diff options
-rw-r--r-- | Makefrag.am | 7 | ||||
-rw-r--r-- | configfrag.ac | 6 | ||||
-rw-r--r-- | i386/Makefrag.am | 1 | ||||
-rw-r--r-- | i386/configfrag.ac | 3 | ||||
-rw-r--r-- | i386/i386/zalloc.h | 29 | ||||
-rw-r--r-- | include/mach_debug/slab_info.h (renamed from include/mach_debug/zone_info.h) | 57 | ||||
-rw-r--r-- | kern/kalloc.c | 254 | ||||
-rw-r--r-- | kern/slab.c | 1576 | ||||
-rw-r--r-- | kern/slab.h | 222 | ||||
-rw-r--r-- | kern/zalloc.c | 1007 | ||||
-rw-r--r-- | kern/zalloc.h | 136 |
11 files changed, 1839 insertions, 1459 deletions
diff --git a/Makefrag.am b/Makefrag.am index 07b6499..b3e131a 100644 --- a/Makefrag.am +++ b/Makefrag.am @@ -151,7 +151,6 @@ libkernel_a_SOURCES += \ kern/ipc_sched.h \ kern/ipc_tt.c \ kern/ipc_tt.h \ - kern/kalloc.c \ kern/kalloc.h \ kern/kern_types.h \ kern/list.h \ @@ -180,6 +179,8 @@ libkernel_a_SOURCES += \ kern/rbtree.h \ kern/rbtree_i.h \ kern/refcount.h \ + kern/slab.c \ + kern/slab.h \ kern/sched.h \ kern/sched_prim.c \ kern/sched_prim.h \ @@ -204,8 +205,6 @@ libkernel_a_SOURCES += \ kern/timer.h \ kern/xpr.c \ kern/xpr.h \ - kern/zalloc.c \ - kern/zalloc.h \ kern/elf-load.c \ kern/boot_script.c EXTRA_DIST += \ @@ -406,7 +405,7 @@ include_mach_eXec_HEADERS = \ # mach-debug-headers:= $(addprefix mach_debug/, hash_info.h ipc_info.h \ # mach_debug.defs mach_debug_types.defs mach_debug_types.h \ -# pc_info.h vm_info.h zone_info.h) +# pc_info.h vm_info.h slab_info.h) # Other headers for the distribution. We don't install these, because the # GNU C library has correct versions for users to use. diff --git a/configfrag.ac b/configfrag.ac index 77b0024..5f13b63 100644 --- a/configfrag.ac +++ b/configfrag.ac @@ -102,6 +102,12 @@ AC_DEFINE([STAT_TIME], [1], [STAT_TIME]) # Kernel tracing. AC_DEFINE([XPR_DEBUG], [1], [XPR_DEBUG]) + +# Slab allocator debugging facilities. +AC_DEFINE([SLAB_VERIFY], [0], [SLAB_VERIFY]) + +# Enable the CPU pool layer in the slab allocator. +AC_DEFINE([SLAB_USE_CPU_POOLS], [0], [SLAB_USE_CPU_POOLS]) # # Options. diff --git a/i386/Makefrag.am b/i386/Makefrag.am index ab3502a..aca4215 100644 --- a/i386/Makefrag.am +++ b/i386/Makefrag.am @@ -136,7 +136,6 @@ libkernel_a_SOURCES += \ i386/i386/vm_param.h \ i386/i386/vm_tuning.h \ i386/i386/xpr.h \ - i386/i386/zalloc.h \ i386/intel/pmap.c \ i386/intel/pmap.h \ i386/intel/read_fault.c \ diff --git a/i386/configfrag.ac b/i386/configfrag.ac index e4ce97e..77f66af 100644 --- a/i386/configfrag.ac +++ b/i386/configfrag.ac @@ -25,6 +25,9 @@ dnl USE OF THIS SOFTWARE. AC_DEFINE([__ELF__], [1], [__ELF__]) AC_DEFINE([i386], [1], [i386]) + # Determines the size of the CPU cache line. + AC_DEFINE([CPU_L1_SHIFT], [6], [CPU_L1_SHIFT]) + [# Does the architecture provide machine-specific interfaces? mach_machine_routines=1;; *)] diff --git a/i386/i386/zalloc.h b/i386/i386/zalloc.h deleted file mode 100644 index bf7cf6b..0000000 --- a/i386/i386/zalloc.h +++ /dev/null @@ -1,29 +0,0 @@ -/* - * Copyright (c) 1996-1994 The University of Utah and - * the Computer Systems Laboratory (CSL). All rights reserved. - * - * Permission to use, copy, modify and distribute this software is hereby - * granted provided that (1) source code retains these copyright, permission, - * and disclaimer notices, and (2) redistributions including binaries - * reproduce the notices in supporting documentation, and (3) all advertising - * materials mentioning features or use of this software display the following - * acknowledgement: ``This product includes software developed by the - * Computer Systems Laboratory at the University of Utah.'' - * - * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS - * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF - * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. - * - * CSL requests users of this software to return to csl-dist@cs.utah.edu any - * improvements that they make and grant CSL redistribution rights. - * - * Utah $Hdr: zalloc.h 1.4 94/12/16$ - * Author: Bryan Ford - */ - -#ifndef _I386_ZALLOC_H_ -#define _I386_ZALLOC_H_ - -#include <kern/zalloc.h> - -#endif /* _I386_ZALLOC_H_ */ diff --git a/include/mach_debug/zone_info.h b/include/mach_debug/slab_info.h index 1b36fe0..37dcb8c 100644 --- a/include/mach_debug/zone_info.h +++ b/include/mach_debug/slab_info.h @@ -24,38 +24,39 @@ * the rights to redistribute these changes. */ -#ifndef _MACH_DEBUG_ZONE_INFO_H_ -#define _MACH_DEBUG_ZONE_INFO_H_ +#ifndef _MACH_DEBUG_SLAB_INFO_H_ +#define _MACH_DEBUG_SLAB_INFO_H_ -#include <mach/boolean.h> -#include <mach/machine/vm_types.h> +#include <sys/types.h> /* * Remember to update the mig type definitions * in mach_debug_types.defs when adding/removing fields. */ -#define ZONE_NAME_MAX_LEN 80 - -typedef struct zone_name { - char zn_name[ZONE_NAME_MAX_LEN]; -} zone_name_t; - -typedef zone_name_t *zone_name_array_t; - - -typedef struct zone_info { - integer_t zi_count; /* Number of elements used now */ - vm_size_t zi_cur_size; /* current memory utilization */ - vm_size_t zi_max_size; /* how large can this zone grow */ - vm_size_t zi_elem_size; /* size of an element */ - vm_size_t zi_alloc_size; /* size used for more memory */ -/*boolean_t*/integer_t zi_pageable; /* zone pageable? */ -/*boolean_t*/integer_t zi_sleepable; /* sleep if empty? */ -/*boolean_t*/integer_t zi_exhaustible; /* merely return if empty? */ -/*boolean_t*/integer_t zi_collectable; /* garbage collect elements? */ -} zone_info_t; - -typedef zone_info_t *zone_info_array_t; - -#endif /* _MACH_DEBUG_ZONE_INFO_H_ */ +#define CACHE_NAME_MAX_LEN 32 + +#define CACHE_FLAGS_NO_CPU_POOL 0x01 +#define CACHE_FLAGS_SLAB_EXTERNAL 0x02 +#define CACHE_FLAGS_NO_RECLAIM 0x04 +#define CACHE_FLAGS_VERIFY 0x08 +#define CACHE_FLAGS_DIRECT 0x10 + +typedef struct cache_info { + int flags; + size_t cpu_pool_size; + size_t obj_size; + size_t align; + size_t buf_size; + size_t slab_size; + unsigned long bufs_per_slab; + unsigned long nr_objs; + unsigned long nr_bufs; + unsigned long nr_slabs; + unsigned long nr_free_slabs; + char name[CACHE_NAME_MAX_LEN]; +} cache_info_t; + +typedef cache_info_t *cache_info_array_t; + +#endif /* _MACH_DEBUG_SLAB_INFO_H_ */ diff --git a/kern/kalloc.c b/kern/kalloc.c deleted file mode 100644 index 8256305..0000000 --- a/kern/kalloc.c +++ /dev/null @@ -1,254 +0,0 @@ -/* - * Mach Operating System - * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University. - * Copyright (c) 1993,1994 The University of Utah and - * the Computer Systems Laboratory (CSL). - * All rights reserved. - * - * Permission to use, copy, modify and distribute this software and its - * documentation is hereby granted, provided that both the copyright - * notice and this permission notice appear in all copies of the - * software, derivative works or modified versions, and any portions - * thereof, and that both notices appear in supporting documentation. - * - * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF - * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY - * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF - * THIS SOFTWARE. - * - * Carnegie Mellon requests users of this software to return to - * - * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU - * School of Computer Science - * Carnegie Mellon University - * Pittsburgh PA 15213-3890 - * - * any improvements or extensions that they make and grant Carnegie Mellon - * the rights to redistribute these changes. - */ -/* - * File: kern/kalloc.c - * Author: Avadis Tevanian, Jr. - * Date: 1985 - * - * General kernel memory allocator. This allocator is designed - * to be used by the kernel to manage dynamic memory fast. - */ - -#include <mach/machine/vm_types.h> -#include <mach/vm_param.h> - -#include <kern/debug.h> -#include <kern/zalloc.h> -#include <kern/kalloc.h> -#include <vm/vm_kern.h> -#include <vm/vm_object.h> -#include <vm/vm_map.h> - - - -vm_map_t kalloc_map; -vm_size_t kalloc_map_size = 64 * 1024 * 1024; -vm_size_t kalloc_max; - -/* - * All allocations of size less than kalloc_max are rounded to the - * next highest power of 2. This allocator is built on top of - * the zone allocator. A zone is created for each potential size - * that we are willing to get in small blocks. - * - * We assume that kalloc_max is not greater than 64K; - * thus 16 is a safe array size for k_zone and k_zone_name. - */ - -int first_k_zone = -1; -struct zone *k_zone[16]; -static char *k_zone_name[16] = { - "kalloc.1", "kalloc.2", - "kalloc.4", "kalloc.8", - "kalloc.16", "kalloc.32", - "kalloc.64", "kalloc.128", - "kalloc.256", "kalloc.512", - "kalloc.1024", "kalloc.2048", - "kalloc.4096", "kalloc.8192", - "kalloc.16384", "kalloc.32768" -}; - -/* - * Max number of elements per zone. zinit rounds things up correctly - * Doing things this way permits each zone to have a different maximum size - * based on need, rather than just guessing; it also - * means its patchable in case you're wrong! - */ -unsigned long k_zone_max[16] = { - 1024, /* 1 Byte */ - 1024, /* 2 Byte */ - 1024, /* 4 Byte */ - 1024, /* 8 Byte */ - 1024, /* 16 Byte */ - 4096, /* 32 Byte */ - 4096, /* 64 Byte */ - 4096, /* 128 Byte */ - 4096, /* 256 Byte */ - 1024, /* 512 Byte */ - 1024, /* 1024 Byte */ - 1024, /* 2048 Byte */ - 1024, /* 4096 Byte */ - 4096, /* 8192 Byte */ - 64, /* 16384 Byte */ - 64, /* 32768 Byte */ -}; - -/* - * Initialize the memory allocator. This should be called only - * once on a system wide basis (i.e. first processor to get here - * does the initialization). - * - * This initializes all of the zones. - */ - -#ifndef NDEBUG -static int kalloc_init_called; -#endif - -void kalloc_init() -{ - vm_offset_t min, max; - vm_size_t size; - register int i; - - assert (! kalloc_init_called); - - kalloc_map = kmem_suballoc(kernel_map, &min, &max, - kalloc_map_size, FALSE); - - /* - * Ensure that zones up to size 8192 bytes exist. - * This is desirable because messages are allocated - * with kalloc, and messages up through size 8192 are common. - */ - - if (PAGE_SIZE < 16*1024) - kalloc_max = 16*1024; - else - kalloc_max = PAGE_SIZE; - - /* - * Allocate a zone for each size we are going to handle. - * We specify non-paged memory. - */ - for (i = 0, size = 1; size < kalloc_max; i++, size <<= 1) { - if (size < MINSIZE) { - k_zone[i] = 0; - continue; - } - if (size == MINSIZE) { - first_k_zone = i; - } - k_zone[i] = zinit(size, 0, k_zone_max[i] * size, size, - size >= PAGE_SIZE ? ZONE_COLLECTABLE : 0, - k_zone_name[i]); - } - -#ifndef NDEBUG - kalloc_init_called = 1; -#endif -} - -vm_offset_t kalloc(size) - vm_size_t size; -{ - register int zindex; - register vm_size_t allocsize; - vm_offset_t addr; - - /* compute the size of the block that we will actually allocate */ - - assert (kalloc_init_called); - - allocsize = size; - if (size < kalloc_max) { - allocsize = MINSIZE; - zindex = first_k_zone; - while (allocsize < size) { - allocsize <<= 1; - zindex++; - } - } - - /* - * If our size is still small enough, check the queue for that size - * and allocate. - */ - - if (allocsize < kalloc_max) { - addr = zalloc(k_zone[zindex]); - } else { - if (kmem_alloc_wired(kalloc_map, &addr, allocsize) - != KERN_SUCCESS) - addr = 0; - } - return(addr); -} - -vm_offset_t kget(size) - vm_size_t size; -{ - register int zindex; - register vm_size_t allocsize; - vm_offset_t addr; - - assert (kalloc_init_called); - - /* compute the size of the block that we will actually allocate */ - - allocsize = size; - if (size < kalloc_max) { - allocsize = MINSIZE; - zindex = first_k_zone; - while (allocsize < size) { - allocsize <<= 1; - zindex++; - } - } - - /* - * If our size is still small enough, check the queue for that size - * and allocate. - */ - - if (allocsize < kalloc_max) { - addr = zget(k_zone[zindex]); - } else { - /* This will never work, so we might as well panic */ - panic("kget"); - } - return(addr); -} - -void -kfree(data, size) - vm_offset_t data; - vm_size_t size; -{ - register int zindex; - register vm_size_t freesize; - - assert (kalloc_init_called); - - freesize = size; - if (size < kalloc_max) { - freesize = MINSIZE; - zindex = first_k_zone; - while (freesize < size) { - freesize <<= 1; - zindex++; - } - } - - if (freesize < kalloc_max) { - zfree(k_zone[zindex], data); - } else { - kmem_free(kalloc_map, data, freesize); - } -} diff --git a/kern/slab.c b/kern/slab.c new file mode 100644 index 0000000..38413e8 --- /dev/null +++ b/kern/slab.c @@ -0,0 +1,1576 @@ +/* + * Copyright (c) 2009, 2010, 2011 Richard Braun. + * Copyright (c) 2011 Maksym Planeta. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +/* + * Object caching and general purpose memory allocator. + * + * This allocator is based on the paper "The Slab Allocator: An Object-Caching + * Kernel Memory Allocator" by Jeff Bonwick. + * + * It allows the allocation of objects (i.e. fixed-size typed buffers) from + * caches and is efficient in both space and time. This implementation follows + * many of the indications from the paper mentioned. The most notable + * differences are outlined below. + * + * The per-cache self-scaling hash table for buffer-to-bufctl conversion, + * described in 3.2.3 "Slab Layout for Large Objects", has been replaced by + * a red-black tree storing slabs, sorted by address. The use of a + * self-balancing tree for buffer-to-slab conversions provides a few advantages + * over a hash table. Unlike a hash table, a BST provides a "lookup nearest" + * operation, so obtaining the slab data (whether it is embedded in the slab or + * off slab) from a buffer address simply consists of a "lookup nearest towards + * 0" tree search. Storing slabs instead of buffers also considerably reduces + * the number of elements to retain. Finally, a self-balancing tree is a true + * self-scaling data structure, whereas a hash table requires periodic + * maintenance and complete resizing, which is expensive. The only drawback is + * that releasing a buffer to the slab layer takes logarithmic time instead of + * constant time. But as the data set size is kept reasonable (because slabs + * are stored instead of buffers) and because the CPU pool layer services most + * requests, avoiding many accesses to the slab layer, it is considered an + * acceptable tradeoff. + * + * This implementation uses per-cpu pools of objects, which service most + * allocation requests. These pools act as caches (but are named differently + * to avoid confusion with CPU caches) that reduce contention on multiprocessor + * systems. When a pool is empty and cannot provide an object, it is filled by + * transferring multiple objects from the slab layer. The symmetric case is + * handled likewise. + */ + +#include <string.h> +#include <kern/assert.h> +#include <kern/mach_clock.h> +#include <kern/printf.h> +#include <kern/slab.h> +#include <kern/kalloc.h> +#include <kern/cpu_number.h> +#include <mach/vm_param.h> +#include <mach/machine/vm_types.h> +#include <vm/vm_kern.h> +#include <vm/vm_types.h> +#include <sys/types.h> + +#ifdef MACH_DEBUG +#include <mach_debug/slab_info.h> +#endif + +/* + * Utility macros. + */ +#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0])) +#define P2ALIGNED(x, a) (((x) & ((a) - 1)) == 0) +#define ISP2(x) P2ALIGNED(x, x) +#define P2ALIGN(x, a) ((x) & -(a)) +#define P2ROUND(x, a) (-(-(x) & -(a))) +#define P2END(x, a) (-(~(x) & -(a))) +#define likely(expr) __builtin_expect(!!(expr), 1) +#define unlikely(expr) __builtin_expect(!!(expr), 0) + +/* + * Minimum required alignment. + */ +#define KMEM_ALIGN_MIN 8 + +/* + * Minimum number of buffers per slab. + * + * This value is ignored when the slab size exceeds a threshold. + */ +#define KMEM_MIN_BUFS_PER_SLAB 8 + +/* + * Special slab size beyond which the minimum number of buffers per slab is + * ignored when computing the slab size of a cache. + */ +#define KMEM_SLAB_SIZE_THRESHOLD (8 * PAGE_SIZE) + +/* + * Special buffer size under which slab data is unconditionnally allocated + * from its associated slab. + */ +#define KMEM_BUF_SIZE_THRESHOLD (PAGE_SIZE / 8) + +/* + * Time (in seconds) between two garbage collection operations. + */ +#define KMEM_GC_INTERVAL (1 * hz) + +/* + * The transfer size of a CPU pool is computed by dividing the pool size by + * this value. + */ +#define KMEM_CPU_POOL_TRANSFER_RATIO 2 + +/* + * Redzone guard word. + */ +#ifdef __LP64__ +#if _HOST_BIG_ENDIAN +#define KMEM_REDZONE_WORD 0xfeedfacefeedfaceUL +#else /* _HOST_BIG_ENDIAN */ +#define KMEM_REDZONE_WORD 0xcefaedfecefaedfeUL +#endif /* _HOST_BIG_ENDIAN */ +#else /* __LP64__ */ +#if _HOST_BIG_ENDIAN +#define KMEM_REDZONE_WORD 0xfeedfaceUL +#else /* _HOST_BIG_ENDIAN */ +#define KMEM_REDZONE_WORD 0xcefaedfeUL +#endif /* _HOST_BIG_ENDIAN */ +#endif /* __LP64__ */ + +/* + * Redzone byte for padding. + */ +#define KMEM_REDZONE_BYTE 0xbb + +/* + * Size of the VM submap from which default backend functions allocate. + */ +#define KMEM_MAP_SIZE (64 * 1024 * 1024) + +/* + * Shift for the first kalloc cache size. + */ +#define KALLOC_FIRST_SHIFT 5 + +/* + * Number of caches backing general purpose allocations. + */ +#define KALLOC_NR_CACHES 13 + +/* + * Size of the VM submap for general purpose allocations. + */ +#define KALLOC_MAP_SIZE (64 * 1024 * 1024) + +/* + * Values the buftag state member can take. + */ +#ifdef __LP64__ +#if _HOST_BIG_ENDIAN +#define KMEM_BUFTAG_ALLOC 0xa110c8eda110c8edUL +#define KMEM_BUFTAG_FREE 0xf4eeb10cf4eeb10cUL +#else /* _HOST_BIG_ENDIAN */ +#define KMEM_BUFTAG_ALLOC 0xedc810a1edc810a1UL +#define KMEM_BUFTAG_FREE 0x0cb1eef40cb1eef4UL +#endif /* _HOST_BIG_ENDIAN */ +#else /* __LP64__ */ +#if _HOST_BIG_ENDIAN +#define KMEM_BUFTAG_ALLOC 0xa110c8edUL +#define KMEM_BUFTAG_FREE 0xf4eeb10cUL +#else /* _HOST_BIG_ENDIAN */ +#define KMEM_BUFTAG_ALLOC 0xedc810a1UL +#define KMEM_BUFTAG_FREE 0x0cb1eef4UL +#endif /* _HOST_BIG_ENDIAN */ +#endif /* __LP64__ */ + +/* + * Free and uninitialized patterns. + * + * These values are unconditionnally 64-bit wide since buffers are at least + * 8-byte aligned. + */ +#if _HOST_BIG_ENDIAN +#define KMEM_FREE_PATTERN 0xdeadbeefdeadbeefULL +#define KMEM_UNINIT_PATTERN 0xbaddcafebaddcafeULL +#else /* _HOST_BIG_ENDIAN */ +#define KMEM_FREE_PATTERN 0xefbeaddeefbeaddeULL +#define KMEM_UNINIT_PATTERN 0xfecaddbafecaddbaULL +#endif /* _HOST_BIG_ENDIAN */ + +/* + * Cache flags. + * + * The flags don't change once set and can be tested without locking. + */ +#define KMEM_CF_NO_CPU_POOL 0x01 /* CPU pool layer disabled */ +#define KMEM_CF_SLAB_EXTERNAL 0x02 /* Slab data is off slab */ +#define KMEM_CF_NO_RECLAIM 0x04 /* Slabs are not reclaimable */ +#define KMEM_CF_VERIFY 0x08 /* Debugging facilities enabled */ +#define KMEM_CF_DIRECT 0x10 /* No buf-to-slab tree lookup */ + +/* + * Options for kmem_cache_alloc_verify(). + */ +#define KMEM_AV_NOCONSTRUCT 0 +#define KMEM_AV_CONSTRUCT 1 + +/* + * Error codes for kmem_cache_error(). + */ +#define KMEM_ERR_INVALID 0 /* Invalid address being freed */ +#define KMEM_ERR_DOUBLEFREE 1 /* Freeing already free address */ +#define KMEM_ERR_BUFTAG 2 /* Invalid buftag content */ +#define KMEM_ERR_MODIFIED 3 /* Buffer modified while free */ +#define KMEM_ERR_REDZONE 4 /* Redzone violation */ + +#if SLAB_USE_CPU_POOLS +/* + * Available CPU pool types. + * + * For each entry, the CPU pool size applies from the entry buf_size + * (excluded) up to (and including) the buf_size of the preceding entry. + * + * See struct kmem_cpu_pool_type for a description of the values. + */ +static struct kmem_cpu_pool_type kmem_cpu_pool_types[] = { + { 32768, 1, 0, NULL }, + { 4096, 8, CPU_L1_SIZE, NULL }, + { 256, 64, CPU_L1_SIZE, NULL }, + { 0, 128, CPU_L1_SIZE, NULL } +}; + +/* + * Caches where CPU pool arrays are allocated from. + */ +static struct kmem_cache kmem_cpu_array_caches[ARRAY_SIZE(kmem_cpu_pool_types)]; +#endif /* SLAB_USE_CPU_POOLS */ + +/* + * Cache for off slab data. + */ +static struct kmem_cache kmem_slab_cache; + +/* + * General purpose caches array. + */ +static struct kmem_cache kalloc_caches[KALLOC_NR_CACHES]; + +/* + * List of all caches managed by the allocator. + */ +static struct list kmem_cache_list; +static unsigned int kmem_nr_caches; +static simple_lock_data_t __attribute__((used)) kmem_cache_list_lock; + +/* + * VM submap for slab caches (except general purpose allocations). + */ +static struct vm_map kmem_map_store; +vm_map_t kmem_map = &kmem_map_store; + +/* + * VM submap for general purpose allocations. + */ +static struct vm_map kalloc_map_store; +vm_map_t kalloc_map = &kalloc_map_store; + +/* + * Time of the last memory reclaim, in clock ticks. + */ +static unsigned int kmem_gc_last_tick; + +#define kmem_error(format, ...) \ + printf("mem: error: %s(): " format "\n", __func__, \ + ## __VA_ARGS__) + +#define kmem_warn(format, ...) \ + printf("mem: warning: %s(): " format "\n", __func__, \ + ## __VA_ARGS__) + +#define kmem_print(format, ...) \ + printf(format "\n", ## __VA_ARGS__) + +static void kmem_cache_error(struct kmem_cache *cache, void *buf, int error, + void *arg); +static void * kmem_cache_alloc_from_slab(struct kmem_cache *cache); +static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf); + +static void * kmem_buf_verify_bytes(void *buf, void *pattern, size_t size) +{ + char *ptr, *pattern_ptr, *end; + + end = buf + size; + + for (ptr = buf, pattern_ptr = pattern; ptr < end; ptr++, pattern_ptr++) + if (*ptr != *pattern_ptr) + return ptr; + + return NULL; +} + +static void * kmem_buf_verify(void *buf, uint64_t pattern, vm_size_t size) +{ + uint64_t *ptr, *end; + + assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t))); + assert(P2ALIGNED(size, sizeof(uint64_t))); + + end = buf + size; + + for (ptr = buf; ptr < end; ptr++) + if (*ptr != pattern) + return kmem_buf_verify_bytes(ptr, &pattern, sizeof(pattern)); + + return NULL; +} + +static void kmem_buf_fill(void *buf, uint64_t pattern, size_t size) +{ + uint64_t *ptr, *end; + + assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t))); + assert(P2ALIGNED(size, sizeof(uint64_t))); + + end = buf + size; + + for (ptr = buf; ptr < end; ptr++) + *ptr = pattern; +} + +static void * kmem_buf_verify_fill(void *buf, uint64_t old, uint64_t new, + size_t size) +{ + uint64_t *ptr, *end; + + assert(P2ALIGNED((unsigned long)buf, sizeof(uint64_t))); + assert(P2ALIGNED(size, sizeof(uint64_t))); + + end = buf + size; + + for (ptr = buf; ptr < end; ptr++) { + if (*ptr != old) + return kmem_buf_verify_bytes(ptr, &old, sizeof(old)); + + *ptr = new; + } + + return NULL; +} + +static inline union kmem_bufctl * +kmem_buf_to_bufctl(void *buf, struct kmem_cache *cache) +{ + return (union kmem_bufctl *)(buf + cache->bufctl_dist); +} + +static inline struct kmem_buftag * +kmem_buf_to_buftag(void *buf, struct kmem_cache *cache) +{ + return (struct kmem_buftag *)(buf + cache->buftag_dist); +} + +static inline void * kmem_bufctl_to_buf(union kmem_bufctl *bufctl, + struct kmem_cache *cache) +{ + return (void *)bufctl - cache->bufctl_dist; +} + +static vm_offset_t kmem_pagealloc(vm_size_t size) +{ + vm_offset_t addr; + kern_return_t kr; + + kr = kmem_alloc_wired(kmem_map, &addr, size); + + if (kr != KERN_SUCCESS) + return 0; + + return addr; +} + +static void kmem_pagefree(vm_offset_t ptr, vm_size_t size) +{ + kmem_free(kmem_map, ptr, size); +} + +static void kmem_slab_create_verify(struct kmem_slab *slab, + struct kmem_cache *cache) +{ + struct kmem_buftag *buftag; + size_t buf_size; + unsigned long buffers; + void *buf; + + buf_size = cache->buf_size; + buf = slab->addr; + buftag = kmem_buf_to_buftag(buf, cache); + + for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { + kmem_buf_fill(buf, KMEM_FREE_PATTERN, cache->bufctl_dist); + buftag->state = KMEM_BUFTAG_FREE; + buf += buf_size; + buftag = kmem_buf_to_buftag(buf, cache); + } +} + +/* + * Create an empty slab for a cache. + * + * The caller must drop all locks before calling this function. + */ +static struct kmem_slab * kmem_slab_create(struct kmem_cache *cache, + size_t color) +{ + struct kmem_slab *slab; + union kmem_bufctl *bufctl; + size_t buf_size; + unsigned long buffers; + void *slab_buf; + + if (cache->slab_alloc_fn == NULL) + slab_buf = (void *)kmem_pagealloc(cache->slab_size); + else + slab_buf = (void *)cache->slab_alloc_fn(cache->slab_size); + + if (slab_buf == NULL) + return NULL; + + if (cache->flags & KMEM_CF_SLAB_EXTERNAL) { + assert(!(cache->flags & KMEM_CF_NO_RECLAIM)); + slab = (struct kmem_slab *)kmem_cache_alloc(&kmem_slab_cache); + + if (slab == NULL) { + if (cache->slab_free_fn == NULL) + kmem_pagefree((vm_offset_t)slab_buf, cache->slab_size); + else + cache->slab_free_fn((vm_offset_t)slab_buf, cache->slab_size); + + return NULL; + } + } else { + slab = (struct kmem_slab *)(slab_buf + cache->slab_size) - 1; + } + + list_node_init(&slab->list_node); + rbtree_node_init(&slab->tree_node); + slab->nr_refs = 0; + slab->first_free = NULL; + slab->addr = slab_buf + color; + + buf_size = cache->buf_size; + bufctl = kmem_buf_to_bufctl(slab->addr, cache); + + for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { + bufctl->next = slab->first_free; + slab->first_free = bufctl; + bufctl = (union kmem_bufctl *)((void *)bufctl + buf_size); + } + + if (cache->flags & KMEM_CF_VERIFY) + kmem_slab_create_verify(slab, cache); + + return slab; +} + +static void kmem_slab_destroy_verify(struct kmem_slab *slab, + struct kmem_cache *cache) +{ + struct kmem_buftag *buftag; + size_t buf_size; + unsigned long buffers; + void *buf, *addr; + + buf_size = cache->buf_size; + buf = slab->addr; + buftag = kmem_buf_to_buftag(buf, cache); + + for (buffers = cache->bufs_per_slab; buffers != 0; buffers--) { + if (buftag->state != KMEM_BUFTAG_FREE) + kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG, buftag); + + addr = kmem_buf_verify(buf, KMEM_FREE_PATTERN, cache->bufctl_dist); + + if (addr != NULL) + kmem_cache_error(cache, buf, KMEM_ERR_MODIFIED, addr); + + buf += buf_size; + buftag = kmem_buf_to_buftag(buf, cache); + } +} + +/* + * Destroy a slab. + * + * The caller must drop all locks before calling this function. + */ +static void kmem_slab_destroy(struct kmem_slab *slab, struct kmem_cache *cache) +{ + vm_offset_t slab_buf; + + assert(slab->nr_refs == 0); + assert(slab->first_free != NULL); + assert(!(cache->flags & KMEM_CF_NO_RECLAIM)); + + if (cache->flags & KMEM_CF_VERIFY) + kmem_slab_destroy_verify(slab, cache); + + slab_buf = (vm_offset_t)P2ALIGN((unsigned long)slab->addr, PAGE_SIZE); + + if (cache->slab_free_fn == NULL) + kmem_pagefree(slab_buf, cache->slab_size); + else + cache->slab_free_fn(slab_buf, cache->slab_size); + + if (cache->flags & KMEM_CF_SLAB_EXTERNAL) + kmem_cache_free(&kmem_slab_cache, (vm_offset_t)slab); +} + +static inline int kmem_slab_use_tree(int flags) +{ + return !(flags & KMEM_CF_DIRECT) || (flags & KMEM_CF_VERIFY); +} + +static inline int kmem_slab_cmp_lookup(const void *addr, + const struct rbtree_node *node) +{ + struct kmem_slab *slab; + + slab = rbtree_entry(node, struct kmem_slab, tree_node); + + if (addr == slab->addr) + return 0; + else if (addr < slab->addr) + return -1; + else + return 1; +} + +static inline int kmem_slab_cmp_insert(const struct rbtree_node *a, + const struct rbtree_node *b) +{ + struct kmem_slab *slab; + + slab = rbtree_entry(a, struct kmem_slab, tree_node); + return kmem_slab_cmp_lookup(slab->addr, b); +} + +#if SLAB_USE_CPU_POOLS +static void kmem_cpu_pool_init(struct kmem_cpu_pool *cpu_pool, + struct kmem_cache *cache) +{ + simple_lock_init(&cpu_pool->lock); + cpu_pool->flags = cache->flags; + cpu_pool->size = 0; + cpu_pool->transfer_size = 0; + cpu_pool->nr_objs = 0; + cpu_pool->array = NULL; +} + +/* + * Return a CPU pool. + * + * This function will generally return the pool matching the CPU running the + * calling thread. Because of context switches and thread migration, the + * caller might be running on another processor after this function returns. + * Although not optimal, this should rarely happen, and it doesn't affect the + * allocator operations in any other way, as CPU pools are always valid, and + * their access is serialized by a lock. + */ +static inline struct kmem_cpu_pool * kmem_cpu_pool_get(struct kmem_cache *cache) +{ + return &cache->cpu_pools[cpu_number()]; +} + +static inline void kmem_cpu_pool_build(struct kmem_cpu_pool *cpu_pool, + struct kmem_cache *cache, void **array) +{ + cpu_pool->size = cache->cpu_pool_type->array_size; + cpu_pool->transfer_size = (cpu_pool->size + + KMEM_CPU_POOL_TRANSFER_RATIO - 1) + / KMEM_CPU_POOL_TRANSFER_RATIO; + cpu_pool->array = array; +} + +static inline void * kmem_cpu_pool_pop(struct kmem_cpu_pool *cpu_pool) +{ + cpu_pool->nr_objs--; + return cpu_pool->array[cpu_pool->nr_objs]; +} + +static inline void kmem_cpu_pool_push(struct kmem_cpu_pool *cpu_pool, void *obj) +{ + cpu_pool->array[cpu_pool->nr_objs] = obj; + cpu_pool->nr_objs++; +} + +static int kmem_cpu_pool_fill(struct kmem_cpu_pool *cpu_pool, + struct kmem_cache *cache) +{ + void *obj; + int i; + + simple_lock(&cache->lock); + + for (i = 0; i < cpu_pool->transfer_size; i++) { + obj = kmem_cache_alloc_from_slab(cache); + + if (obj == NULL) + break; + + kmem_cpu_pool_push(cpu_pool, obj); + } + + simple_unlock(&cache->lock); + + return i; +} + +static void kmem_cpu_pool_drain(struct kmem_cpu_pool *cpu_pool, + struct kmem_cache *cache) +{ + void *obj; + int i; + + simple_lock(&cache->lock); + + for (i = cpu_pool->transfer_size; i > 0; i--) { + obj = kmem_cpu_pool_pop(cpu_pool); + kmem_cache_free_to_slab(cache, obj); + } + + simple_unlock(&cache->lock); +} +#endif /* SLAB_USE_CPU_POOLS */ + +static void kmem_cache_error(struct kmem_cache *cache, void *buf, int error, + void *arg) +{ + struct kmem_buftag *buftag; + + kmem_error("cache: %s, buffer: %p", cache->name, (void *)buf); + + switch(error) { + case KMEM_ERR_INVALID: + kmem_error("freeing invalid address"); + break; + case KMEM_ERR_DOUBLEFREE: + kmem_error("attempting to free the same address twice"); + break; + case KMEM_ERR_BUFTAG: + buftag = arg; + kmem_error("invalid buftag content, buftag state: %p", + (void *)buftag->state); + break; + case KMEM_ERR_MODIFIED: + kmem_error("free buffer modified, fault address: %p, " + "offset in buffer: %td", arg, arg - buf); + break; + case KMEM_ERR_REDZONE: + kmem_error("write beyond end of buffer, fault address: %p, " + "offset in buffer: %td", arg, arg - buf); + break; + default: + kmem_error("unknown error"); + } + + /* + * Never reached. + */ +} + +/* + * Compute an appropriate slab size for the given cache. + * + * Once the slab size is known, this function sets the related properties + * (buffers per slab and maximum color). It can also set the KMEM_CF_DIRECT + * and/or KMEM_CF_SLAB_EXTERNAL flags depending on the resulting layout. + */ +static void kmem_cache_compute_sizes(struct kmem_cache *cache, int flags) +{ + size_t i, buffers, buf_size, slab_size, free_slab_size, optimal_size; + size_t waste, waste_min; + int embed, optimal_embed = optimal_embed; + + buf_size = cache->buf_size; + + if (buf_size < KMEM_BUF_SIZE_THRESHOLD) + flags |= KMEM_CACHE_NOOFFSLAB; + + i = 0; + waste_min = (size_t)-1; + + do { + i++; + slab_size = P2ROUND(i * buf_size, PAGE_SIZE); + free_slab_size = slab_size; + + if (flags & KMEM_CACHE_NOOFFSLAB) + free_slab_size -= sizeof(struct kmem_slab); + + buffers = free_slab_size / buf_size; + waste = free_slab_size % buf_size; + + if (buffers > i) + i = buffers; + + if (flags & KMEM_CACHE_NOOFFSLAB) + embed = 1; + else if (sizeof(struct kmem_slab) <= waste) { + embed = 1; + waste -= sizeof(struct kmem_slab); + } else { + embed = 0; + } + + if (waste <= waste_min) { + waste_min = waste; + optimal_size = slab_size; + optimal_embed = embed; + } + } while ((buffers < KMEM_MIN_BUFS_PER_SLAB) + && (slab_size < KMEM_SLAB_SIZE_THRESHOLD)); + + assert(!(flags & KMEM_CACHE_NOOFFSLAB) || optimal_embed); + + cache->slab_size = optimal_size; + slab_size = cache->slab_size - (optimal_embed + ? sizeof(struct kmem_slab) + : 0); + cache->bufs_per_slab = slab_size / buf_size; + cache->color_max = slab_size % buf_size; + + if (cache->color_max >= PAGE_SIZE) + cache->color_max = PAGE_SIZE - 1; + + if (optimal_embed) { + if (cache->slab_size == PAGE_SIZE) + cache->flags |= KMEM_CF_DIRECT; + } else { + cache->flags |= KMEM_CF_SLAB_EXTERNAL; + } +} + +void kmem_cache_init(struct kmem_cache *cache, const char *name, + size_t obj_size, size_t align, kmem_cache_ctor_t ctor, + kmem_slab_alloc_fn_t slab_alloc_fn, + kmem_slab_free_fn_t slab_free_fn, int flags) +{ +#if SLAB_USE_CPU_POOLS + struct kmem_cpu_pool_type *cpu_pool_type; + size_t i; +#endif /* SLAB_USE_CPU_POOLS */ + size_t buf_size; + +#if SLAB_VERIFY + cache->flags = KMEM_CF_VERIFY; +#else /* SLAB_VERIFY */ + cache->flags = 0; +#endif /* SLAB_VERIFY */ + + if (flags & KMEM_CACHE_NOCPUPOOL) + cache->flags |= KMEM_CF_NO_CPU_POOL; + + if (flags & KMEM_CACHE_NORECLAIM) { + assert(slab_free_fn == NULL); + flags |= KMEM_CACHE_NOOFFSLAB; + cache->flags |= KMEM_CF_NO_RECLAIM; + } + + if (flags & KMEM_CACHE_VERIFY) + cache->flags |= KMEM_CF_VERIFY; + + if (align < KMEM_ALIGN_MIN) + align = KMEM_ALIGN_MIN; + + assert(obj_size > 0); + assert(ISP2(align)); + assert(align < PAGE_SIZE); + + buf_size = P2ROUND(obj_size, align); + + simple_lock_init(&cache->lock); + list_node_init(&cache->node); + list_init(&cache->partial_slabs); + list_init(&cache->free_slabs); + rbtree_init(&cache->active_slabs); + cache->obj_size = obj_size; + cache->align = align; + cache->buf_size = buf_size; + cache->bufctl_dist = buf_size - sizeof(union kmem_bufctl); + cache->color = 0; + cache->nr_objs = 0; + cache->nr_bufs = 0; + cache->nr_slabs = 0; + cache->nr_free_slabs = 0; + cache->ctor = ctor; + cache->slab_alloc_fn = slab_alloc_fn; + cache->slab_free_fn = slab_free_fn; + strncpy(cache->name, name, sizeof(cache->name)); + cache->name[sizeof(cache->name) - 1] = '\0'; + cache->buftag_dist = 0; + cache->redzone_pad = 0; + + if (cache->flags & KMEM_CF_VERIFY) { + cache->bufctl_dist = buf_size; + cache->buftag_dist = cache->bufctl_dist + sizeof(union kmem_bufctl); + cache->redzone_pad = cache->bufctl_dist - cache->obj_size; + buf_size += sizeof(union kmem_bufctl) + sizeof(struct kmem_buftag); + buf_size = P2ROUND(buf_size, align); + cache->buf_size = buf_size; + } + + kmem_cache_compute_sizes(cache, flags); + +#if SLAB_USE_CPU_POOLS + for (cpu_pool_type = kmem_cpu_pool_types; + buf_size <= cpu_pool_type->buf_size; + cpu_pool_type++); + + cache->cpu_pool_type = cpu_pool_type; + + for (i = 0; i < ARRAY_SIZE(cache->cpu_pools); i++) + kmem_cpu_pool_init(&cache->cpu_pools[i], cache); +#endif /* SLAB_USE_CPU_POOLS */ + + simple_lock(&kmem_cache_list_lock); + list_insert_tail(&kmem_cache_list, &cache->node); + kmem_nr_caches++; + simple_unlock(&kmem_cache_list_lock); +} + +static inline int kmem_cache_empty(struct kmem_cache *cache) +{ + return cache->nr_objs == cache->nr_bufs; +} + +static int kmem_cache_grow(struct kmem_cache *cache) +{ + struct kmem_slab *slab; + size_t color; + int empty; + + simple_lock(&cache->lock); + + if (!kmem_cache_empty(cache)) { + simple_unlock(&cache->lock); + return 1; + } + + color = cache->color; + cache->color += cache->align; + + if (cache->color > cache->color_max) + cache->color = 0; + + simple_unlock(&cache->lock); + + slab = kmem_slab_create(cache, color); + + simple_lock(&cache->lock); + + if (slab != NULL) { + list_insert_tail(&cache->free_slabs, &slab->list_node); + cache->nr_bufs += cache->bufs_per_slab; + cache->nr_slabs++; + cache->nr_free_slabs++; + } + + /* + * Even if our slab creation failed, another thread might have succeeded + * in growing the cache. + */ + empty = kmem_cache_empty(cache); + + simple_unlock(&cache->lock); + + return !empty; +} + +static void kmem_cache_reap(struct kmem_cache *cache) +{ + struct kmem_slab *slab; + struct list dead_slabs; + + if (cache->flags & KMEM_CF_NO_RECLAIM) + return; + + list_init(&dead_slabs); + + simple_lock(&cache->lock); + + while (!list_empty(&cache->free_slabs)) { + slab = list_first_entry(&cache->free_slabs, struct kmem_slab, + list_node); + list_remove(&slab->list_node); + list_insert(&dead_slabs, &slab->list_node); + cache->nr_bufs -= cache->bufs_per_slab; + cache->nr_slabs--; + cache->nr_free_slabs--; + } + + simple_unlock(&cache->lock); + + while (!list_empty(&dead_slabs)) { + slab = list_first_entry(&dead_slabs, struct kmem_slab, list_node); + list_remove(&slab->list_node); + kmem_slab_destroy(slab, cache); + } +} + +/* + * Allocate a raw (unconstructed) buffer from the slab layer of a cache. + * + * The cache must be locked before calling this function. + */ +static void * kmem_cache_alloc_from_slab(struct kmem_cache *cache) +{ + struct kmem_slab *slab; + union kmem_bufctl *bufctl; + + if (!list_empty(&cache->partial_slabs)) + slab = list_first_entry(&cache->partial_slabs, struct kmem_slab, + list_node); + else if (!list_empty(&cache->free_slabs)) + slab = list_first_entry(&cache->free_slabs, struct kmem_slab, + list_node); + else + return NULL; + + bufctl = slab->first_free; + assert(bufctl != NULL); + slab->first_free = bufctl->next; + slab->nr_refs++; + cache->nr_objs++; + + /* + * The slab has become complete. + */ + if (slab->nr_refs == cache->bufs_per_slab) { + list_remove(&slab->list_node); + + if (slab->nr_refs == 1) + cache->nr_free_slabs--; + } else if (slab->nr_refs == 1) { + /* + * The slab has become partial. + */ + list_remove(&slab->list_node); + list_insert_tail(&cache->partial_slabs, &slab->list_node); + cache->nr_free_slabs--; + } else if (!list_singular(&cache->partial_slabs)) { + struct list *node; + struct kmem_slab *tmp; + + /* + * The slab remains partial. If there are more than one partial slabs, + * maintain the list sorted. + */ + + assert(slab->nr_refs > 1); + + for (node = list_prev(&slab->list_node); + !list_end(&cache->partial_slabs, node); + node = list_prev(node)) { + tmp = list_entry(node, struct kmem_slab, list_node); + + if (tmp->nr_refs >= slab->nr_refs) + break; + } + + /* + * If the direct neighbor was found, the list is already sorted. + * If no slab was found, the slab is inserted at the head of the list. + */ + if (node != list_prev(&slab->list_node)) { + list_remove(&slab->list_node); + list_insert_after(node, &slab->list_node); + } + } + + if ((slab->nr_refs == 1) && kmem_slab_use_tree(cache->flags)) + rbtree_insert(&cache->active_slabs, &slab->tree_node, + kmem_slab_cmp_insert); + + return kmem_bufctl_to_buf(bufctl, cache); +} + +/* + * Release a buffer to the slab layer of a cache. + * + * The cache must be locked before calling this function. + */ +static void kmem_cache_free_to_slab(struct kmem_cache *cache, void *buf) +{ + struct kmem_slab *slab; + union kmem_bufctl *bufctl; + + if (cache->flags & KMEM_CF_DIRECT) { + assert(cache->slab_size == PAGE_SIZE); + slab = (struct kmem_slab *)P2END((unsigned long)buf, cache->slab_size) + - 1; + } else { + struct rbtree_node *node; + + node = rbtree_lookup_nearest(&cache->active_slabs, buf, + kmem_slab_cmp_lookup, RBTREE_LEFT); + assert(node != NULL); + slab = rbtree_entry(node, struct kmem_slab, tree_node); + assert((unsigned long)buf < (P2ALIGN((unsigned long)slab->addr + + cache->slab_size, PAGE_SIZE))); + } + + assert(slab->nr_refs >= 1); + assert(slab->nr_refs <= cache->bufs_per_slab); + bufctl = kmem_buf_to_bufctl(buf, cache); + bufctl->next = slab->first_free; + slab->first_free = bufctl; + slab->nr_refs--; + cache->nr_objs--; + + /* + * The slab has become free. + */ + if (slab->nr_refs == 0) { + if (kmem_slab_use_tree(cache->flags)) + rbtree_remove(&cache->active_slabs, &slab->tree_node); + + /* + * The slab was partial. + */ + if (cache->bufs_per_slab > 1) + list_remove(&slab->list_node); + + list_insert_tail(&cache->free_slabs, &slab->list_node); + cache->nr_free_slabs++; + } else if (slab->nr_refs == (cache->bufs_per_slab - 1)) { + /* + * The slab has become partial. + */ + list_insert(&cache->partial_slabs, &slab->list_node); + } else if (!list_singular(&cache->partial_slabs)) { + struct list *node; + struct kmem_slab *tmp; + + /* + * The slab remains partial. If there are more than one partial slabs, + * maintain the list sorted. + */ + + assert(slab->nr_refs > 0); + + for (node = list_next(&slab->list_node); + !list_end(&cache->partial_slabs, node); + node = list_next(node)) { + tmp = list_entry(node, struct kmem_slab, list_node); + + if (tmp->nr_refs <= slab->nr_refs) + break; + } + + /* + * If the direct neighbor was found, the list is already sorted. + * If no slab was found, the slab is inserted at the tail of the list. + */ + if (node != list_next(&slab->list_node)) { + list_remove(&slab->list_node); + list_insert_before(node, &slab->list_node); + } + } +} + +static void kmem_cache_alloc_verify(struct kmem_cache *cache, void *buf, + int construct) +{ + struct kmem_buftag *buftag; + union kmem_bufctl *bufctl; + void *addr; + + buftag = kmem_buf_to_buftag(buf, cache); + + if (buftag->state != KMEM_BUFTAG_FREE) + kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG, buftag); + + addr = kmem_buf_verify_fill(buf, KMEM_FREE_PATTERN, KMEM_UNINIT_PATTERN, + cache->bufctl_dist); + + if (addr != NULL) + kmem_cache_error(cache, buf, KMEM_ERR_MODIFIED, addr); + + addr = buf + cache->obj_size; + memset(addr, KMEM_REDZONE_BYTE, cache->redzone_pad); + + bufctl = kmem_buf_to_bufctl(buf, cache); + bufctl->redzone = KMEM_REDZONE_WORD; + buftag->state = KMEM_BUFTAG_ALLOC; + + if (construct && (cache->ctor != NULL)) + cache->ctor(buf); +} + +vm_offset_t kmem_cache_alloc(struct kmem_cache *cache) +{ + int filled; + void *buf; + +#if SLAB_USE_CPU_POOLS + struct kmem_cpu_pool *cpu_pool; + + cpu_pool = kmem_cpu_pool_get(cache); + + if (cpu_pool->flags & KMEM_CF_NO_CPU_POOL) + goto slab_alloc; + + simple_lock(&cpu_pool->lock); + +fast_alloc: + if (likely(cpu_pool->nr_objs > 0)) { + buf = kmem_cpu_pool_pop(cpu_pool); + simple_unlock(&cpu_pool->lock); + + if (cpu_pool->flags & KMEM_CF_VERIFY) + kmem_cache_alloc_verify(cache, buf, KMEM_AV_CONSTRUCT); + + return (vm_offset_t)buf; + } + + if (cpu_pool->array != NULL) { + filled = kmem_cpu_pool_fill(cpu_pool, cache); + + if (!filled) { + simple_unlock(&cpu_pool->lock); + + filled = kmem_cache_grow(cache); + + if (!filled) + return 0; + + simple_lock(&cpu_pool->lock); + } + + goto fast_alloc; + } + + simple_unlock(&cpu_pool->lock); +#endif /* SLAB_USE_CPU_POOLS */ + +slab_alloc: + simple_lock(&cache->lock); + buf = kmem_cache_alloc_from_slab(cache); + simple_unlock(&cache->lock); + + if (buf == NULL) { + filled = kmem_cache_grow(cache); + + if (!filled) + return 0; + + goto slab_alloc; + } + + if (cache->flags & KMEM_CF_VERIFY) + kmem_cache_alloc_verify(cache, buf, KMEM_AV_NOCONSTRUCT); + + if (cache->ctor != NULL) + cache->ctor(buf); + + return (vm_offset_t)buf; +} + +static void kmem_cache_free_verify(struct kmem_cache *cache, void *buf) +{ + struct rbtree_node *node; + struct kmem_buftag *buftag; + struct kmem_slab *slab; + union kmem_bufctl *bufctl; + unsigned char *redzone_byte; + unsigned long slabend; + + simple_lock(&cache->lock); + node = rbtree_lookup_nearest(&cache->active_slabs, buf, + kmem_slab_cmp_lookup, RBTREE_LEFT); + simple_unlock(&cache->lock); + + if (node == NULL) + kmem_cache_error(cache, buf, KMEM_ERR_INVALID, NULL); + + slab = rbtree_entry(node, struct kmem_slab, tree_node); + slabend = P2ALIGN((unsigned long)slab->addr + cache->slab_size, PAGE_SIZE); + + if ((unsigned long)buf >= slabend) + kmem_cache_error(cache, buf, KMEM_ERR_INVALID, NULL); + + if ((((unsigned long)buf - (unsigned long)slab->addr) % cache->buf_size) + != 0) + kmem_cache_error(cache, buf, KMEM_ERR_INVALID, NULL); + + /* + * As the buffer address is valid, accessing its buftag is safe. + */ + buftag = kmem_buf_to_buftag(buf, cache); + + if (buftag->state != KMEM_BUFTAG_ALLOC) { + if (buftag->state == KMEM_BUFTAG_FREE) + kmem_cache_error(cache, buf, KMEM_ERR_DOUBLEFREE, NULL); + else + kmem_cache_error(cache, buf, KMEM_ERR_BUFTAG, buftag); + } + + redzone_byte = buf + cache->obj_size; + bufctl = kmem_buf_to_bufctl(buf, cache); + + while (redzone_byte < (unsigned char *)bufctl) { + if (*redzone_byte != KMEM_REDZONE_BYTE) + kmem_cache_error(cache, buf, KMEM_ERR_REDZONE, redzone_byte); + + redzone_byte++; + } + + if (bufctl->redzone != KMEM_REDZONE_WORD) { + unsigned long word; + + word = KMEM_REDZONE_WORD; + redzone_byte = kmem_buf_verify_bytes(&bufctl->redzone, &word, + sizeof(bufctl->redzone)); + kmem_cache_error(cache, buf, KMEM_ERR_REDZONE, redzone_byte); + } + + kmem_buf_fill(buf, KMEM_FREE_PATTERN, cache->bufctl_dist); + buftag->state = KMEM_BUFTAG_FREE; +} + +void kmem_cache_free(struct kmem_cache *cache, vm_offset_t obj) +{ +#if SLAB_USE_CPU_POOLS + struct kmem_cpu_pool *cpu_pool; + void **array; + + cpu_pool = kmem_cpu_pool_get(cache); + + if (cpu_pool->flags & KMEM_CF_VERIFY) { +#else /* SLAB_USE_CPU_POOLS */ + if (cache->flags & KMEM_CF_VERIFY) { +#endif /* SLAB_USE_CPU_POOLS */ + kmem_cache_free_verify(cache, (void *)obj); + } + +#if SLAB_USE_CPU_POOLS + if (cpu_pool->flags & KMEM_CF_NO_CPU_POOL) + goto slab_free; + + simple_lock(&cpu_pool->lock); + +fast_free: + if (likely(cpu_pool->nr_objs < cpu_pool->size)) { + kmem_cpu_pool_push(cpu_pool, (void *)obj); + simple_unlock(&cpu_pool->lock); + return; + } + + if (cpu_pool->array != NULL) { + kmem_cpu_pool_drain(cpu_pool, cache); + goto fast_free; + } + + simple_unlock(&cpu_pool->lock); + + array = (void *)kmem_cache_alloc(cache->cpu_pool_type->array_cache); + + if (array != NULL) { + simple_lock(&cpu_pool->lock); + + /* + * Another thread may have built the CPU pool while the lock was + * dropped. + */ + if (cpu_pool->array != NULL) { + simple_unlock(&cpu_pool->lock); + kmem_cache_free(cache->cpu_pool_type->array_cache, + (vm_offset_t)array); + goto fast_free; + } + + kmem_cpu_pool_build(cpu_pool, cache, array); + goto fast_free; + } + +slab_free: +#endif /* SLAB_USE_CPU_POOLS */ + + kmem_cache_free_to_slab(cache, (void *)obj); +} + +void slab_collect(void) +{ + struct kmem_cache *cache; + + if (sched_tick <= (kmem_gc_last_tick + KMEM_GC_INTERVAL)) + return; + + kmem_gc_last_tick = sched_tick; + + simple_lock(&mem_cache_list_lock); + + list_for_each_entry(&kmem_cache_list, cache, node) + kmem_cache_reap(cache); + + simple_unlock(&mem_cache_list_lock); +} + +void slab_bootstrap(void) +{ + /* Make sure a bufctl can always be stored in a buffer */ + assert(sizeof(union kmem_bufctl) <= KMEM_ALIGN_MIN); + + list_init(&kmem_cache_list); + simple_lock_init(&kmem_cache_list_lock); +} + +void slab_init(void) +{ + vm_offset_t min, max; + +#if SLAB_USE_CPU_POOLS + struct kmem_cpu_pool_type *cpu_pool_type; + char name[KMEM_CACHE_NAME_SIZE]; + size_t i, size; +#endif /* SLAB_USE_CPU_POOLS */ + + kmem_submap(kmem_map, kernel_map, &min, &max, KMEM_MAP_SIZE, FALSE); + +#if SLAB_USE_CPU_POOLS + for (i = 0; i < ARRAY_SIZE(kmem_cpu_pool_types); i++) { + cpu_pool_type = &kmem_cpu_pool_types[i]; + cpu_pool_type->array_cache = &kmem_cpu_array_caches[i]; + sprintf(name, "kmem_cpu_array_%d", cpu_pool_type->array_size); + size = sizeof(void *) * cpu_pool_type->array_size; + kmem_cache_init(cpu_pool_type->array_cache, name, size, + cpu_pool_type->array_align, NULL, NULL, NULL, 0); + } +#endif /* SLAB_USE_CPU_POOLS */ + + /* + * Prevent off slab data for the slab cache to avoid infinite recursion. + */ + kmem_cache_init(&kmem_slab_cache, "kmem_slab", sizeof(struct kmem_slab), + 0, NULL, NULL, NULL, KMEM_CACHE_NOOFFSLAB); +} + +static vm_offset_t kalloc_pagealloc(vm_size_t size) +{ + vm_offset_t addr; + kern_return_t kr; + + kr = kmem_alloc_wired(kalloc_map, &addr, size); + + if (kr != KERN_SUCCESS) + return 0; + + return addr; +} + +static void kalloc_pagefree(vm_offset_t ptr, vm_size_t size) +{ + kmem_free(kalloc_map, ptr, size); +} + +void kalloc_init(void) +{ + char name[KMEM_CACHE_NAME_SIZE]; + size_t i, size; + vm_offset_t min, max; + + kmem_submap(kalloc_map, kernel_map, &min, &max, KALLOC_MAP_SIZE, FALSE); + + size = 1 << KALLOC_FIRST_SHIFT; + + for (i = 0; i < ARRAY_SIZE(kalloc_caches); i++) { + sprintf(name, "kalloc_%u", size); + kmem_cache_init(&kalloc_caches[i], name, size, 0, NULL, + kalloc_pagealloc, kalloc_pagefree, 0); + size <<= 1; + } +} + +/* + * Return the kalloc cache index matching the given allocation size, which + * must be strictly greater than 0. + */ +static inline size_t kalloc_get_index(unsigned long size) +{ + assert(size != 0); + + size = (size - 1) >> KALLOC_FIRST_SHIFT; + + if (size == 0) + return 0; + else + return (sizeof(long) * 8) - __builtin_clzl(size); +} + +static void kalloc_verify(struct kmem_cache *cache, void *buf, size_t size) +{ + size_t redzone_size; + void *redzone; + + assert(size <= cache->obj_size); + + redzone = buf + size; + redzone_size = cache->obj_size - size; + memset(redzone, KMEM_REDZONE_BYTE, redzone_size); +} + +vm_offset_t kalloc(vm_size_t size) +{ + size_t index; + void *buf; + + if (size == 0) + return 0; + + index = kalloc_get_index(size); + + if (index < ARRAY_SIZE(kalloc_caches)) { + struct kmem_cache *cache; + + cache = &kalloc_caches[index]; + buf = (void *)kmem_cache_alloc(cache); + + if ((buf != 0) && (cache->flags & KMEM_CF_VERIFY)) + kalloc_verify(cache, buf, size); + } else + buf = (void *)kalloc_pagealloc(size); + + return (vm_offset_t)buf; +} + +static void kfree_verify(struct kmem_cache *cache, void *buf, size_t size) +{ + unsigned char *redzone_byte, *redzone_end; + + assert(size <= cache->obj_size); + + redzone_byte = buf + size; + redzone_end = buf + cache->obj_size; + + while (redzone_byte < redzone_end) { + if (*redzone_byte != KMEM_REDZONE_BYTE) + kmem_cache_error(cache, buf, KMEM_ERR_REDZONE, redzone_byte); + + redzone_byte++; + } +} + +void kfree(vm_offset_t data, vm_size_t size) +{ + size_t index; + + if ((data == 0) || (size == 0)) + return; + + index = kalloc_get_index(size); + + if (index < ARRAY_SIZE(kalloc_caches)) { + struct kmem_cache *cache; + + cache = &kalloc_caches[index]; + + if (cache->flags & KMEM_CF_VERIFY) + kfree_verify(cache, (void *)data, size); + + kmem_cache_free(cache, data); + } else { + kalloc_pagefree(data, size); + } +} + +#if MACH_DEBUG +kern_return_t host_slab_info(host_t host, cache_info_array_t *infop, + unsigned int *infoCntp) +{ + struct kmem_cache *cache; + cache_info_t *info; + unsigned int i, nr_caches; + vm_size_t info_size = info_size; + kern_return_t kr; + + if (host == HOST_NULL) + return KERN_INVALID_HOST; + + /* + * Assume the cache list is unaltered once the kernel is ready. + */ + + simple_lock(&mem_cache_list_lock); + nr_caches = kmem_nr_caches; + simple_unlock(&mem_cache_list_lock); + + if (nr_caches <= *infoCntp) + info = *infop; + else { + vm_offset_t info_addr; + + info_size = round_page(nr_caches * sizeof(*info)); + kr = kmem_alloc_pageable(ipc_kernel_map, &info_addr, info_size); + + if (kr != KERN_SUCCESS) + return kr; + + info = (cache_info_t *)info_addr; + } + + if (info == NULL) + return KERN_RESOURCE_SHORTAGE; + + i = 0; + + list_for_each_entry(&kmem_cache_list, cache, node) { + simple_lock(&cache_lock); + info[i].flags = ((cache->flags & KMEM_CF_NO_CPU_POOL) + ? CACHE_FLAGS_NO_CPU_POOL : 0) + | ((cache->flags & KMEM_CF_SLAB_EXTERNAL) + ? CACHE_FLAGS_SLAB_EXTERNAL : 0) + | ((cache->flags & KMEM_CF_NO_RECLAIM) + ? CACHE_FLAGS_NO_RECLAIM : 0) + | ((cache->flags & KMEM_CF_VERIFY) + ? CACHE_FLAGS_VERIFY : 0) + | ((cache->flags & KMEM_CF_DIRECT) + ? CACHE_FLAGS_DIRECT : 0); +#if SLAB_USE_CPU_POOLS + info[i].cpu_pool_size = cache->cpu_pool_type->array_size; +#else /* SLAB_USE_CPU_POOLS */ + info[i].cpu_pool_size = 0; +#endif /* SLAB_USE_CPU_POOLS */ + info[i].obj_size = cache->obj_size; + info[i].align = cache->align; + info[i].buf_size = cache->buf_size; + info[i].slab_size = cache->slab_size; + info[i].bufs_per_slab = cache->bufs_per_slab; + info[i].nr_objs = cache->nr_objs; + info[i].nr_bufs = cache->nr_bufs; + info[i].nr_slabs = cache->nr_slabs; + info[i].nr_free_slabs = cache->nr_free_slabs; + strncpy(info[i].name, cache->name, sizeof(info[i].name)); + info[i].name[sizeof(info[i].name) - 1] = '\0'; + simple_unlock(&cache->lock); + + i++; + } + + if (info != *infop) { + vm_map_copy_t copy; + vm_size_t used; + + used = nr_caches * sizeof(*info); + + if (used != info_size) + memset((char *)info + used, 0, info_size - used); + + kr = vm_map_copyin(ipc_kernel_map, (vm_offset_t)info, used, TRUE, + ©); + + assert(kr == KERN_SUCCESS); + *infop = (cache_info_t *)copy; + } + + *infoCntp = nr_caches; + + return KERN_SUCCESS; +} +#endif /* MACH_DEBUG */ diff --git a/kern/slab.h b/kern/slab.h new file mode 100644 index 0000000..14c820b --- /dev/null +++ b/kern/slab.h @@ -0,0 +1,222 @@ +/* + * Copyright (c) 2009, 2010, 2011 Richard Braun. + * Copyright (c) 2011 Maksym Planeta. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ + +#ifndef _KERN_SLAB_H +#define _KERN_SLAB_H + +#include <kern/lock.h> +#include <kern/list.h> +#include <kern/rbtree.h> +#include <mach/machine/vm_types.h> +#include <sys/types.h> +#include <vm/vm_types.h> + +#if SLAB_USE_CPU_POOLS +/* + * L1 cache line size. + */ +#define CPU_L1_SIZE (1 << CPU_L1_SHIFT) + +/* + * Per-processor cache of pre-constructed objects. + * + * The flags member is a read-only CPU-local copy of the parent cache flags. + */ +struct kmem_cpu_pool { + simple_lock_data_t lock; + int flags; + int size; + int transfer_size; + int nr_objs; + void **array; +} __attribute__((aligned(CPU_L1_SIZE))); + +/* + * When a cache is created, its CPU pool type is determined from the buffer + * size. For small buffer sizes, many objects can be cached in a CPU pool. + * Conversely, for large buffer sizes, this would incur much overhead, so only + * a few objects are stored in a CPU pool. + */ +struct kmem_cpu_pool_type { + size_t buf_size; + int array_size; + size_t array_align; + struct kmem_cache *array_cache; +}; +#endif /* SLAB_USE_CPU_POOLS */ + +/* + * Buffer descriptor. + * + * For normal caches (i.e. without SLAB_CF_VERIFY), bufctls are located at the + * end of (but inside) each buffer. If SLAB_CF_VERIFY is set, bufctls are + * located after each buffer. + * + * When an object is allocated to a client, its bufctl isn't used. This memory + * is instead used for redzoning if cache debugging is in effect. + */ +union kmem_bufctl { + union kmem_bufctl *next; + unsigned long redzone; +}; + +/* + * Buffer tag. + * + * This structure is only used for SLAB_CF_VERIFY caches. It is located after + * the bufctl and includes information about the state of the buffer it + * describes (allocated or not). It should be thought of as a debugging + * extension of the bufctl. + */ +struct kmem_buftag { + unsigned long state; +}; + +/* + * Page-aligned collection of unconstructed buffers. + */ +struct kmem_slab { + struct list list_node; + struct rbtree_node tree_node; + unsigned long nr_refs; + union kmem_bufctl *first_free; + void *addr; +}; + +/* + * Type for constructor functions. + * + * The pre-constructed state of an object is supposed to include only + * elements such as e.g. linked lists, locks, reference counters. Therefore + * constructors are expected to 1) never fail and 2) not need any + * user-provided data. The first constraint implies that object construction + * never performs dynamic resource allocation, which also means there is no + * need for destructors. + */ +typedef void (*kmem_cache_ctor_t)(void *obj); + +/* + * Types for slab allocation/free functions. + * + * All addresses and sizes must be page-aligned. + */ +typedef vm_offset_t (*kmem_slab_alloc_fn_t)(vm_size_t); +typedef void (*kmem_slab_free_fn_t)(vm_offset_t, vm_size_t); + +/* + * Cache name buffer size. + */ +#define KMEM_CACHE_NAME_SIZE 32 + +/* + * Cache of objects. + * + * Locking order : cpu_pool -> cache. CPU pools locking is ordered by CPU ID. + * + * The partial slabs list is sorted by slab references. Slabs with a high + * number of references are placed first on the list to reduce fragmentation. + * Sorting occurs at insertion/removal of buffers in a slab. As the list + * is maintained sorted, and the number of references only changes by one, + * this is a very cheap operation in the average case and the worst (linear) + * case is very unlikely. + */ +struct kmem_cache { +#if SLAB_USE_CPU_POOLS + /* CPU pool layer */ + struct kmem_cpu_pool cpu_pools[NCPUS]; + struct kmem_cpu_pool_type *cpu_pool_type; +#endif /* SLAB_USE_CPU_POOLS */ + + /* Slab layer */ + simple_lock_data_t lock; + struct list node; /* Cache list linkage */ + struct list partial_slabs; + struct list free_slabs; + struct rbtree active_slabs; + int flags; + size_t obj_size; /* User-provided size */ + size_t align; + size_t buf_size; /* Aligned object size */ + size_t bufctl_dist; /* Distance from buffer to bufctl */ + size_t slab_size; + size_t color; + size_t color_max; + unsigned long bufs_per_slab; + unsigned long nr_objs; /* Number of allocated objects */ + unsigned long nr_bufs; /* Total number of buffers */ + unsigned long nr_slabs; + unsigned long nr_free_slabs; + kmem_cache_ctor_t ctor; + kmem_slab_alloc_fn_t slab_alloc_fn; + kmem_slab_free_fn_t slab_free_fn; + char name[KMEM_CACHE_NAME_SIZE]; + size_t buftag_dist; /* Distance from buffer to buftag */ + size_t redzone_pad; /* Bytes from end of object to redzone word */ +}; + +/* + * Mach-style declarations for struct kmem_cache. + */ +typedef struct kmem_cache *kmem_cache_t; +#define KMEM_CACHE_NULL ((kmem_cache_t) 0) + +/* + * VM submap for slab allocations. + */ +extern vm_map_t kmem_map; + +/* + * Cache initialization flags. + */ +#define KMEM_CACHE_NOCPUPOOL 0x1 /* Don't use the per-cpu pools */ +#define KMEM_CACHE_NOOFFSLAB 0x2 /* Don't allocate external slab data */ +#define KMEM_CACHE_NORECLAIM 0x4 /* Never give slabs back to their source, + implies KMEM_CACHE_NOOFFSLAB */ +#define KMEM_CACHE_VERIFY 0x8 /* Use debugging facilities */ + +/* + * Initialize a cache. + */ +void kmem_cache_init(struct kmem_cache *cache, const char *name, + size_t obj_size, size_t align, kmem_cache_ctor_t ctor, + kmem_slab_alloc_fn_t slab_alloc_fn, + kmem_slab_free_fn_t slab_free_fn, int flags); + +/* + * Allocate an object from a cache. + */ +vm_offset_t kmem_cache_alloc(struct kmem_cache *cache); + +/* + * Release an object to its cache. + */ +void kmem_cache_free(struct kmem_cache *cache, vm_offset_t obj); + +/* + * Initialize the memory allocator module. + */ +void slab_bootstrap(void); +void slab_init(void); + +/* + * Release free slabs to the VM system. + */ +void slab_collect(void); + +#endif /* _KERN_SLAB_H */ diff --git a/kern/zalloc.c b/kern/zalloc.c deleted file mode 100644 index 43836a6..0000000 --- a/kern/zalloc.c +++ /dev/null @@ -1,1007 +0,0 @@ -/* - * Mach Operating System - * Copyright (c) 1993-1987 Carnegie Mellon University. - * Copyright (c) 1993,1994 The University of Utah and - * the Computer Systems Laboratory (CSL). - * All rights reserved. - * - * Permission to use, copy, modify and distribute this software and its - * documentation is hereby granted, provided that both the copyright - * notice and this permission notice appear in all copies of the - * software, derivative works or modified versions, and any portions - * thereof, and that both notices appear in supporting documentation. - * - * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF - * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY - * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF - * THIS SOFTWARE. - * - * Carnegie Mellon requests users of this software to return to - * - * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU - * School of Computer Science - * Carnegie Mellon University - * Pittsburgh PA 15213-3890 - * - * any improvements or extensions that they make and grant Carnegie Mellon - * the rights to redistribute these changes. - */ -/* - * File: kern/zalloc.c - * Author: Avadis Tevanian, Jr. - * - * Zone-based memory allocator. A zone is a collection of fixed size - * data blocks for which quick allocation/deallocation is possible. - */ - -#include <string.h> - -#include <kern/debug.h> -#include <kern/macro_help.h> -#include <kern/printf.h> -#include <kern/mach_clock.h> -#include <kern/sched.h> -#include <kern/zalloc.h> -#include <mach/vm_param.h> -#include <vm/vm_kern.h> -#include <machine/machspl.h> - -#if MACH_DEBUG -#include <mach/kern_return.h> -#include <mach/machine/vm_types.h> -#include <mach_debug/zone_info.h> -#include <kern/host.h> -#include <vm/vm_map.h> -#include <vm/vm_user.h> -#include <vm/vm_kern.h> -#endif - -#define ADD_TO_ZONE(zone, element) \ -MACRO_BEGIN \ - *((vm_offset_t *)(element)) = (zone)->free_elements; \ - (zone)->free_elements = (vm_offset_t) (element); \ - zone_count_down(zone); \ -MACRO_END - -#define REMOVE_FROM_ZONE(zone, ret, type) \ -MACRO_BEGIN \ - (ret) = (type) (zone)->free_elements; \ - if ((ret) != (type) 0) { \ - zone_count_up(zone); \ - (zone)->free_elements = *((vm_offset_t *)(ret)); \ - } \ -MACRO_END - -#define ALIGN_SIZE_UP(size, align) \ -((size) = (((size) + ((align) - 1)) & ~((align) - 1))) - -/* - * Support for garbage collection of unused zone pages: - */ - -struct zone_page_table_entry { - struct zone_page_table_entry *next; - short in_free_list; - short alloc_count; -}; - -extern struct zone_page_table_entry * zone_page_table; -extern vm_offset_t zone_map_min_address; - -#define lock_zone_page_table() simple_lock(&zone_page_table_lock) -#define unlock_zone_page_table() simple_unlock(&zone_page_table_lock) - -#define zone_page(addr) \ - (&(zone_page_table[(atop(((vm_offset_t)addr) - zone_map_min_address))])) - - -extern void zone_page_alloc(vm_offset_t, vm_size_t); -extern void zone_page_dealloc(vm_offset_t, vm_size_t); -extern void zone_page_in_use(vm_offset_t, vm_size_t); -extern void zone_page_free(vm_offset_t, vm_size_t); - -zone_t zone_zone; /* this is the zone containing other zones */ - -boolean_t zone_ignore_overflow = TRUE; - -vm_map_t zone_map = VM_MAP_NULL; -vm_size_t zone_map_size = 64 * 1024 * 1024; - -/* - * The VM system gives us an initial chunk of memory. - * It has to be big enough to allocate the zone_zone - * and some initial kernel data structures, like kernel maps. - * It is advantageous to make it bigger than really necessary, - * because this memory is more efficient than normal kernel - * virtual memory. (It doesn't have vm_page structures backing it - * and it may have other machine-dependent advantages.) - * So for best performance, zdata_size should approximate - * the amount of memory you expect the zone system to consume. - */ - -vm_offset_t zdata; -vm_size_t zdata_size = 420 * 1024; - -#define zone_lock(zone) \ -MACRO_BEGIN \ - if (zone->type & ZONE_PAGEABLE) { \ - lock_write(&zone->complex_lock); \ - } else { \ - simple_lock(&zone->lock); \ - } \ -MACRO_END - -#define zone_unlock(zone) \ -MACRO_BEGIN \ - if (zone->type & ZONE_PAGEABLE) { \ - lock_done(&zone->complex_lock); \ - } else { \ - simple_unlock(&zone->lock); \ - } \ -MACRO_END - -#define zone_lock_init(zone) \ -MACRO_BEGIN \ - if (zone->type & ZONE_PAGEABLE) { \ - lock_init(&zone->complex_lock, TRUE); \ - } else { \ - simple_lock_init(&zone->lock); \ - } \ -MACRO_END - -static vm_offset_t zget_space(vm_offset_t size, vm_size_t align); - -decl_simple_lock_data(,zget_space_lock) -vm_offset_t zalloc_next_space; -vm_offset_t zalloc_end_of_space; -vm_size_t zalloc_wasted_space; - -/* - * Garbage collection map information - */ -decl_simple_lock_data(,zone_page_table_lock) -struct zone_page_table_entry * zone_page_table; -vm_offset_t zone_map_min_address; -vm_offset_t zone_map_max_address; -int zone_pages; - -extern void zone_page_init(vm_offset_t, vm_size_t, int); - -#define ZONE_PAGE_USED 0 -#define ZONE_PAGE_UNUSED -1 - - -/* - * Protects first_zone, last_zone, num_zones, - * and the next_zone field of zones. - */ -decl_simple_lock_data(,all_zones_lock) -zone_t first_zone; -zone_t *last_zone; -int num_zones; - -/* - * zinit initializes a new zone. The zone data structures themselves - * are stored in a zone, which is initially a static structure that - * is initialized by zone_init. - */ -zone_t zinit(size, align, max, alloc, memtype, name) - vm_size_t size; /* the size of an element */ - vm_size_t align; /* alignment of elements */ - vm_size_t max; /* maximum memory to use */ - vm_size_t alloc; /* allocation size */ - unsigned int memtype; /* flags specifying type of memory */ - char *name; /* a name for the zone */ -{ - register zone_t z; - - if (zone_zone == ZONE_NULL) - z = (zone_t) zget_space(sizeof(struct zone), 0); - else - z = (zone_t) zalloc(zone_zone); - if (z == ZONE_NULL) - panic("zinit"); - if (alloc == 0) - alloc = PAGE_SIZE; - - if (size == 0) - size = sizeof(z->free_elements); - /* - * Round off all the parameters appropriately. - */ - - if ((max = round_page(max)) < (alloc = round_page(alloc))) - max = alloc; - - if (align > 0) { - if (PAGE_SIZE % align || align % sizeof(z->free_elements)) - panic("zinit"); - ALIGN_SIZE_UP(size, align); - } - - z->free_elements = 0; - z->cur_size = 0; - z->max_size = max; - z->elem_size = ((size-1) + sizeof(z->free_elements)) - - ((size-1) % sizeof(z->free_elements)); - z->align = align; - - z->alloc_size = alloc; - z->type = memtype; - z->zone_name = name; -#ifdef ZONE_COUNT - z->count = 0; -#endif - z->doing_alloc = FALSE; - zone_lock_init(z); - - /* - * Add the zone to the all-zones list. - */ - - z->next_zone = ZONE_NULL; - simple_lock(&all_zones_lock); - *last_zone = z; - last_zone = &z->next_zone; - num_zones++; - simple_unlock(&all_zones_lock); - - return(z); -} - -/* - * Cram the given memory into the specified zone. - */ -void zcram(zone_t zone, vm_offset_t newmem, vm_size_t size) -{ - register vm_size_t elem_size; - - if (newmem == (vm_offset_t) 0) { - panic("zcram - memory at zero"); - } - elem_size = zone->elem_size; - - zone_lock(zone); - while (size >= elem_size) { - ADD_TO_ZONE(zone, newmem); - zone_page_alloc(newmem, elem_size); - zone_count_up(zone); /* compensate for ADD_TO_ZONE */ - size -= elem_size; - newmem += elem_size; - zone->cur_size += elem_size; - } - zone_unlock(zone); -} - -/* - * Contiguous space allocator for non-paged zones. Allocates "size" amount - * of memory from zone_map. - */ - -static vm_offset_t zget_space(vm_offset_t size, vm_size_t align) -{ - vm_offset_t new_space = 0; - vm_offset_t result; - vm_size_t space_to_add = 0; /*'=0' to quiet gcc warnings */ - - simple_lock(&zget_space_lock); - if (align > 0) { - assert(align < PAGE_SIZE); - ALIGN_SIZE_UP(zalloc_next_space, align); - } - - while ((zalloc_next_space + size) > zalloc_end_of_space) { - /* - * Add at least one page to allocation area. - */ - - space_to_add = round_page(size); - - if (new_space == 0) { - /* - * Memory cannot be wired down while holding - * any locks that the pageout daemon might - * need to free up pages. [Making the zget_space - * lock a complex lock does not help in this - * regard.] - * - * Unlock and allocate memory. Because several - * threads might try to do this at once, don't - * use the memory before checking for available - * space again. - */ - - simple_unlock(&zget_space_lock); - - if (kmem_alloc_wired(zone_map, - &new_space, space_to_add) - != KERN_SUCCESS) - return(0); - zone_page_init(new_space, space_to_add, - ZONE_PAGE_USED); - simple_lock(&zget_space_lock); - if (align > 0) - ALIGN_SIZE_UP(zalloc_next_space, align); - continue; - } - - - /* - * Memory was allocated in a previous iteration. - * - * Check whether the new region is contiguous - * with the old one. - */ - - if (new_space != zalloc_end_of_space) { - /* - * Throw away the remainder of the - * old space, and start a new one. - */ - zalloc_wasted_space += - zalloc_end_of_space - zalloc_next_space; - zalloc_next_space = new_space; - } - - zalloc_end_of_space = new_space + space_to_add; - - new_space = 0; - } - result = zalloc_next_space; - zalloc_next_space += size; - simple_unlock(&zget_space_lock); - - if (new_space != 0) - kmem_free(zone_map, new_space, space_to_add); - - return(result); -} - - -/* - * Initialize the "zone of zones" which uses fixed memory allocated - * earlier in memory initialization. zone_bootstrap is called - * before zone_init. - */ -void zone_bootstrap(void) -{ - simple_lock_init(&all_zones_lock); - first_zone = ZONE_NULL; - last_zone = &first_zone; - num_zones = 0; - - simple_lock_init(&zget_space_lock); - zalloc_next_space = zdata; - zalloc_end_of_space = zdata + zdata_size; - zalloc_wasted_space = 0; - - zone_zone = ZONE_NULL; - zone_zone = zinit(sizeof(struct zone), 0, 128 * sizeof(struct zone), - sizeof(struct zone), 0, "zones"); -} - -void zone_init(void) -{ - vm_offset_t zone_min; - vm_offset_t zone_max; - - vm_size_t zone_table_size; - - zone_map = kmem_suballoc(kernel_map, &zone_min, &zone_max, - zone_map_size, FALSE); - - /* - * Setup garbage collection information: - */ - - zone_table_size = atop(zone_max - zone_min) * - sizeof(struct zone_page_table_entry); - if (kmem_alloc_wired(zone_map, (vm_offset_t *) &zone_page_table, - zone_table_size) != KERN_SUCCESS) - panic("zone_init"); - zone_min = (vm_offset_t)zone_page_table + round_page(zone_table_size); - zone_pages = atop(zone_max - zone_min); - zone_map_min_address = zone_min; - zone_map_max_address = zone_max; - simple_lock_init(&zone_page_table_lock); - zone_page_init(zone_min, zone_max - zone_min, ZONE_PAGE_UNUSED); -} - - -/* - * zalloc returns an element from the specified zone. - */ -vm_offset_t zalloc(zone_t zone) -{ - vm_offset_t addr; - - if (zone == ZONE_NULL) - panic ("zalloc: null zone"); - - check_simple_locks(); - - zone_lock(zone); - REMOVE_FROM_ZONE(zone, addr, vm_offset_t); - while (addr == 0) { - /* - * If nothing was there, try to get more - */ - if (zone->doing_alloc) { - /* - * Someone is allocating memory for this zone. - * Wait for it to show up, then try again. - */ - assert_wait((event_t)&zone->doing_alloc, TRUE); - /* XXX say wakeup needed */ - zone_unlock(zone); - thread_block((void (*)()) 0); - zone_lock(zone); - } - else { - if ((zone->cur_size + (zone->type & ZONE_PAGEABLE ? - zone->alloc_size : zone->elem_size)) > - zone->max_size) { - if (zone->type & ZONE_EXHAUSTIBLE) - break; - /* - * Printf calls logwakeup, which calls - * select_wakeup which will do a zfree - * (which tries to take the select_zone - * lock... Hang. Release the lock now - * so it can be taken again later. - * NOTE: this used to be specific to - * the select_zone, but for - * cleanliness, we just unlock all - * zones before this. - */ - if (!(zone->type & ZONE_FIXED)) { - /* - * We're willing to overflow certain - * zones, but not without complaining. - * - * This is best used in conjunction - * with the collecatable flag. What we - * want is an assurance we can get the - * memory back, assuming there's no - * leak. - */ - zone->max_size += (zone->max_size >> 1); - } else if (!zone_ignore_overflow) { - zone_unlock(zone); - printf("zone \"%s\" empty.\n", - zone->zone_name); - panic("zalloc: zone %s exhausted", - zone->zone_name); - } - } - - if (zone->type & ZONE_PAGEABLE) - zone->doing_alloc = TRUE; - zone_unlock(zone); - - if (zone->type & ZONE_PAGEABLE) { - if (kmem_alloc_pageable(zone_map, &addr, - zone->alloc_size) - != KERN_SUCCESS) - panic("zalloc: no pageable memory for zone %s", - zone->zone_name); - zcram(zone, addr, zone->alloc_size); - zone_lock(zone); - zone->doing_alloc = FALSE; - /* XXX check before doing this */ - thread_wakeup((event_t)&zone->doing_alloc); - - REMOVE_FROM_ZONE(zone, addr, vm_offset_t); - } else if (zone->type & ZONE_COLLECTABLE) { - if (kmem_alloc_wired(zone_map, - &addr, zone->alloc_size) - != KERN_SUCCESS) - panic("zalloc: no wired memory for zone %s", - zone->zone_name); - zone_page_init(addr, zone->alloc_size, - ZONE_PAGE_USED); - zcram(zone, addr, zone->alloc_size); - zone_lock(zone); - REMOVE_FROM_ZONE(zone, addr, vm_offset_t); - } else { - addr = zget_space(zone->elem_size, zone->align); - if (addr == 0) - panic("zalloc: no memory for zone %s", - zone->zone_name); - - zone_lock(zone); - zone_count_up(zone); - zone->cur_size += zone->elem_size; - zone_unlock(zone); - zone_page_alloc(addr, zone->elem_size); - return(addr); - } - } - } - - zone_unlock(zone); - return(addr); -} - - -/* - * zget returns an element from the specified zone - * and immediately returns nothing if there is nothing there. - * - * This form should be used when you can not block (like when - * processing an interrupt). - */ -vm_offset_t zget(zone_t zone) -{ - register vm_offset_t addr; - - if (zone == ZONE_NULL) - panic ("zalloc: null zone"); - - zone_lock(zone); - REMOVE_FROM_ZONE(zone, addr, vm_offset_t); - zone_unlock(zone); - - return(addr); -} - -boolean_t zone_check = FALSE; - -void zfree(zone_t zone, vm_offset_t elem) -{ - zone_lock(zone); - if (zone_check) { - vm_offset_t this; - - /* check the zone's consistency */ - - for (this = zone->free_elements; - this != 0; - this = * (vm_offset_t *) this) - if (this == elem) - panic("zfree"); - } - ADD_TO_ZONE(zone, elem); - zone_unlock(zone); -} - -/* - * Zone garbage collection subroutines - * - * These routines have in common the modification of entries in the - * zone_page_table. The latter contains one entry for every page - * in the zone_map. - * - * For each page table entry in the given range: - * - * zone_page_in_use - decrements in_free_list - * zone_page_free - increments in_free_list - * zone_page_init - initializes in_free_list and alloc_count - * zone_page_alloc - increments alloc_count - * zone_page_dealloc - decrements alloc_count - * zone_add_free_page_list - adds the page to the free list - * - * Two counts are maintained for each page, the in_free_list count and - * alloc_count. The alloc_count is how many zone elements have been - * allocated from a page. (Note that the page could contain elements - * that span page boundaries. The count includes these elements so - * one element may be counted in two pages.) In_free_list is a count - * of how many zone elements are currently free. If in_free_list is - * equal to alloc_count then the page is eligible for garbage - * collection. - * - * Alloc_count and in_free_list are initialized to the correct values - * for a particular zone when a page is zcram'ed into a zone. Subsequent - * gets and frees of zone elements will call zone_page_in_use and - * zone_page_free which modify the in_free_list count. When the zones - * garbage collector runs it will walk through a zones free element list, - * remove the elements that reside on collectable pages, and use - * zone_add_free_page_list to create a list of pages to be collected. - */ - -void zone_page_in_use(addr, size) -vm_offset_t addr; -vm_size_t size; -{ - int i, j; - if ((addr < zone_map_min_address) || - (addr+size > zone_map_max_address)) return; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - zone_page_table[i].in_free_list--; - } - unlock_zone_page_table(); -} - -void zone_page_free(addr, size) -vm_offset_t addr; -vm_size_t size; -{ - int i, j; - if ((addr < zone_map_min_address) || - (addr+size > zone_map_max_address)) return; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - /* Set in_free_list to (ZONE_PAGE_USED + 1) if - * it was previously set to ZONE_PAGE_UNUSED. - */ - if (zone_page_table[i].in_free_list == ZONE_PAGE_UNUSED) { - zone_page_table[i].in_free_list = 1; - } else { - zone_page_table[i].in_free_list++; - } - } - unlock_zone_page_table(); -} - -void zone_page_init(addr, size, value) - -vm_offset_t addr; -vm_size_t size; -int value; -{ - int i, j; - if ((addr < zone_map_min_address) || - (addr+size > zone_map_max_address)) return; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - zone_page_table[i].alloc_count = value; - zone_page_table[i].in_free_list = 0; - } - unlock_zone_page_table(); -} - -void zone_page_alloc(addr, size) -vm_offset_t addr; -vm_size_t size; -{ - int i, j; - if ((addr < zone_map_min_address) || - (addr+size > zone_map_max_address)) return; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - /* Set alloc_count to (ZONE_PAGE_USED + 1) if - * it was previously set to ZONE_PAGE_UNUSED. - */ - if (zone_page_table[i].alloc_count == ZONE_PAGE_UNUSED) { - zone_page_table[i].alloc_count = 1; - } else { - zone_page_table[i].alloc_count++; - } - } - unlock_zone_page_table(); -} - -void zone_page_dealloc(addr, size) -vm_offset_t addr; -vm_size_t size; -{ - int i, j; - if ((addr < zone_map_min_address) || - (addr+size > zone_map_max_address)) return; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - zone_page_table[i].alloc_count--; - } - unlock_zone_page_table(); -} - -void -zone_add_free_page_list(free_list, addr, size) - struct zone_page_table_entry **free_list; - vm_offset_t addr; - vm_size_t size; -{ - int i, j; - if ((addr < zone_map_min_address) || - (addr+size > zone_map_max_address)) return; - i = atop(addr-zone_map_min_address); - j = atop((addr+size-1) - zone_map_min_address); - lock_zone_page_table(); - for (; i <= j; i++) { - if (zone_page_table[i].alloc_count == 0) { - zone_page_table[i].next = *free_list; - *free_list = &zone_page_table[i]; - zone_page_table[i].alloc_count = ZONE_PAGE_UNUSED; - zone_page_table[i].in_free_list = 0; - } - } - unlock_zone_page_table(); -} - - -/* This is used for walking through a zone's free element list. - */ -struct zone_free_entry { - struct zone_free_entry * next; -}; - - -/* Zone garbage collection - * - * zone_gc will walk through all the free elements in all the - * zones that are marked collectable looking for reclaimable - * pages. zone_gc is called by consider_zone_gc when the system - * begins to run out of memory. - */ -static void zone_gc(void) -{ - int max_zones; - zone_t z; - int i; - register spl_t s; - struct zone_page_table_entry *freep; - struct zone_page_table_entry *zone_free_page_list; - - simple_lock(&all_zones_lock); - max_zones = num_zones; - z = first_zone; - simple_unlock(&all_zones_lock); - - zone_free_page_list = (struct zone_page_table_entry *) 0; - - for (i = 0; i < max_zones; i++) { - struct zone_free_entry * last; - struct zone_free_entry * elt; - assert(z != ZONE_NULL); - /* run this at splhigh so that interupt routines that use zones - can not interupt while their zone is locked */ - s=splhigh(); - zone_lock(z); - - if ((z->type & (ZONE_PAGEABLE|ZONE_COLLECTABLE)) == ZONE_COLLECTABLE) { - - /* Count the free elements in each page. This loop - * requires that all in_free_list entries are zero. - */ - elt = (struct zone_free_entry *)(z->free_elements); - while ((elt != (struct zone_free_entry *)0)) { - zone_page_free((vm_offset_t)elt, z->elem_size); - elt = elt->next; - } - - /* Now determine which elements should be removed - * from the free list and, after all the elements - * on a page have been removed, add the element's - * page to a list of pages to be freed. - */ - elt = (struct zone_free_entry *)(z->free_elements); - last = elt; - while ((elt != (struct zone_free_entry *)0)) { - if (((vm_offset_t)elt>=zone_map_min_address)&& - ((vm_offset_t)elt<=zone_map_max_address)&& - (zone_page(elt)->in_free_list == - zone_page(elt)->alloc_count)) { - - z->cur_size -= z->elem_size; - zone_page_in_use((vm_offset_t)elt, z->elem_size); - zone_page_dealloc((vm_offset_t)elt, z->elem_size); - if (zone_page(elt)->alloc_count == 0 || - zone_page(elt+(z->elem_size-1))->alloc_count==0) { - zone_add_free_page_list( - &zone_free_page_list, - (vm_offset_t)elt, z->elem_size); - } - - - if (elt == last) { - elt = elt->next; - z->free_elements =(vm_offset_t)elt; - last = elt; - } else { - last->next = elt->next; - elt = elt->next; - } - } else { - /* This element is not eligible for collection - * so clear in_free_list in preparation for a - * subsequent garbage collection pass. - */ - if (((vm_offset_t)elt>=zone_map_min_address)&& - ((vm_offset_t)elt<=zone_map_max_address)) { - zone_page(elt)->in_free_list = 0; - } - last = elt; - elt = elt->next; - } - } - } - zone_unlock(z); - splx(s); - simple_lock(&all_zones_lock); - z = z->next_zone; - simple_unlock(&all_zones_lock); - } - - for (freep = zone_free_page_list; freep != 0; freep = freep->next) { - vm_offset_t free_addr; - - free_addr = zone_map_min_address + - PAGE_SIZE * (freep - zone_page_table); - - /* Hack Hack */ - /* Needed to make vm_map_delete's vm_map_clip_end always be - * able to get an element without having to call zget_space and - * hang because zone_map is already locked by vm_map_delete */ - - extern zone_t vm_map_kentry_zone; /* zone for kernel entry structures */ - vm_offset_t entry1 = zalloc(vm_map_kentry_zone), - entry2 = zalloc(vm_map_kentry_zone); - zfree(vm_map_kentry_zone, entry1); - zfree(vm_map_kentry_zone, entry2); - - kmem_free(zone_map, free_addr, PAGE_SIZE); - } -} - -boolean_t zone_gc_allowed = TRUE; -unsigned zone_gc_last_tick = 0; -unsigned zone_gc_max_rate = 0; /* in ticks */ - -/* - * consider_zone_gc: - * - * Called by the pageout daemon when the system needs more free pages. - */ - -void -consider_zone_gc(void) -{ - /* - * By default, don't attempt zone GC more frequently - * than once a second. - */ - - if (zone_gc_max_rate == 0) - zone_gc_max_rate = hz; - - if (zone_gc_allowed && - (sched_tick > (zone_gc_last_tick + zone_gc_max_rate))) { - zone_gc_last_tick = sched_tick; - zone_gc(); - } -} - -#if MACH_DEBUG -kern_return_t host_zone_info(host, namesp, namesCntp, infop, infoCntp) - host_t host; - zone_name_array_t *namesp; - unsigned int *namesCntp; - zone_info_array_t *infop; - unsigned int *infoCntp; -{ - zone_name_t *names; - vm_offset_t names_addr; - vm_size_t names_size = 0; /*'=0' to quiet gcc warnings */ - zone_info_t *info; - vm_offset_t info_addr; - vm_size_t info_size = 0; /*'=0' to quiet gcc warnings */ - unsigned int max_zones, i; - zone_t z; - kern_return_t kr; - - if (host == HOST_NULL) - return KERN_INVALID_HOST; - - /* - * We assume that zones aren't freed once allocated. - * We won't pick up any zones that are allocated later. - */ - - simple_lock(&all_zones_lock); - max_zones = num_zones; - z = first_zone; - simple_unlock(&all_zones_lock); - - if (max_zones <= *namesCntp) { - /* use in-line memory */ - - names = *namesp; - } else { - names_size = round_page(max_zones * sizeof *names); - kr = kmem_alloc_pageable(ipc_kernel_map, - &names_addr, names_size); - if (kr != KERN_SUCCESS) - return kr; - - names = (zone_name_t *) names_addr; - } - - if (max_zones <= *infoCntp) { - /* use in-line memory */ - - info = *infop; - } else { - info_size = round_page(max_zones * sizeof *info); - kr = kmem_alloc_pageable(ipc_kernel_map, - &info_addr, info_size); - if (kr != KERN_SUCCESS) { - if (names != *namesp) - kmem_free(ipc_kernel_map, - names_addr, names_size); - return kr; - } - - info = (zone_info_t *) info_addr; - } - - for (i = 0; i < max_zones; i++) { - zone_name_t *zn = &names[i]; - zone_info_t *zi = &info[i]; - struct zone zcopy; - - assert(z != ZONE_NULL); - - zone_lock(z); - zcopy = *z; - zone_unlock(z); - - simple_lock(&all_zones_lock); - z = z->next_zone; - simple_unlock(&all_zones_lock); - - /* assuming here the name data is static */ - (void) strncpy(zn->zn_name, zcopy.zone_name, - sizeof zn->zn_name); - -#ifdef ZONE_COUNT - zi->zi_count = zcopy.count; -#else - zi->zi_count = 0; -#endif - zi->zi_cur_size = zcopy.cur_size; - zi->zi_max_size = zcopy.max_size; - zi->zi_elem_size = zcopy.elem_size; - zi->zi_alloc_size = zcopy.alloc_size; - zi->zi_pageable = (zcopy.type & ZONE_PAGEABLE) != 0; - zi->zi_exhaustible = (zcopy.type & ZONE_EXHAUSTIBLE) != 0; - zi->zi_collectable = (zcopy.type & ZONE_COLLECTABLE) != 0; - } - - if (names != *namesp) { - vm_size_t used; - vm_map_copy_t copy; - - used = max_zones * sizeof *names; - - if (used != names_size) - memset((char *) (names_addr + used), 0, names_size - used); - - kr = vm_map_copyin(ipc_kernel_map, names_addr, names_size, - TRUE, ©); - assert(kr == KERN_SUCCESS); - - *namesp = (zone_name_t *) copy; - } - *namesCntp = max_zones; - - if (info != *infop) { - vm_size_t used; - vm_map_copy_t copy; - - used = max_zones * sizeof *info; - - if (used != info_size) - memset((char *) (info_addr + used), 0, info_size - used); - - kr = vm_map_copyin(ipc_kernel_map, info_addr, info_size, - TRUE, ©); - assert(kr == KERN_SUCCESS); - - *infop = (zone_info_t *) copy; - } - *infoCntp = max_zones; - - return KERN_SUCCESS; -} -#endif /* MACH_DEBUG */ diff --git a/kern/zalloc.h b/kern/zalloc.h deleted file mode 100644 index f1a1850..0000000 --- a/kern/zalloc.h +++ /dev/null @@ -1,136 +0,0 @@ -/* - * Mach Operating System - * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University. - * Copyright (c) 1993,1994 The University of Utah and - * the Computer Systems Laboratory (CSL). - * All rights reserved. - * - * Permission to use, copy, modify and distribute this software and its - * documentation is hereby granted, provided that both the copyright - * notice and this permission notice appear in all copies of the - * software, derivative works or modified versions, and any portions - * thereof, and that both notices appear in supporting documentation. - * - * CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF - * THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY - * OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF - * THIS SOFTWARE. - * - * Carnegie Mellon requests users of this software to return to - * - * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU - * School of Computer Science - * Carnegie Mellon University - * Pittsburgh PA 15213-3890 - * - * any improvements or extensions that they make and grant Carnegie Mellon - * the rights to redistribute these changes. - */ -/* - * File: zalloc.h - * Author: Avadis Tevanian, Jr. - * Date: 1985 - * - */ - -#ifndef _KERN_ZALLOC_H_ -#define _KERN_ZALLOC_H_ - -#include <mach/machine/vm_types.h> -#include <kern/macro_help.h> -#include <kern/lock.h> -#include <kern/queue.h> -#include <machine/zalloc.h> - -/* - * A zone is a collection of fixed size blocks for which there - * is fast allocation/deallocation access. Kernel routines can - * use zones to manage data structures dynamically, creating a zone - * for each type of data structure to be managed. - * - */ - -struct zone { - decl_simple_lock_data(,lock) /* generic lock */ -#ifdef ZONE_COUNT - int count; /* Number of elements used now */ -#endif - vm_offset_t free_elements; - vm_size_t cur_size; /* current memory utilization */ - vm_size_t max_size; /* how large can this zone grow */ - vm_size_t elem_size; /* size of an element */ - vm_size_t align; /* alignment of elements */ - vm_size_t alloc_size; /* size used for more memory */ - boolean_t doing_alloc; /* is zone expanding now? */ - char *zone_name; /* a name for the zone */ - unsigned int type; /* type of memory */ - lock_data_t complex_lock; /* Lock for pageable zones */ - struct zone *next_zone; /* Link for all-zones list */ -}; -typedef struct zone *zone_t; - -#define ZONE_NULL ((zone_t) 0) - -/* Exported to everyone */ -zone_t zinit(vm_size_t size, vm_size_t align, vm_size_t max, - vm_size_t alloc, unsigned int memtype, char *name); -vm_offset_t zalloc(zone_t zone); -vm_offset_t zget(zone_t zone); -void zfree(zone_t zone, vm_offset_t elem); -void zcram(zone_t zone, vm_offset_t newmem, vm_size_t size); - -/* Exported only to vm/vm_init.c */ -void zone_bootstrap(void); -void zone_init(void); - -/* Exported only to vm/vm_pageout.c */ -void consider_zone_gc(void); - - -/* Memory type bits for zones */ -#define ZONE_PAGEABLE 0x00000001 -#define ZONE_COLLECTABLE 0x00000002 /* Garbage-collect this zone when memory runs low */ -#define ZONE_EXHAUSTIBLE 0x00000004 /* zalloc() on this zone is allowed to fail */ -#define ZONE_FIXED 0x00000008 /* Panic if zone is exhausted (XXX) */ - -/* Machine-dependent code can provide additional memory types. */ -#define ZONE_MACHINE_TYPES 0xffff0000 - - -#ifdef ZONE_COUNT -#define zone_count_up(zone) ((zone)->count++) -#define zone_count_down(zone) ((zone)->count--) -#else -#define zone_count_up(zone) -#define zone_count_down(zone) -#endif - - - -/* These quick inline versions only work for small, nonpageable zones (currently). */ - -static __inline vm_offset_t ZALLOC(zone_t zone) -{ - simple_lock(&zone->lock); - if (zone->free_elements == 0) { - simple_unlock(&zone->lock); - return zalloc(zone); - } else { - vm_offset_t element = zone->free_elements; - zone->free_elements = *((vm_offset_t *)(element)); - zone_count_up(zone); - simple_unlock(&zone->lock); - return element; - } -} - -static __inline void ZFREE(zone_t zone, vm_offset_t element) -{ - *((vm_offset_t *)(element)) = zone->free_elements; - zone->free_elements = (vm_offset_t) (element); - zone_count_down(zone); -} - - - -#endif /* _KERN_ZALLOC_H_ */ |