->slab_size);
-
if (cache->flags & KMEM_CF_SLAB_EXTERNAL)
kmem_cache_free(&kmem_slab_cache, (vm_offset_t)slab);
}
@@ -473,7 +435,7 @@ kmem_slab_vmref(struct kmem_slab *slab, size_t size)
end = va + size;
do {
- page = vm_kmem_lookup_page(va);
+ page = vm_page_lookup_pa(vm_page_direct_pa(va));
assert(page != NULL);
assert(page->slab_priv == NULL);
page->slab_priv = slab;
@@ -628,7 +590,8 @@ static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags)
{
size_t i, buffers, buf_size, slab_size, free_slab_size, optimal_size = 0;
size_t waste, waste_min;
- int embed, optimal_embed = 0;
+ int embed, optimal_embed = optimal_embed;
+ unsigned int slab_order, optimal_order = optimal_order;
buf_size = cache->buf_size;
@@ -640,7 +603,9 @@ static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags)
do {
i++;
- slab_size = P2ROUND(i * buf_size, PAGE_SIZE);
+
+ slab_order = vm_page_order(i * buf_size);
+ slab_size = PAGE_SIZE << slab_order;
free_slab_size = slab_size;
if (flags & KMEM_CACHE_NOOFFSLAB)
@@ -663,6 +628,7 @@ static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags)
if (waste <= waste_min) {
waste_min = waste;
+ optimal_order = slab_order;
optimal_size = slab_size;
optimal_embed = embed;
}
@@ -672,10 +638,10 @@ static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags)
assert(optimal_size > 0);
assert(!(flags & KMEM_CACHE_NOOFFSLAB) || optimal_embed);
+ cache->slab_order = optimal_order;
cache->slab_size = optimal_size;
- slab_size = cache->slab_size - (optimal_embed
- ? sizeof(struct kmem_slab)
- : 0);
+ slab_size = cache->slab_size
+ - (optimal_embed ? sizeof(struct kmem_slab) : 0);
cache->bufs_per_slab = slab_size / buf_size;
cache->color_max = slab_size % buf_size;
@@ -690,10 +656,9 @@ static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags)
}
}
-void kmem_cache_init(struct kmem_cache *cache, const char *name,
- size_t obj_size, size_t align, kmem_ctor_fn_t ctor,
- kmem_slab_alloc_fn_t slab_alloc_fn,
- kmem_slab_free_fn_t slab_free_fn, int flags)
+void
+kmem_cache_init(struct kmem_cache *cache, const char *name, size_t obj_size,
+ size_t align, kmem_ctor_fn_t ctor, int flags)
{
#if SLAB_USE_CPU_POOLS
struct kmem_cpu_pool_type *cpu_pool_type;
@@ -735,8 +700,6 @@ void kmem_cache_init(struct kmem_cache *cache, const char *name,
cache->nr_slabs = 0;
cache->nr_free_slabs = 0;
cache->ctor = ctor;
- cache->slab_alloc_fn = slab_alloc_fn;
- cache->slab_free_fn = slab_free_fn;
strncpy(cache->name, name, sizeof(cache->name));
cache->name[sizeof(cache->name) - 1] = '\0';
cache->buftag_dist = 0;
@@ -905,7 +868,7 @@ static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf)
} else {
struct vm_page *page;
- page = vm_kmem_lookup_page((unsigned long)buf);
+ page = vm_page_lookup_pa(vm_page_direct_pa((unsigned long)buf));
assert(page != NULL);
slab = page->slab_priv;
assert(slab != NULL);
@@ -1194,16 +1157,13 @@ void slab_bootstrap(void)
void slab_init(void)
{
- vm_offset_t min, max;
+ size_t i, size;
+ char name[KMEM_CACHE_NAME_SIZE];
#if SLAB_USE_CPU_POOLS
struct kmem_cpu_pool_type *cpu_pool_type;
- char name[KMEM_CACHE_NAME_SIZE];
- size_t i, size;
#endif /* SLAB_USE_CPU_POOLS */
- kmem_submap(kmem_map, kernel_map, &min, &max, KMEM_MAP_SIZE, FALSE);
-
#if SLAB_USE_CPU_POOLS
for (i = 0; i < ARRAY_SIZE(kmem_cpu_pool_types); i++) {
cpu_pool_type = &kmem_cpu_pool_types[i];
@@ -1211,7 +1171,7 @@ void slab_init(void)
sprintf(name, "kmem_cpu_array_%d", cpu_pool_type->array_size);
size = sizeof(void *) * cpu_pool_type->array_size;
kmem_cache_init(cpu_pool_type->array_cache, name, size,
- cpu_pool_type->array_align, NULL, NULL, NULL, 0);
+ cpu_pool_type->array_align, NULL, 0);
}
#endif /* SLAB_USE_CPU_POOLS */
@@ -1219,56 +1179,21 @@ void slab_init(void)
* Prevent off slab data for the slab cache to avoid infinite recursion.
*/
kmem_cache_init(&kmem_slab_cache, "kmem_slab", sizeof(struct kmem_slab),
- 0, NULL, NULL, NULL, KMEM_CACHE_NOOFFSLAB);
-}
-
-static vm_offset_t kalloc_pagealloc(vm_size_t size)
-{
- vm_offset_t addr;
- kern_return_t kr;
-
- kr = kmem_alloc_wired(kmem_map, &addr, size);
-
- if (kr != KERN_SUCCESS)
- return 0;
-
- return addr;
-}
-
-static void kalloc_pagefree(vm_offset_t ptr, vm_size_t size)
-{
- kmem_free(kmem_map, ptr, size);
-}
-
-void kalloc_init(void)
-{
- char name[KMEM_CACHE_NAME_SIZE];
- size_t i, size;
+ 0, NULL, KMEM_CACHE_NOOFFSLAB);
- size = 1 << KALLOC_FIRST_SHIFT;
+ size = 1 << KMEM_CACHES_FIRST_ORDER;
for (i = 0; i < ARRAY_SIZE(kalloc_caches); i++) {
- sprintf(name, "kalloc_%lu", size);
- kmem_cache_init(&kalloc_caches[i], name, size, 0, NULL,
- kalloc_pagealloc, kalloc_pagefree, 0);
+ sprintf(name, "kmem_%zu", size);
+ kmem_cache_init(&kalloc_caches[i], name, size, 0, NULL, 0);
size <<= 1;
}
}
-/*
- * Return the kalloc cache index matching the given allocation size, which
- * must be strictly greater than 0.
- */
-static inline size_t kalloc_get_index(unsigned long size)
+static inline size_t
+kalloc_get_index(unsigned long size)
{
- assert(size != 0);
-
- size = (size - 1) >> KALLOC_FIRST_SHIFT;
-
- if (size == 0)
- return 0;
- else
- return (sizeof(long) * 8) - __builtin_clzl(size);
+ return iorder2(size) - KMEM_CACHES_FIRST_ORDER;
}
static void kalloc_verify(struct kmem_cache *cache, void *buf, size_t size)
@@ -1301,8 +1226,17 @@ vm_offset_t kalloc(vm_size_t size)
if ((buf != 0) && (cache->flags & KMEM_CF_VERIFY))
kalloc_verify(cache, buf, size);
- } else
- buf = (void *)kalloc_pagealloc(size);
+ } else {
+ struct vm_page *page;
+
+ page = vm_page_alloc_p(vm_page_order(size), VM_PAGE_SEL_DIRECTMAP,
+ VM_PAGE_KERNEL);
+
+ if (page == NULL)
+ return (vm_offset_t) 0;
+
+ buf = vm_page_direct_ptr(page);
+ }
return (vm_offset_t)buf;
}
@@ -1343,7 +1277,10 @@ void kfree(vm_offset_t data, vm_size_t size)
kmem_cache_free(cache, data);
} else {
- kalloc_pagefree(data, size);
+ struct vm_page *page;
+
+ page = vm_page_lookup_pa(vm_page_direct_pa((unsigned long)data));
+ vm_page_free_p(page, vm_page_order(size));
}
}