/* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */ /* Written 1997-2003 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Drivers based on or derived from this code fall under the GPL and must retain the authorship, copyright and license notice. This file is not a complete program and may only be used when the entire operating system is licensed under the GPL. This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter. It also supports the Symbios Logic version of the same chip core. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 914 Bay Ridge Road, Suite 220 Annapolis MD 21403 Support information and updates available at http://www.scyld.com/network/yellowfin.html The information and support mailing lists are based at http://www.scyld.com/mailman/listinfo/ */ /* These identify the driver base version and may not be removed. */ static const char version1[] = "yellowfin.c:v1.10 7/22/2003 Written by Donald Becker \n"; static const char version2[] = " http://www.scyld.com/network/yellowfin.html\n"; /* The user-configurable values. These may be modified when a driver module is loaded.*/ /* Message enable level: 0..31 = no..all messages. See NETIF_MSG docs. */ static int debug = 2; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 20; /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). Typical is a 64 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 64; #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ /* System-wide count of bogus-rx frames. */ static int bogus_rx = 0; static int dma_ctrl = 0x004A0263; /* Constrained by errata */ static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */ #elif YF_NEW /* A future perfect board :->. */ static int dma_ctrl = 0x00CAC277; /* Override when loading module! */ static int fifo_cfg = 0x0028; #else static int dma_ctrl = 0x004A0263; /* Constrained by errata */ static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */ #endif /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1518 effectively disables this feature. */ static int rx_copybreak = 0; /* Used to pass the media type, etc. No media types are currently defined. These options exist only for compatibility with other drivers. */ #define MAX_UNITS 8 /* More are supported, limit only on options */ static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; /* Do ugly workaround for GX server chipset errata. */ static int gx_fix = 0; /* Operational parameters that are set at compile time. */ /* Keep the ring sizes a power of two for efficiency. Making the Tx ring too large decreases the effectiveness of channel bonding and packet priority, confuses the system network buffer limits, and wastes memory. Too-large receive rings waste memory and confound network buffer limits. */ #define TX_RING_SIZE 16 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */ #define RX_RING_SIZE 64 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (6*HZ) /* Allocation size of Rx buffers with normal sized Ethernet frames. Do not change this value without good reason. This is not a limit, but a way to keep a consistent allocation size among drivers. */ #define PKT_BUF_SZ 1536 #ifndef __KERNEL__ #define __KERNEL__ #endif #if !defined(__OPTIMIZE__) #warning You must compile this file with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include #if defined(CONFIG_SMP) && ! defined(__SMP__) #define __SMP__ #endif #if defined(MODULE) && defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS) #define MODVERSIONS #endif #include #if defined(MODVERSIONS) #include #endif #include #include #include #include #include #include #if LINUX_VERSION_CODE >= 0x20400 #include #else #include #endif #include #include #include #include #include #include /* Processor type for cache alignment. */ #include #include #include #ifdef INLINE_PCISCAN #include "k_compat.h" #else #include "pci-scan.h" #include "kern_compat.h" #endif /* Condensed operations for readability. */ #define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr)) #define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr)) #if (LINUX_VERSION_CODE >= 0x20100) && defined(MODULE) char kernel_version[] = UTS_RELEASE; #endif MODULE_AUTHOR("Donald Becker "); MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver"); MODULE_LICENSE("GPL"); MODULE_PARM(debug, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(multicast_filter_limit, "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(gx_fix, "i"); MODULE_PARM_DESC(debug, "Driver message level enable (0-31)"); MODULE_PARM_DESC(options, "Force transceiver type or fixed speed+duplex"); MODULE_PARM_DESC(rx_copybreak, "Breakpoint in bytes for copy-only-tiny-frames"); MODULE_PARM_DESC(full_duplex, "Non-zero to force full duplex, non-negotiated link " "(deprecated)."); MODULE_PARM_DESC(max_interrupt_work, "Driver maximum events handled per interrupt"); MODULE_PARM_DESC(multicast_filter_limit, "Multicast addresses before switching to Rx-all-multicast"); MODULE_PARM_DESC(gx_fix, "Set to work around old GX chipset errata"); /* Theory of Operation I. Board Compatibility This device driver is designed for the Packet Engines "Yellowfin" Gigabit Ethernet adapter. The only PCA currently supported is the G-NIC 64-bit PCI card. II. Board-specific settings PCI bus devices are configured by the system at boot time, so no jumpers need to be set on the board. The system BIOS preferably should assign the PCI INTA signal to an otherwise unused system IRQ line. Note: Kernel versions earlier than 1.3.73 do not support shared PCI interrupt lines. III. Driver operation IIIa. Ring buffers The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple. This is a descriptor list scheme similar to that used by the EEPro100 and Tulip. This driver uses two statically allocated fixed-size descriptor lists formed into rings by a branch from the final descriptor to the beginning of the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. The driver allocates full frame size skbuffs for the Rx ring buffers at open() time and passes the skb->data field to the Yellowfin as receive data buffers. When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is copied to the new skbuff. When the incoming frame is larger, the skbuff is passed directly up the protocol stack and replaced by a newly allocated skbuff. The RX_COPYBREAK value is chosen to trade-off the memory wasted by using a full-sized skbuff for small frames vs. the copying costs of larger frames. For small frames the copying cost is negligible (esp. considering that we are pre-loading the cache with immediately useful header information). For large frames the copying cost is non-trivial, and the larger copy might flush the cache of useful data. IIIC. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and other software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'yp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. After reaping the stats, it marks the Tx queue entry as empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IV. Notes Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards. Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board and an AlphaStation to verifty the Alpha port! IVb. References Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary Data Manual v3.0 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html IVc. Errata See Packet Engines confidential appendix (prototype chips only). */ static void *yellowfin_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int fnd_cnt); enum capability_flags { HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16, HasMACAddrBug=32, /* Only on early revs. */ }; /* The PCI I/O space extent. */ #define YELLOWFIN_SIZE 0x100 #ifdef USE_IO_OPS #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_IO | PCI_ADDR0) #else #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1) #endif static struct pci_id_info pci_id_tbl[] = { {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff}, PCI_IOTYPE, YELLOWFIN_SIZE, FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug}, {"Symbios SYM83C885", { 0x07011000, 0xffffffff}, PCI_IOTYPE, YELLOWFIN_SIZE, HasMII }, {0,}, }; struct drv_id_info yellowfin_drv_id = { "yellowfin", PCI_HOTSWAP, PCI_CLASS_NETWORK_ETHERNET<<8, pci_id_tbl, yellowfin_probe1, }; /* Offsets to the Yellowfin registers. Various sizes and alignments. */ enum yellowfin_offsets { TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C, TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18, RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C, RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58, EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86, ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94, Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4, MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC, MII_Status=0xAE, RxDepth=0xB8, FlowCtrl=0xBC, AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8, EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4, EEFeature=0xF5, }; /* The Yellowfin Rx and Tx buffer descriptors. Elements are written as 32 bit for endian portability. */ struct yellowfin_desc { u32 dbdma_cmd; u32 addr; u32 branch_addr; u32 result_status; }; struct tx_status_words { #if defined(__powerpc__) u16 tx_errs; u16 tx_cnt; u16 paused; u16 total_tx_cnt; #else /* Little endian chips. */ u16 tx_cnt; u16 tx_errs; u16 total_tx_cnt; u16 paused; #endif }; /* Bits in yellowfin_desc.cmd */ enum desc_cmd_bits { CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000, CMD_NOP=0x60000000, CMD_STOP=0x70000000, BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000, BRANCH_IFTRUE=0x040000, }; /* Bits in yellowfin_desc.status */ enum desc_status_bits { RX_EOP=0x0040, }; /* Bits in the interrupt status/mask registers. */ enum intr_status_bits { IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08, IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80, IntrEarlyRx=0x100, IntrWakeup=0x200, }; #define PRIV_ALIGN 31 /* Required alignment mask */ struct yellowfin_private { /* Descriptor rings first for alignment. Tx requires a second descriptor for status. */ struct yellowfin_desc rx_ring[RX_RING_SIZE]; struct yellowfin_desc tx_ring[TX_RING_SIZE*2]; struct net_device *next_module; void *priv_addr; /* Unaligned address for kfree */ /* The addresses of receive-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; /* The saved address of a sent-in-place packet/buffer, for later free(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; struct tx_status_words tx_status[TX_RING_SIZE]; struct timer_list timer; /* Media selection timer. */ struct net_device_stats stats; /* Frequently used and paired value: keep adjacent for cache effect. */ int msg_level; int chip_id, drv_flags; struct pci_dev *pci_dev; long in_interrupt; int max_interrupt_work; struct yellowfin_desc *rx_head_desc; unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ unsigned int rx_buf_sz; /* Based on MTU+slack. */ int rx_copybreak; struct tx_status_words *tx_tail_desc; unsigned int cur_tx, dirty_tx; int tx_threshold; unsigned int tx_full:1; /* The Tx queue is full. */ unsigned int full_duplex:1; /* Full-duplex operation requested. */ unsigned int duplex_lock:1; unsigned int medialock:1; /* Do not sense media. */ unsigned int default_port; /* Last dev->if_port value. */ /* MII transceiver section. */ int mii_cnt; /* MII device addresses. */ u16 advertising; /* NWay media advertisement */ unsigned char phys[2]; /* MII device addresses. */ /* Rx multicast filter. */ u16 mc_filter[4]; int rx_mode; int multicast_filter_limit; }; static int read_eeprom(long ioaddr, int location); static int mdio_read(long ioaddr, int phy_id, int location); static void mdio_write(long ioaddr, int phy_id, int location, int value); #ifdef HAVE_PRIVATE_IOCTL static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); #endif static int yellowfin_open(struct net_device *dev); static void yellowfin_timer(unsigned long data); static void yellowfin_tx_timeout(struct net_device *dev); static void yellowfin_init_ring(struct net_device *dev); static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev); static void yellowfin_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static int yellowfin_rx(struct net_device *dev); static void yellowfin_error(struct net_device *dev, int intr_status); static int yellowfin_close(struct net_device *dev); static struct net_device_stats *yellowfin_get_stats(struct net_device *dev); static void set_rx_mode(struct net_device *dev); /* A list of installed Yellowfin devices, for removing the driver module. */ static struct net_device *root_yellowfin_dev = NULL; #ifndef MODULE int yellowfin_probe(struct net_device *dev) { if (pci_drv_register(&yellowfin_drv_id, dev) < 0) return -ENODEV; printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2); return 0; } #endif static void *yellowfin_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int find_cnt) { struct net_device *dev; struct yellowfin_private *np; void *priv_mem; int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; int drv_flags = pci_id_tbl[chip_idx].drv_flags; dev = init_etherdev(init_dev, 0); if (!dev) return NULL; printk(KERN_INFO "%s: %s type %8x at 0x%lx, ", dev->name, pci_id_tbl[chip_idx].name, (int)inl(ioaddr + ChipRev), ioaddr); if (drv_flags & IsGigabit) for (i = 0; i < 6; i++) dev->dev_addr[i] = inb(ioaddr + StnAddr + i); else { int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0); for (i = 0; i < 6; i++) dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i); } for (i = 0; i < 5; i++) printk("%2.2x:", dev->dev_addr[i]); printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq); /* Reset the chip. */ outl(0x80000000, ioaddr + DMACtrl); /* Make certain elements e.g. descriptor lists are aligned. */ priv_mem = kmalloc(sizeof(*np) + PRIV_ALIGN, GFP_KERNEL); /* Check for the very unlikely case of no memory. */ if (priv_mem == NULL) return NULL; /* We do a request_region() only to register /proc/ioports info. */ request_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name); dev->base_addr = ioaddr; dev->irq = irq; dev->priv = np = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN); memset(np, 0, sizeof(*np)); np->priv_addr = priv_mem; np->next_module = root_yellowfin_dev; root_yellowfin_dev = dev; np->pci_dev = pdev; np->chip_id = chip_idx; np->drv_flags = drv_flags; np->msg_level = (1 << debug) - 1; np->rx_copybreak = rx_copybreak; np->max_interrupt_work = max_interrupt_work; np->multicast_filter_limit = multicast_filter_limit; if (dev->mem_start) option = dev->mem_start; /* The lower four bits are the media type. */ if (option > 0) { if (option & 0x220) np->full_duplex = 1; np->default_port = option & 15; if (np->default_port) np->medialock = 1; } if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0) np->full_duplex = 1; if (np->full_duplex) np->duplex_lock = 1; /* The Yellowfin-specific entries in the device structure. */ dev->open = &yellowfin_open; dev->hard_start_xmit = &yellowfin_start_xmit; dev->stop = &yellowfin_close; dev->get_stats = &yellowfin_get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &mii_ioctl; if (np->drv_flags & HasMII) { int phy, phy_idx = 0; for (phy = 0; phy < 32 && phy_idx < 4; phy++) { int mii_status = mdio_read(ioaddr, phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { np->phys[phy_idx++] = phy; np->advertising = mdio_read(ioaddr, phy, 4); printk(KERN_INFO "%s: MII PHY found at address %d, status " "0x%4.4x advertising %4.4x.\n", dev->name, phy, mii_status, np->advertising); } } np->mii_cnt = phy_idx; } return dev; } static int read_eeprom(long ioaddr, int location) { int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */ outb(location, ioaddr + EEAddr); outb(0x30 | ((location >> 8) & 7), ioaddr + EECtrl); while ((inb(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0) ; return inb(ioaddr + EERead); } /* MII Managemen Data I/O accesses. These routines assume the MDIO controller is idle, and do not exit until the command is finished. */ static int mdio_read(long ioaddr, int phy_id, int location) { int i; outw((phy_id<<8) + location, ioaddr + MII_Addr); outw(1, ioaddr + MII_Cmd); for (i = 10000; i >= 0; i--) if ((inw(ioaddr + MII_Status) & 1) == 0) break; return inw(ioaddr + MII_Rd_Data); } static void mdio_write(long ioaddr, int phy_id, int location, int value) { int i; outw((phy_id<<8) + location, ioaddr + MII_Addr); outw(value, ioaddr + MII_Wr_Data); /* Wait for the command to finish. */ for (i = 10000; i >= 0; i--) if ((inw(ioaddr + MII_Status) & 1) == 0) break; return; } static int yellowfin_open(struct net_device *dev) { struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; long ioaddr = dev->base_addr; int i; /* Reset the chip. */ outl(0x80000000, ioaddr + DMACtrl); MOD_INC_USE_COUNT; if (request_irq(dev->irq, &yellowfin_interrupt, SA_SHIRQ, dev->name, dev)) { MOD_DEC_USE_COUNT; return -EAGAIN; } if (yp->msg_level & NETIF_MSG_IFUP) printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n", dev->name, dev->irq); yellowfin_init_ring(dev); outl(virt_to_bus(yp->rx_ring), ioaddr + RxPtr); outl(virt_to_bus(yp->tx_ring), ioaddr + TxPtr); for (i = 0; i < 6; i++) outb(dev->dev_addr[i], ioaddr + StnAddr + i); /* Set up various condition 'select' registers. There are no options here. */ outl(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */ outl(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */ outl(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */ outl(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */ outl(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */ outl(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */ /* Initialize other registers: with so many this eventually this will converted to an offset/value list. */ outl(dma_ctrl, ioaddr + DMACtrl); outw(fifo_cfg, ioaddr + FIFOcfg); /* Enable automatic generation of flow control frames, period 0xffff. */ outl(0x0030FFFF, ioaddr + FlowCtrl); yp->tx_threshold = 32; outl(yp->tx_threshold, ioaddr + TxThreshold); if (dev->if_port == 0) dev->if_port = yp->default_port; yp->in_interrupt = 0; /* Setting the Rx mode will start the Rx process. */ if (yp->drv_flags & IsGigabit) { /* We are always in full-duplex mode with gigabit! */ yp->full_duplex = 1; outw(0x01CF, ioaddr + Cnfg); } else { outw(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */ outw(0x1018, ioaddr + FrameGap1); outw(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg); } yp->rx_mode = 0; set_rx_mode(dev); netif_start_tx_queue(dev); /* Enable interrupts by setting the interrupt mask. */ outw(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */ outw(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */ outl(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */ outl(0x80008000, ioaddr + TxCtrl); if (yp->msg_level & NETIF_MSG_IFUP) printk(KERN_DEBUG "%s: Done yellowfin_open().\n", dev->name); /* Set the timer to check for link beat. */ init_timer(&yp->timer); yp->timer.expires = jiffies + 3*HZ; yp->timer.data = (unsigned long)dev; yp->timer.function = &yellowfin_timer; /* timer handler */ add_timer(&yp->timer); return 0; } static void yellowfin_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 60*HZ; if (yp->msg_level & NETIF_MSG_TIMER) printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n", dev->name, inw(ioaddr + IntrStatus)); if (jiffies - dev->trans_start > TX_TIMEOUT && yp->cur_tx - yp->dirty_tx > 1 && netif_queue_paused(dev)) yellowfin_tx_timeout(dev); if (yp->mii_cnt) { int mii_reg1 = mdio_read(ioaddr, yp->phys[0], 1); int mii_reg5 = mdio_read(ioaddr, yp->phys[0], 5); int negotiated = mii_reg5 & yp->advertising; if (yp->msg_level & NETIF_MSG_TIMER) printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, " "link partner capability %4.4x.\n", dev->name, yp->phys[0], mii_reg1, mii_reg5); if ( ! yp->duplex_lock && ((negotiated & 0x0300) == 0x0100 || (negotiated & 0x00C0) == 0x0040)) { yp->full_duplex = 1; } outw(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg); if (mii_reg1 & 0x0004) next_tick = 60*HZ; else next_tick = 3*HZ; } yp->timer.expires = jiffies + next_tick; add_timer(&yp->timer); } static void yellowfin_tx_timeout(struct net_device *dev) { struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; long ioaddr = dev->base_addr; printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx " "status %4.4x, Rx status %4.4x, resetting...\n", dev->name, yp->cur_tx, yp->dirty_tx, (int)inl(ioaddr + TxStatus), (int)inl(ioaddr + RxStatus)); /* Note: these should be KERN_DEBUG. */ if (yp->msg_level & NETIF_MSG_TX_ERR) { int i; printk(KERN_DEBUG " Rx ring %p: ", yp->rx_ring); for (i = 0; i < RX_RING_SIZE; i++) printk(" %8.8x", yp->rx_ring[i].result_status); printk("\n"KERN_DEBUG" Tx ring %p: ", yp->tx_ring); for (i = 0; i < TX_RING_SIZE; i++) printk(" %4.4x /%8.8x", yp->tx_status[i].tx_errs, yp->tx_ring[i].result_status); printk("\n"); } /* If the hardware is found to hang regularly, we will update the code to reinitialize the chip here. */ dev->if_port = 0; /* Wake the potentially-idle transmit channel. */ outl(0x10001000, dev->base_addr + TxCtrl); if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE) netif_unpause_tx_queue(dev); dev->trans_start = jiffies; yp->stats.tx_errors++; return; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void yellowfin_init_ring(struct net_device *dev) { struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; int i; yp->tx_full = 0; yp->cur_rx = yp->cur_tx = 0; yp->dirty_tx = 0; yp->rx_buf_sz = dev->mtu + 18 + 15; /* Match other driver's allocation size when possible. */ if (yp->rx_buf_sz < PKT_BUF_SZ) yp->rx_buf_sz = PKT_BUF_SZ; yp->rx_head_desc = &yp->rx_ring[0]; for (i = 0; i < RX_RING_SIZE; i++) { yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz); yp->rx_ring[i].branch_addr = virt_to_le32desc(&yp->rx_ring[i+1]); } /* Mark the last entry as wrapping the ring. */ yp->rx_ring[i-1].branch_addr = virt_to_le32desc(&yp->rx_ring[0]); for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz); yp->rx_skbuff[i] = skb; if (skb == NULL) break; skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* 16 byte align the IP header. */ yp->rx_ring[i].addr = virt_to_le32desc(skb->tail); } yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP); yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); #define NO_TXSTATS #ifdef NO_TXSTATS /* In this mode the Tx ring needs only a single descriptor. */ for (i = 0; i < TX_RING_SIZE; i++) { yp->tx_skbuff[i] = 0; yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP); yp->tx_ring[i].branch_addr = virt_to_le32desc(&yp->tx_ring[i+1]); } /* Wrap ring */ yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS); yp->tx_ring[i].branch_addr = virt_to_le32desc(&yp->tx_ring[0]); #else /* Tx ring needs a pair of descriptors, the second for the status. */ for (i = 0; i < TX_RING_SIZE*2; i++) { yp->tx_skbuff[i/2] = 0; /* Branch on Tx error. */ yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP); yp->tx_ring[i].branch_addr = virt_to_le32desc(&yp->tx_ring[i+1]); i++; if (yp->flags & FullTxStatus) { yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_TXSTATUS | sizeof(yp->tx_status[i])); yp->tx_ring[i].request_cnt = sizeof(yp->tx_status[i]); yp->tx_ring[i].addr = virt_to_le32desc(&yp->tx_status[i/2]); } else { /* Symbios chips write only tx_errs word. */ yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2); yp->tx_ring[i].request_cnt = 2; yp->tx_ring[i].addr = virt_to_le32desc(&yp->tx_status[i/2].tx_errs); } yp->tx_ring[i].branch_addr = virt_to_le32desc(&yp->tx_ring[i+1]); } /* Wrap ring */ yp->tx_ring[--i].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS); yp->tx_ring[i].branch_addr = virt_to_le32desc(&yp->tx_ring[0]); #endif yp->tx_tail_desc = &yp->tx_status[0]; return; } static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; unsigned entry; #if LINUX_VERSION_CODE < 0x20323 /* Block a timer-based transmit from overlapping. This could better be done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (netif_pause_tx_queue(dev) != 0) { /* This watchdog code is redundant with the media monitor timer. */ if (jiffies - dev->trans_start > TX_TIMEOUT) yellowfin_tx_timeout(dev); return 1; } #endif /* Note: Ordering is important here, set the field with the "ownership" bit last, and only then increment cur_tx. */ /* Calculate the next Tx descriptor entry. */ entry = yp->cur_tx % TX_RING_SIZE; yp->tx_skbuff[entry] = skb; if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */ int cacheline_end = (virt_to_bus(skb->data) + skb->len) % 32; /* Fix GX chipset errata. */ if (cacheline_end > 24 || cacheline_end == 0) skb->len += 32 - cacheline_end + 1; } #ifdef NO_TXSTATS yp->tx_ring[entry].addr = virt_to_le32desc(skb->data); yp->tx_ring[entry].result_status = 0; if (entry >= TX_RING_SIZE-1) { /* New stop command. */ yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP); yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd = cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | skb->len); } else { yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP); yp->tx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | skb->len); } yp->cur_tx++; #else yp->tx_ring[entry<<1].request_cnt = skb->len; yp->tx_ring[entry<<1].addr = virt_to_le32desc(skb->data); /* The input_last (status-write) command is constant, but we must rewrite the subsequent 'stop' command. */ yp->cur_tx++; { unsigned next_entry = yp->cur_tx % TX_RING_SIZE; yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP); } /* Final step -- overwrite the old 'stop' command. */ yp->tx_ring[entry<<1].dbdma_cmd = cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE : CMD_TX_PKT | BRANCH_IFTRUE) | skb->len); #endif /* Non-x86 Todo: explicitly flush cache lines here. */ /* Wake the potentially-idle transmit channel. */ outl(0x10001000, dev->base_addr + TxCtrl); if (yp->cur_tx - yp->dirty_tx >= TX_QUEUE_SIZE) { netif_stop_tx_queue(dev); yp->tx_full = 1; if (yp->cur_tx - (volatile int)yp->dirty_tx < TX_QUEUE_SIZE) { netif_unpause_tx_queue(dev); yp->tx_full = 0; } else netif_stop_tx_queue(dev); } else netif_unpause_tx_queue(dev); /* Typical path */ dev->trans_start = jiffies; if (yp->msg_level & NETIF_MSG_TX_QUEUED) { printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n", dev->name, yp->cur_tx, entry); } return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void yellowfin_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)dev_instance; struct yellowfin_private *yp; long ioaddr; int boguscnt = max_interrupt_work; #ifndef final_version /* Can never occur. */ if (dev == NULL) { printk (KERN_ERR "yellowfin_interrupt(): irq %d for unknown device.\n", irq); return; } #endif ioaddr = dev->base_addr; yp = (struct yellowfin_private *)dev->priv; if (test_and_set_bit(0, (void*)&yp->in_interrupt)) { printk(KERN_ERR "%s: Re-entering the interrupt handler.\n", dev->name); return; } do { u16 intr_status = inw(ioaddr + IntrClear); if (yp->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n", dev->name, intr_status); if (intr_status == 0) break; if (intr_status & (IntrRxDone | IntrEarlyRx)) { yellowfin_rx(dev); outl(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */ } #ifdef NO_TXSTATS for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) { int entry = yp->dirty_tx % TX_RING_SIZE; if (yp->tx_ring[entry].result_status == 0) break; yp->stats.tx_packets++; #if LINUX_VERSION_CODE > 0x20127 yp->stats.tx_bytes += yp->tx_skbuff[entry]->len; #endif /* Free the original skb. */ dev_free_skb_irq(yp->tx_skbuff[entry]); yp->tx_skbuff[entry] = 0; } if (yp->tx_full && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) { /* The ring is no longer full, clear tbusy. */ yp->tx_full = 0; netif_resume_tx_queue(dev); } #else if (intr_status & IntrTxDone || yp->tx_tail_desc->tx_errs) { unsigned dirty_tx = yp->dirty_tx; for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0; dirty_tx++) { /* Todo: optimize this. */ int entry = dirty_tx % TX_RING_SIZE; u16 tx_errs = yp->tx_status[entry].tx_errs; #ifndef final_version if (yp->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: Tx queue %d check, Tx status " "%4.4x %4.4x %4.4x %4.4x.\n", dev->name, entry, yp->tx_status[entry].tx_cnt, yp->tx_status[entry].tx_errs, yp->tx_status[entry].total_tx_cnt, yp->tx_status[entry].paused); #endif if (tx_errs == 0) break; /* It still hasn't been Txed */ if (tx_errs & 0xF810) { /* There was an major error, log it. */ #ifndef final_version if (yp->msg_level & NETIF_MSG_TX_ERR) printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n", dev->name, tx_errs); #endif yp->stats.tx_errors++; if (tx_errs & 0xF800) yp->stats.tx_aborted_errors++; if (tx_errs & 0x0800) yp->stats.tx_carrier_errors++; if (tx_errs & 0x2000) yp->stats.tx_window_errors++; if (tx_errs & 0x8000) yp->stats.tx_fifo_errors++; #ifdef ETHER_STATS if (tx_errs & 0x1000) yp->stats.collisions16++; #endif } else { #ifndef final_version if (yp->msg_level & NETIF_MSG_TX_DONE) printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n", dev->name, tx_errs); #endif #ifdef ETHER_STATS if (tx_errs & 0x0400) yp->stats.tx_deferred++; #endif #if LINUX_VERSION_CODE > 0x20127 yp->stats.tx_bytes += yp->tx_skbuff[entry]->len; #endif yp->stats.collisions += tx_errs & 15; yp->stats.tx_packets++; } /* Free the original skb. */ dev_free_skb_irq(yp->tx_skbuff[entry]); yp->tx_skbuff[entry] = 0; /* Mark status as empty. */ yp->tx_status[entry].tx_errs = 0; } #ifndef final_version if (yp->cur_tx - dirty_tx > TX_RING_SIZE) { printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n", dev->name, dirty_tx, yp->cur_tx, yp->tx_full); dirty_tx += TX_RING_SIZE; } #endif if (yp->tx_full && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) { /* The ring is no longer full, clear tbusy. */ yp->tx_full = 0; netif_resume_tx_queue(dev); } yp->dirty_tx = dirty_tx; yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE]; } #endif /* Log errors and other uncommon events. */ if (intr_status & 0x2ee) /* Abnormal error summary. */ yellowfin_error(dev, intr_status); if (--boguscnt < 0) { printk(KERN_WARNING "%s: Too much work at interrupt, " "status=0x%4.4x.\n", dev->name, intr_status); break; } } while (1); if (yp->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", dev->name, inw(ioaddr + IntrStatus)); clear_bit(0, (void*)&yp->in_interrupt); return; } /* This routine is logically part of the interrupt handler, but separated for clarity and better register allocation. */ static int yellowfin_rx(struct net_device *dev) { struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; int entry = yp->cur_rx % RX_RING_SIZE; int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx; if (yp->msg_level & NETIF_MSG_RX_STATUS) { printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n", entry, yp->rx_ring[entry].result_status); printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n", entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr, yp->rx_ring[entry].result_status); } /* If EOP is set on the next entry, it's a new packet. Send it up. */ while (yp->rx_head_desc->result_status) { struct yellowfin_desc *desc = yp->rx_head_desc; u16 desc_status = le32_to_cpu(desc->result_status) >> 16; int data_size = (le32_to_cpu(desc->dbdma_cmd) - le32_to_cpu(desc->result_status)) & 0xffff; u8 *buf_addr = le32desc_to_virt(desc->addr); s16 frame_status = get_unaligned((s16*)&(buf_addr[data_size - 2])); if (yp->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n", frame_status); if (--boguscnt < 0) break; if ( ! (desc_status & RX_EOP)) { printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers," " status %4.4x!\n", dev->name, desc_status); yp->stats.rx_length_errors++; } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) { /* There was a error. */ if (yp->msg_level & NETIF_MSG_RX_ERR) printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n", frame_status); yp->stats.rx_errors++; if (frame_status & 0x0060) yp->stats.rx_length_errors++; if (frame_status & 0x0008) yp->stats.rx_frame_errors++; if (frame_status & 0x0010) yp->stats.rx_crc_errors++; if (frame_status < 0) yp->stats.rx_dropped++; } else if ( !(yp->drv_flags & IsGigabit) && ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) { u8 status1 = buf_addr[data_size-2]; u8 status2 = buf_addr[data_size-1]; yp->stats.rx_errors++; if (status1 & 0xC0) yp->stats.rx_length_errors++; if (status2 & 0x03) yp->stats.rx_frame_errors++; if (status2 & 0x04) yp->stats.rx_crc_errors++; if (status2 & 0x80) yp->stats.rx_dropped++; #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ } else if ((yp->flags & HasMACAddrBug) && memcmp(le32desc_to_virt(yp->rx_ring[entry].addr), dev->dev_addr, 6) != 0 && memcmp(le32desc_to_virt(yp->rx_ring[entry].addr), "\377\377\377\377\377\377", 6) != 0) { if (bogus_rx++ == 0) printk(KERN_WARNING "%s: Bad frame to %2.2x:%2.2x:%2.2x:%2.2x:" "%2.2x:%2.2x.\n", dev->name, buf_addr[0], buf_addr[1], buf_addr[2], buf_addr[3], buf_addr[4], buf_addr[5]); #endif } else { struct sk_buff *skb; int pkt_len = data_size - (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]); /* To verify: Yellowfin Length should omit the CRC! */ #ifndef final_version if (yp->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d" " of %d, bogus_cnt %d.\n", pkt_len, data_size, boguscnt); #endif /* Check if the packet is long enough to just pass up the skbuff without copying to a properly sized skbuff. */ if (pkt_len > yp->rx_copybreak) { char *temp = skb_put(skb = yp->rx_skbuff[entry], pkt_len); yp->rx_skbuff[entry] = NULL; #ifndef final_version /* Remove after testing. */ if (le32desc_to_virt(yp->rx_ring[entry].addr) != temp) printk(KERN_ERR "%s: Internal fault: The skbuff addresses " "do not match in yellowfin_rx: %p vs. %p / %p.\n", dev->name, le32desc_to_virt(yp->rx_ring[entry].addr), skb->head, temp); #endif } else { skb = dev_alloc_skb(pkt_len + 2); if (skb == NULL) break; skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ #if HAS_IP_COPYSUM eth_copy_and_sum(skb, yp->rx_skbuff[entry]->tail, pkt_len, 0); skb_put(skb, pkt_len); #else memcpy(skb_put(skb, pkt_len), yp->rx_skbuff[entry]->tail, pkt_len); #endif } skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; yp->stats.rx_packets++; #if LINUX_VERSION_CODE > 0x20127 yp->stats.rx_bytes += pkt_len; #endif } entry = (++yp->cur_rx) % RX_RING_SIZE; yp->rx_head_desc = &yp->rx_ring[entry]; } /* Refill the Rx ring buffers. */ for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) { entry = yp->dirty_rx % RX_RING_SIZE; if (yp->rx_skbuff[entry] == NULL) { struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz); yp->rx_skbuff[entry] = skb; if (skb == NULL) break; /* Better luck next round. */ skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ yp->rx_ring[entry].addr = virt_to_le32desc(skb->tail); } yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP); yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */ if (entry != 0) yp->rx_ring[entry - 1].dbdma_cmd = cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz); else yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd = cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS | yp->rx_buf_sz); } return 0; } static void yellowfin_error(struct net_device *dev, int intr_status) { struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", dev->name, intr_status); /* Hmmmmm, it's not clear what to do here. */ if (intr_status & (IntrTxPCIErr | IntrTxPCIFault)) yp->stats.tx_errors++; if (intr_status & (IntrRxPCIErr | IntrRxPCIFault)) yp->stats.rx_errors++; } static int yellowfin_close(struct net_device *dev) { long ioaddr = dev->base_addr; struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; int i; netif_stop_tx_queue(dev); if (yp->msg_level & NETIF_MSG_IFDOWN) { printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x " "Rx %4.4x Int %2.2x.\n", dev->name, inw(ioaddr + TxStatus), inw(ioaddr + RxStatus), inw(ioaddr + IntrStatus)); printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx); } /* Disable interrupts by clearing the interrupt mask. */ outw(0x0000, ioaddr + IntrEnb); /* Stop the chip's Tx and Rx processes. */ outl(0x80000000, ioaddr + RxCtrl); outl(0x80000000, ioaddr + TxCtrl); del_timer(&yp->timer); #if defined(__i386__) if (yp->msg_level & NETIF_MSG_IFDOWN) { printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n", (int)virt_to_bus(yp->tx_ring)); for (i = 0; i < TX_RING_SIZE*2; i++) printk(" %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n", inl(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ', i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr, yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status); printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status); for (i = 0; i < TX_RING_SIZE; i++) printk(KERN_DEBUG " #%d status %4.4x %4.4x %4.4x %4.4x.\n", i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs, yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused); printk("\n"KERN_DEBUG " Rx ring %8.8x:\n", (int)virt_to_bus(yp->rx_ring)); for (i = 0; i < RX_RING_SIZE; i++) { printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n", inl(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ', i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr, yp->rx_ring[i].result_status); if (yp->msg_level & NETIF_MSG_PKTDATA) { if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) { int j; for (j = 0; j < 0x50; j++) printk(" %4.4x", get_unaligned(((u16*)yp->rx_ring[i].addr) + j)); printk("\n"); } } } } #endif /* __i386__ debugging only */ free_irq(dev->irq, dev); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP); yp->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */ if (yp->rx_skbuff[i]) { #if LINUX_VERSION_CODE < 0x20100 yp->rx_skbuff[i]->free = 1; #endif dev_free_skb(yp->rx_skbuff[i]); } yp->rx_skbuff[i] = 0; } for (i = 0; i < TX_RING_SIZE; i++) { if (yp->tx_skbuff[i]) dev_free_skb(yp->tx_skbuff[i]); yp->tx_skbuff[i] = 0; } #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */ if (yp->msg_level & NETIF_MSG_IFDOWN) { printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n", dev->name, bogus_rx); } #endif MOD_DEC_USE_COUNT; return 0; } static struct net_device_stats *yellowfin_get_stats(struct net_device *dev) { struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; return &yp->stats; } /* Set or clear the multicast filter for this adaptor. */ /* The little-endian AUTODIN32 ethernet CRC calculation. N.B. Do not use for bulk data, use a table-based routine instead. This is common code and should be moved to net/core/crc.c */ static unsigned const ethernet_polynomial_le = 0xedb88320U; static inline unsigned ether_crc_le(int length, unsigned char *data) { unsigned int crc = 0xffffffff; /* Initial value. */ while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 8; --bit >= 0; current_octet >>= 1) { if ((crc ^ current_octet) & 1) { crc >>= 1; crc ^= ethernet_polynomial_le; } else crc >>= 1; } } return crc; } static void set_rx_mode(struct net_device *dev) { struct yellowfin_private *yp = (struct yellowfin_private *)dev->priv; u16 hash_table[4] = {0, 0, 0, 0}; int mc_change = 0; int new_rx_mode, i; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ /* Unconditionally log net taps. */ printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); new_rx_mode = 0x000F; } else if (dev->mc_count > yp->multicast_filter_limit || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter well, or accept all multicasts. */ new_rx_mode = 0x000B; } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */ struct dev_mc_list *mclist; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { /* Due to a bug in the early chip versions, multiple filter slots must be set for each address. */ if (yp->drv_flags & HasMulticastBug) { set_bit((ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f, hash_table); set_bit((ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f, hash_table); set_bit((ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f, hash_table); } set_bit((ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f, hash_table); } if (memcmp(hash_table, yp->mc_filter, sizeof hash_table) != 0) mc_change = 1; new_rx_mode = 0x0003; } else { /* Normal, unicast/broadcast-only mode. */ new_rx_mode = 0x0001; } /* Stop the Rx process to change any value. */ if (yp->rx_mode != new_rx_mode || mc_change) { long ioaddr = dev->base_addr; u16 cfg_value = inw(ioaddr + Cnfg); outw(cfg_value & ~0x1000, ioaddr + Cnfg); yp->rx_mode = new_rx_mode; outw(new_rx_mode, ioaddr + AddrMode); memcpy(yp->mc_filter, hash_table, sizeof hash_table); /* Copy the hash table to the chip. */ for (i = 0; i < 4; i++) outw(hash_table[i], ioaddr + HashTbl + i*2); /* Restart the Rx process. */ outw(cfg_value | 0x1000, ioaddr + Cnfg); } } static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct yellowfin_private *np = (void *)dev->priv; long ioaddr = dev->base_addr; u16 *data = (u16 *)&rq->ifr_data; u32 *data32 = (void *)&rq->ifr_data; switch(cmd) { case 0x8947: case 0x89F0: /* SIOCGMIIPHY: Get the address of the PHY in use. */ data[0] = np->phys[0] & 0x1f; /* Fall Through */ case 0x8948: case 0x89F1: /* SIOCGMIIREG: Read the specified MII register. */ data[3] = mdio_read(ioaddr, data[0] & 0x1f, data[1] & 0x1f); return 0; case 0x8949: case 0x89F2: /* SIOCSMIIREG: Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; if (data[0] == np->phys[0]) { u16 value = data[2]; switch (data[1]) { case 0: /* Check for autonegotiation on or reset. */ np->medialock = (value & 0x9000) ? 0 : 1; if (np->medialock) np->full_duplex = (value & 0x0100) ? 1 : 0; break; case 4: np->advertising = value; break; } /* Perhaps check_duplex(dev), depending on chip semantics. */ } mdio_write(ioaddr, data[0] & 0x1f, data[1] & 0x1f, data[2]); return 0; case SIOCGPARAMS: data32[0] = np->msg_level; data32[1] = np->multicast_filter_limit; data32[2] = np->max_interrupt_work; data32[3] = np->rx_copybreak; return 0; case SIOCSPARAMS: if (!capable(CAP_NET_ADMIN)) return -EPERM; np->msg_level = data32[0]; np->multicast_filter_limit = data32[1]; np->max_interrupt_work = data32[2]; np->rx_copybreak = data32[3]; return 0; default: return -EOPNOTSUPP; } } #ifdef MODULE int init_module(void) { /* Emit version even if no cards detected. */ printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2); return pci_drv_register(&yellowfin_drv_id, NULL); } void cleanup_module(void) { struct net_device *next_dev; pci_drv_unregister(&yellowfin_drv_id); /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_yellowfin_dev) { struct yellowfin_private *np = (void *)(root_yellowfin_dev->priv); unregister_netdev(root_yellowfin_dev); #ifdef USE_IO_OPS release_region(root_yellowfin_dev->base_addr, pci_id_tbl[np->chip_id].io_size); #else iounmap((char *)root_yellowfin_dev->base_addr); #endif next_dev = np->next_module; if (np->priv_addr) kfree(np->priv_addr); kfree(root_yellowfin_dev); root_yellowfin_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "make KERNVER=`uname -r` yellowfin.o" * compile-cmd: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c yellowfin.c" * simple-compile-command: "gcc -DMODULE -O6 -c yellowfin.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */