
Moving the Default Memory Manager out of the Mach Kernel

David B. Golub
Richard P. Draves

School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, Pennsylvania 15213

(412) 268-7667

Internet: dbg@cs.cmu.edu, rpd@cs.cmu.edu

1. Abstract
We have implemented a default memory manager for the Mach 3.0 kernel that resides entirely in user

space. The default memory manager uses a small set of kernel privileges to lock itself into memory,
preventing deadlocks against other Mach system services. An extension to the Mach boot sequence loads
both the kernel and user program images at system startup time. The resulting system allows the default
memory manager to be built and run in a standard user-level environment, but still operates with the high
reliability required by the Mach kernel.

The default memory manager is bundled with another component of the Mach 3.0 system: the bootstrap
service. This service starts the initial set of system servers that make up a complete operating system based
on the Mach 3.0 kernel. Since the real file system may be one of these servers, the bootstrap service needs
its own copy of a subset of the file system. This is shared with the default memory manager. Placing these
two components outside the kernel allows them to be easily reconfigured with different file systems.

2. Introduction
We have implemented a version of the Mach 3.0 operating system in which all paging traffic to backing

storage has been moved outside of the operating system kernel. This is a significant departure not only
from previous versions of Mach 3.0, but also from more traditional operating systems, in which memory
management for at least temporary memory has been an integral part of the kernel. This work has involved
solving a number of technical challenges. The privileges required to manage temporary memory without
deadlocking with the rest of the system have traditionally been only available to services embedded within
the operating system kernel. We also had concerns about the time and space required to handle paging
requests outside the kernel. However, the resulting system runs as reliably as an operating system with
conventional temporary memory management. With a reasonable amount of memory, the system runs as
fast as previous versions of Mach 3.0.

This research was sponsored in part by The Defense Advanced Research Projects Agency, Information Science and Technology
Office, under the title ‘‘Research on Parallel Computing’’, ARPA Order No. 7330, issued by DARPA/CMO under Contract
MDS972-90-C-0035 and in part by the Open Software Foundation (OSF). Draves was supported by a fellowship from the Fannie and
John Hertz Foundation.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of DARPA, OSF, the Fannie and John Hertz Foundation, or the U.S. government.

The default memory manager is an essential component of the Mach 3.0 operating system. It provides
backing storage for temporary memory objects. Since its clients may include other components of the
system, it cannot depend upon them for any vital services, such as backing storage allocation, without
risking deadlock. Traditionally, such vital components of an operating system have been integral parts of
the kernel, often using services unavailable to other subsystems. Earlier versions of Mach 3.0 followed
suit: the default memory manager was built into the kernel.

Over the past year, we have re-implemented the default memory manager as a task residing entirely in
user space. The default memory manager needs only a few kernel primitives to obtain the privileges it
needs: wiring down its own code and data, ensuring that data given to it is locked in memory, and priority
in allocating new memory. These privileges are part of the normal Mach kernel interface, and potentially
available to any user task. All other communication between the kernel and the default memory manager is
via the kernel interface used by all other Mach memory managers.

The default memory manager is bundled with the Mach bootstrap service, which loads the initial set of
servers. The bootstrap service and the default memory manager live in the same task and share a subset of
the file system code to access existing files. Moving this task into user space has required rewriting the
Mach kernel boot sequence so that two program images, the kernel and the bootstrap/pager task, can be
loaded at system boot time. The kernel and the bootstrap/pager task are built independently. A new
program, makeboot, combines the two into a bootable system image.

The Mach kernel can now be built without the extra support required for embedded server tasks that
were present in earlier versions. There are no more naming conflicts in the kernel between internal kernel
routines and user-level interfaces to them. The bootstrap service and default memory manager, similarly,
can be built as normal user tasks. The resulting system is as robust as a standard Mach 3.0 system with the
default memory manager inside the kernel. Performance on machines with reasonable amounts of memory
is essentially identical.

3. In-Kernel Default Memory Management
A manager for temporary virtual memory must operate under some very adverse conditions. In

conventional operating systems, the temporary memory manager must be able to allocate storage when no
other component of the system can do so. In Mach, the temporary memory manager is, by default, the
memory manager of last resort for all other memory managers. This role of default memory manager
forces it to avoid most standard system services. These constraints have kept the temporary memory
manager intimately tied to the kernel in most operating systems, including earlier versions of Mach.

Operating systems have traditionally provided a variety of memory management services implemented
within the operating system kernel. [1] [5] They include:

• Allocating temporary memory for user programs and system services.

• Mapping executable files and data files into a task’s address space.

• Mapping IO devices such as graphics buffers.

• Sharing files or temporary memory between tasks.

The external memory management interface present in Mach 2.5 and Mach 3.0 has allowed most of
these services to be provided by servers outside the kernel. However, temporary memory management has
still resided within the kernel.

Temporary memory management has traditionally been implemented in the kernel because it must make
use of other system services at times when they would normally be unavailable or risky to use. Temporary
memory usually does not have pre-allocated backing storage. The temporary memory manager must
allocate the backing storage when it is needed. Since pages are written to backing storage when the system
is short of main memory, the routines that allocate backing storage must be able to operate in such
conditions. Furthermore, allocating backing storage often requires allocating memory within the memory
manager, further increasing the strain on main memory.

In a Mach 3.0 system, the temporary memory manager acquires an even more difficult role: that of
default or last-resort memory manager for the entire system [6]. Memory management services may be
provided by any task in the system, not only by trusted system components. Therefore memory managers
cannot be assumed to be timely or reliable. A memory manager may take an arbitrary amount of time to
write a page to its backing storage. It may also malfunction (accidentally or maliciously) and not write the
page at all. During the time the page is in transit (paged out to its memory manager, but not yet written), it
still consumes main memory. If the operating system is short of memory, this in-transit page must be
paged out. Since the page is viewed as temporary memory while it is in transit, the temporary memory
manager thus assumes responsibility for it.

The temporary memory manager therefore must not depend on other servers in the system, since these
servers may depend on the temporary memory manager themselves. This requirement has, so far, kept the
temporary memory manager within the Mach kernel.

4. Constraints on the Default Memory Manager
The default memory manager faces several stringent implementation constraints, because of its crucial

role in the Mach system. It cannot depend on any system service that in turn could use it to provide
temporary memory. It must also be able to function when the system is short of memory.

• The default memory manager must be resident - there is no other service to page its code and
data into memory.

• All pages moving between the kernel and the default memory manager, and between the
default memory manager and its backing storage service, must remain resident.

• The default memory manager cannot block to wait for more physical memory, since freeing
physical memory requires that its contents be paged out (through the default memory
manager).

• If the default memory manager is grouped with another service, the threads that handle default
memory manager functions must be distinguished from threads that do not. When the system
is short of memory, the unprivileged threads (those not handling default memory manager
functions) may block waiting for physical memory. If the default memory manager’s threads
can block waiting for the unprivileged threads, a deadlock will result.

• The default memory manager cannot block to wait for the file system to allocate temporary
disk storage, since the file system itself may be pageable. This requires that temporary paging
space be allocated in advance, or that the file system be as privileged as the default memory
manager.

To meet these requirements, the Mach 2.5 default memory manager was implemented as a task bound
tightly within the kernel. It used several services that were unavailable to other components of the system.

• The default memory manager was allowed to allocate kernel memory even when the system
was short of memory. Threads within the default memory manager were marked as
vm_privileged threads, and were allowed to allocate memory when other threads would block.

• Threads within the default memory manager were marked as unswappable. The kernel could
unlock and page out the entire kernel stack of a long-waiting thread when short of memory.
Doing this to a default memory manager thread would, of course, deadlock the system.

• The default memory manager used the existing BSD 4.2 file system code to manage its disk
storage and allocate new disk space for paging. The code was written to run in a standard
kernel environment, which assumed that all of the code and data was resident, and the kernel
stack of any thread executing the file system routines was locked into memory.

However, all paging traffic between the kernel and the default memory manager took place through the
external memory management interface - an interface designed to be used with servers residing outside the
kernel.

The original Mach default memory manager therefore used a mixture of user and kernel services. It
moved pages to and from the kernel using the external memory management interface, as if it were a user
task. It accessed the kernel memory and disk allocation routines through its privileged position inside the
kernel. This structure, preserved even in the first Mach 3.0 implementations, required the kernel to provide
the equivalent of a user-mode interface internally. It spoiled the clean separation between the Mach kernel
and user-mode functions.

5. Moving Out of the Kernel
To move the default memory manager out of the kernel’s address space, the privileged kernel functions

had to be replaced by equivalent functions accessible from user programs. Fortunately, the default memory
manager already used the standard external memory management interface to handle paging operations,
using external data types (ports) to represent memory objects, rather than handles to the kernel’s internal
data structures.

Only a few kernel operations were accessed directly: allocating disk storage, synchronizing threads,
allocating locked-down memory, and preventing threads from being swapped out. These operations were
replaced with equivalent user-mode routines, or were added to the kernel interface where missing.

5.1. Kernel Interface Extensions
The kernel interface has been extended with two calls originally proposed [2] for supporting real-time

Mach:

• kern_return_t vm_wire(
priv_host_t host_port,
task_t task,
vm_address_t start,
vm_size_t size,
vm_prot_t access)

Locks ("wires") the specified range of virtual addresses for the task into memory. Accesses
denoted by access cannot fault. Memory is unlocked by specifying no wired access
(VM_PROT_NONE).

• kern_return_t thread_wire(
priv_host_t host_port,
thread_t thread)

Permanently acquires a kernel stack for the thread, so that the thread can always run. Allows

the thread’s requests for physical memory to always succeed.

Both of these calls are only accessible to tasks with send rights to the privileged host port. There is
currently no other resource control on memory allocated by these calls.

An existing kernel call identifies the default memory manager to the kernel:

kern_return_t vm_set_default_memory_manager(
priv_host_t host_port,
mach_port_t *default_manager)

Returns the old value of the default memory manager service port. If the supplied value for the
default manager port is not MACH_PORT_NULL, the kernel will use this port as the default
memory manager service port.

The kernel uses the default memory manager service port to request the default memory manager to
handle paging for temporary objects. It also arranges that memory sent to the task with receive rights for
this port remains locked down in physical memory: see section 5.5.

5.2. File System Access
The largest kernel function used directly by the Mach 2.5 default memory manager was the file system

code. Since the file system code was resident, the default memory manager could take advantage of it to
allocate new paging space. However, this required that the all of the file system code be resident, and that
any thread that accessed the file system also be resident while it was executing that code.

To preserve the flexibility of being able to allocate new paging space would have required us to include
the entire BSD file system code in the default memory manager. We decided instead to separate the file
system and the memory manager, and use other mechanisms to allocate paging storage.

The default memory manager bypasses the disk allocation problem by using a pre-specified list of disk
blocks. At system startup time, the bootstrap sequence looks for a paging file with a well known name:
/mach_servers/paging_file. It then reads the index information in the file to obtain the disk blocks
occupied by the file, and passes them to the default memory manager. The paging file must, therefore, be
pre-allocated with all of the blocks needed for paging.

5.3. Synchronization and Locking
The default memory manager uses the CThreads package [3] to provide locking and synchronization

between different threads. The CThreads package provides two synchronization primitives: mutual
exclusion locks, for controlling exclusive access to data structures, and condition variables, used by
multiple threads to wait for events and signal them. Mutual exclusion locks were used to replace the simple
spin locks used inside the kernel. Explicit calls to the kernel sleep and wakeup primitives were replaced
with condition variables. The CThreads package does not provide multiple reader/single writer locks, but
since these were used only in one routine in the file system, they were easily replaced with exclusive
locking.

5.4. Allocating Locked-Down Memory
We replaced the standard C library memory allocator (malloc and free) with our own routines. These

call the kernel routine vm_allocate to allocate full pages. This is replaced by a routine that allocates
memory from the kernel (using vm_map), and locks it into memory using the new vm_wire call. The
thread_wire call allows the threads in the default memory manager to always allocate memory.

5.5. Locking Memory sent to the Default Memory Manager
The default memory manager receives memory in messages from only a few sources in the kernel and

the device service. These have been modified to know when they are sending memory to the default
memory manager, and to lock it in memory.

• The pageout daemon locks pages being paged-out from temporary memory objects. These
memory objects are created by the kernel to hold temporary memory, or to shadow memory
that is passed copy-on-write from one task to another. If a page in one of these objects is sent
to the default memory manager, it is locked down.

• The device service locks memory being read from backing storage devices (typically the disk)
to the default memory manager. The device_read routine looks at the task holding receive
rights for the destination of its reply message. If that task is also the receiver for the default
memory manager’s service port, the memory is locked down.

5.6. Locking Memory sent to Backing Storage
The default memory manager writes data to disk via the kernel device service, using the device_write

call. This routine must not allow the data to be paged out, and must not block to wait for other paged-out
data to be paged in. To avoid blocking, the device_write request message is processed in the context of the
calling thread, not by a separate device service task. The message-send operation does not return until the
memory to be written is queued for the disk.

If the device service were a separate task, it would need two classes of service threads. One set would
handle write requests from the default memory manager, containing locked-down memory; the other set
would handle requests from all other clients, containing pageable memory. If one pool of service threads
handled both pageable and locked-down memory, a write request from the default memory manager could
be blocked because pageable memory in a previous write request was paged out. This would result in
deadlock, since the device service would need the default memory manager to retrieve the paged-out
memory.

6. User-mode Environment for the Default Memory Manager
The default memory manager is built and operates as part of the Mach 3.0 bootstrap service task. This

task is the first to run in the system once the kernel is initialized. In addition to the default memory
manager, it contains the bootstrap loader for user-mode servers. Since both of these components share a
common file system, they were moved out of the kernel as a unit.

6.1. Structure of the Bootstrap Service Task
The bootstrap loader loads and executes the first server task: the BSD server for the BSD single-server

system, or the configuration manager for the multi-server operating system. It makes use of a bootstrap file
system module to find the server file and read it into a new user task. It passes the privileged host port and
the device server port to the initial server, thus giving the initial server access to all system privileged
operations.

The default memory manager runs after the bootstrap service. It uses the bootstrap file system to find the
paging file, and to read and write the file as paging operations take place. It exports an interface to allow
other tasks to use it as a shared memory service; however, it provides no network consistency management,
so the objects it exports cannot be shared across multiple machines.

The bootstrap file system that both of these components use provides a small subset of the operations
available on a BSD 4.2 or 4.3 file system. It can look up files by device and name, and read and write
existing data blocks in files. It cannot allocate new blocks to files, or create new files. To do so would
conflict with the real file system. The interface to the bootstrap file system is well defined; the code can
readily be replaced by one that understands a different disk format.

6.2. Loading Two Boot Images
Since the default memory manager and bootstrap service have been separated from the kernel, there are

now two executable images (kernel and bootstrap) to be loaded when the system is run. We decided not to
modify the existing initial bootstrap loaders to load both images. Most of them are proprietary to the
individual manufacturers; in at least one case, we do not even have access to the source code. Instead, we
expanded the kernel boot file to contain both images.

A new program called makeboot builds an executable out of both boot images (kernel and bootstrap) so
that the complete image of the default memory manager and bootstrap task is in the kernel data segment
when the kernel is loaded. The kernel then moves the bootstrap image to a newly created user task and
starts a user-mode thread in it.

The boot file looks like a normal bootable image, but has no uninitialized storage (BSS) or symbol table.
The size of the combined text and data segments is set to include the entire file. At the start of the kernel
uninitialized data (BSS) is a struct boot_info describing the sizes of the rest of the file:

struct boot_info {
vm_size_t kern_sym_size; /* size of kernel symbol table */
vm_size_t boot_image_size; /* size of bootstrap image */
vm_size_t load_info_size; /* size of load information for

bootstrap image */
};

Following this are three new sections:

• The kernel symbol table. This may include information pulled from the normal executable file
header to make the symbol table self-describing.

• The boot image. This is identical to the bootstrap’s executable file, except that its symbol table
has also been made self-describing.

• Loader information for the boot image. This is in a compiler-independent format, to reduce the
amount of machine-dependent code needed in the kernel.

At startup, the Mach boot file is loaded into contiguous physical memory. The kernel must, as its first
action, move the symbol table, the bootstrap image, and the load information out of its BSS section. In
addition, it must align the bootstrap image on a page boundary, so that the bootstrap image can be mapped
to the bootstrap task rather than being copied. All of this may have to be done before virtual memory
mapping is set up, since the kernel typically uses the first few pages of physical memory after the BSS for
building page tables.

The kernel proceeds with its normal initialization. After starting all the internal threads, it creates a task
and thread to run the bootstrap code. It then creates a memory object mapping the resident pages holding
the bootstrap code. It maps this memory object into the first task as it would a normal executable file. It
then allocates a stack for the task, passes it a small set of arguments, and starts it running in user space.

7. Results
Moving the default memory manager outside the kernel has both benefits and drawbacks. The build

environment for both the kernel and the default pager (and bootstrap task) is considerably simplified, since
user and kernel environments are not mixed. The system operates almost as fast as previous versions of
Mach 3.0 that contained the default memory manager within the kernel. However, it does occupies more
physical memory than previous versions. Using a pre-allocated paging file is adequate for development
systems, but not for production use.

7.1. Building the System
Building the Mach 3.0 kernel and default memory manager is much easier. Both the kernel and the

default memory manager are now self-contained. A new bootstrap service can be added to the Mach 3.0
boot file without rebuilding the kernel.

The kernel no longer has to support a user environment for otherwise self-contained servers. There is no
longer a naming conflict between kernel interface routines called by servers and the kernel functions
themselves. The default memory manager no longer has to distinguish global kernel names for ports from
its own local names for them; this was a source of confusion in the Mach 2.5 default memory manager.

The default pager and bootstrap service can be built as a standard user task, using the Mach kernel
primitives and device support routines, and the standard CThreads library. Where we have re-implemented
routines from the standard Mach libraries, we have done so for performance or space reasons, not for new
functions.

The kernel and the bootstrap service are built independently and combined with the makeboot program.
If someone wants to experiment with a new default memory manager, or change the bootstrap file system
to accommodate different disk formats, it is not necessary to rebuild the kernel. Only the boot file needs to
be rebuilt.

7.2. Performance
Performance figures, comparing the MK63 release of Mach 3.0 with the out-of-kernel default memory

manager, are shown in table 7-1. All measurements were run on a 25Mhz 386 processor with 8 Megabytes
of memory and an ISA bus.

When operating with a reasonable amount of main memory, moving the default memory manager
outside of the kernel has only a small effect on overall system performance. A memory-intensive paging
benchmark, paging 7 megabytes of virtual memory against 6.5 megabytes of available physical memory,
runs less than 1% slower with the default memory manager out of the kernel. We expect that a balanced
workload, not dominated by paging operations, will show no difference.

We expected that overall system performance would be unchanged by having the default memory
manager outside of the kernel. When the system is paging heavily, disk operations would dominate the

Memory Size,
Megabytes Elapsed Time, Seconds

Maximum Available Difference,
Memory Memory MK63 Out-of-Kernel Percent

8 6.5 97.0 97.6 0.6

4 2.5 124.2 131.4 5.8

3 1.5 131.6 138.9 5.5

Table 7-1: Performance of out-of-kernel system vs. MK63

cost anyway. Otherwise, the only difference would be the cost of crossing the user/kernel boundary. The
previous implementation of the default memory manager was already structured as a separate task,
communicating with the kernel and the disk driver via IPC: this already forced messages to be copied and
data to be remapped from the default memory manager’s address space to the kernel’s address space. The
only added cost would be the actual kernel-to-user mode switch. These expectations correspond to what
we have measured.

As the available memory decreases, the performance drops, but slowly. With 2.5 megabytes of memory,
the paging test runs about 6% slower. The extra memory taken by the out-of-kernel bootstrap task does not
account for the slowdown: adjusting the available memory to compensate does not change the performance
figures.

One cause of the slowdown is the difference between the kernel and the CThread locking facilities.
Mutual exclusion locks in the kernel compile into null routines when the kernel is built for a uniprocessor;
since kernel threads are not preemptible, locks are not needed when the thread cannot block. Locking is
always needed, however, when running in user space, since user-mode threads are preemptible. When the
default memory manager was first moved outside the kernel, it grabbed and released a mutual exclusion
lock nine times while reading one page from the disk. Reducing the number of lock/unlock pairs to four
reduced the performance degradation from 10% to 6%. We expect that further tuning of the code will
regain nearly all of the lost time.

7.3. Memory Usage
The sizes for the kernel and bootstrap image are compared with the size of an MK63 kernel in table 7-2.

The extra memory used by the out-of-kernel default pager system is broken down in table 7-3. The loaded
image occupies more space than it does in the file because the text and data segments and the symbol tables
are rounded to page boundaries (4096 bytes).

File Text Data BSS Symbols

MK63 315360 33096 54364 69524

Kernel 294880 32224 52992 65386

Bootstrap 40928 2676 3616 19345

Table 7-2: Executable Image Sizes

Splitting the default memory manager out of the kernel does increase the system’s locked-down memory
usage. The default memory manager’s code and data is still locked in memory. The C Threads library is

Size in
KBytes Used By

48 Code and Data for Bootstrap

24 Symbol Table for Bootstrap

-24 (Code and Data Removed from Kernel)

-4 (Symbol Table Removed from Kernel)

12 Page Table for Bootstrap Task

40 CThread Stacks for Each CThread

4 Extra Waiting Stack allocated by CThreads

12 Temporary Storage Managed by Memory Allocator

112 Total

Table 7-3: Extra Memory Used by Bootstrap Task

larger than the equivalent kernel locking primitives, and is not shared with other functions as the kernel
primitives are. Each thread in the default memory manager has a user-mode stack as well as a kernel-mode
stack. Since the threads must be wired, their kernel stacks cannot be discarded or handed-off to another
thread.

Careful work on the default memory manager could reduce the extra memory usage, but not eliminate it
entirely. The user-mode stacks could be reduced to 4 K bytes each, since only the bootstrap server loading
code needs as much as 8 K bytes of stack. It would also be possible to discard the code pages occupied
only by the bootstrap service loader routines once they have been used. In a production system, the kernel
and bootstrap loader would be configured without run-time debugging information: this would save 20 K
bytes from the bootstrap task alone.

7.4. Backing Storage Allocation
Using a pre-allocated paging file is currently the least satisfactory aspect of the default memory manager

design. Mach 2.5, since it integrated the file system with the default memory manager, could use a variety
of paging space allocation strategies: reserved disk partitions, pre-allocated paging files, and expandable
paging files. In Mach 3.0, the file system is expected to be separated from the default memory manager.
The two tasks must cooperate to supply more disk blocks for paging; otherwise they could both allocate the
same blocks from the file system, destroying it. There is currently no way to give more paging space to the
default memory manager; one could be added.

8. Further Work
Since the bootstrap service is now independent of the kernel environment, we can experiment with

adding additional functions. The default memory manager interface could be extended, as previously
mentioned, to request additional paging storage from the file system and to return paging storage that is no
longer needed. The bootstrap loader could be used to load all of the servers for the multi-server BSD
emulation, not just its configuration service. The bootstrap task is also the logical place to put any
out-of-kernel disk drivers [4]that need to be shared between the default memory manager and the file
system. To accommodate the space taken by these functions, we would need to restructure the bootstrap
service so that code used only at startup can be freed.

For the adventurous, the default memory manager could even be made into a loadable server, separate
from the bootstrap service. The default memory manager views backing storage as a list of disk blocks, not
as files. Therefore it does not actually need to share the file system code with the bootstrap service. The
default memory manager could be loaded and run just as any other system server; at some later time (for
example, when swapon is executed), a file system server could provide it with a list of disk blocks to use.

9. Conclusions
We have shown that moving all memory management outside the Mach 3.0 kernel is not only possible,

but beneficial. The resulting system runs as reliably and almost as fast as earlier versions of Mach 3.0. It is
considerably easier to build and can more flexibly be reconfigured. These benefits are obtained at the cost
of only a small amount of extra memory.

References

[1] L. A. Belady, R. P. Parmelee, and C. A. Scalzi.
The IBM History of Memory Management Technology.
IBM Journal of Research and Development 25(5):491-503, September, 1981.

[2] David L. Black.
Mach Interface Proposals - Priorities, Handoff, Wiring.
Internal Mach Project Memo - 13 August 1989.

[3] Eric C. Cooper and Richard P. Draves.
C Threads.
Technical Report, Department of Computer Science, Carnegie Mellon University, July, 1987.

[4] Alessandro Forin, David Golub, and Brian Bershad.
An I/O System for Mach 3.0.
In Proceedings of the Second Mach Symposium. The UseNIX Association, November, 1991.

[5] E. L. Organick.
The Multics System: An Examination of its Structure.
MIT Press, Cambridge, Mass., 1972.

[6] Michael W. Young.
Exporting a User Interface to Memory Management from a Communication-Oriented Operating

System.
PhD thesis, Carnegie Mellon University, November, 1989.

Table of Contents
1. Abstract 0
2. Introduction 0
3. In-Kernel Default Memory Management 1
4. Constraints on the Default Memory Manager 2
5. Moving Out of the Kernel 3

5.1. Kernel Interface Extensions 3
5.2. File System Access 4
5.3. Synchronization and Locking 4
5.4. Allocating Locked-Down Memory 5
5.5. Locking Memory sent to the Default Memory Manager 5
5.6. Locking Memory sent to Backing Storage 5

6. User-mode Environment for the Default Memory Manager 5
6.1. Structure of the Bootstrap Service Task 5
6.2. Loading Two Boot Images 6

7. Results 7
7.1. Building the System 7
7.2. Performance 7
7.3. Memory Usage 8
7.4. Backing Storage Allocation 9

8. Further Work 9
9. Conclusions 10

List of Tables
Table 7-1: Performance of out-of-kernel system vs. MK63 8
Table 7-2: Executable Image Sizes 8
Table 7-3: Extra Memory Used by Bootstrap Task 9

