/* intel-gige.c: A Linux device driver for Intel Gigabit Ethernet adapters. */ /* Written 2000-2002 by Donald Becker. Copyright Scyld Computing Corporation. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. You should have received a copy of the GPL with this file. Drivers based on or derived from this code fall under the GPL and must retain the authorship, copyright and license notice. This file is not a complete program and may only be used when the entire operating system is licensed under the GPL. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 410 Severn Ave., Suite 210 Annapolis MD 21403 Support information and updates available at http://www.scyld.com/network/ethernet.html */ /* These identify the driver base version and may not be removed. */ static const char version1[] = "intel-gige.c:v0.14 11/17/2002 Written by Donald Becker \n"; static const char version2[] = " http://www.scyld.com/network/ethernet.html\n"; /* Automatically extracted configuration info: probe-func: igige_probe config-in: tristate 'Intel PCI Gigabit Ethernet support' CONFIG_IGIGE c-help-name: Intel PCI Gigabit Ethernet support c-help-symbol: CONFIG_IGIGE c-help: This driver is for the Intel PCI Gigabit Ethernet c-help: adapter series. c-help: More specific information and updates are available from c-help: http://www.scyld.com/network/drivers.html */ /* The user-configurable values. These may be modified when a driver module is loaded.*/ /* Message enable level: 0..31 = no..all messages. See NETIF_MSG docs. */ static int debug = 2; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 20; /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). This chip has a 16 element perfect filter, and an unusual 4096 bit hash filter based directly on address bits, not the Ethernet CRC. It is costly to recalculate a large, frequently changing table. However even a large table may useful in some nearly-static environments. */ static int multicast_filter_limit = 15; /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1518 effectively disables this feature. */ static int rx_copybreak = 0; /* Used to pass the media type, etc. The media type is passed in 'options[]'. The full_duplex[] table only allows the duplex to be forced on, implicitly disabling autonegotiation. Setting the entry to zero still allows a link to autonegotiate to full duplex. */ #define MAX_UNITS 8 /* More are supported, limit only on options */ static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; /* The delay before announcing a Rx or Tx has completed. */ static int rx_intr_holdoff = 0; static int tx_intr_holdoff = 128; /* Operational parameters that are set at compile time. */ /* Keep the ring sizes a power of two to avoid divides. The compiler will convert '%'<2^N> into a bit mask. Making the Tx ring too large decreases the effectiveness of channel bonding and packet priority. There are no ill effects from too-large receive rings. */ #if ! defined(final_version) /* Stress the driver. */ #define TX_RING_SIZE 8 #define TX_QUEUE_LEN 5 #define RX_RING_SIZE 4 #else #define TX_RING_SIZE 16 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ #define RX_RING_SIZE 32 #endif /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (6*HZ) /* Allocation size of Rx buffers with normal sized Ethernet frames. Do not change this value without good reason. This is not a limit, but a way to keep a consistent allocation size among drivers. */ #define PKT_BUF_SZ 1536 #ifndef __KERNEL__ #define __KERNEL__ #endif #if !defined(__OPTIMIZE__) #warning You must compile this file with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif /* Include files, designed to support most kernel versions 2.0.0 and later. */ #include #if defined(CONFIG_SMP) && ! defined(__SMP__) #define __SMP__ #endif #if defined(MODULE) && defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS) #define MODVERSIONS #endif #include #if defined(MODVERSIONS) #include #endif #include #include #include #include #include #include #if LINUX_VERSION_CODE >= 0x20400 #include #else #include #endif #include #include #include #include #include #include /* Processor type for cache alignment. */ #include #include #ifdef INLINE_PCISCAN #include "k_compat.h" #else #include "pci-scan.h" #include "kern_compat.h" #endif /* Condensed operations for readability. */ #define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr)) #define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr)) #if (LINUX_VERSION_CODE >= 0x20100) && defined(MODULE) char kernel_version[] = UTS_RELEASE; #endif MODULE_AUTHOR("Donald Becker "); MODULE_DESCRIPTION("Intel Gigabit Ethernet driver"); MODULE_LICENSE("GPL"); MODULE_PARM(debug, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(multicast_filter_limit, "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM_DESC(debug, "Driver message level (0-31)"); MODULE_PARM_DESC(options, "Force transceiver type or fixed speed+duplex"); MODULE_PARM_DESC(max_interrupt_work, "Driver maximum events handled per interrupt"); MODULE_PARM_DESC(full_duplex, "Non-zero to set forced full duplex (deprecated)."); MODULE_PARM_DESC(rx_copybreak, "Breakpoint in bytes for copy-only-tiny-frames"); MODULE_PARM_DESC(multicast_filter_limit, "Multicast addresses before switching to Rx-all-multicast"); /* Theory of Operation I. Board Compatibility This driver is for the Intel Gigabit Ethernet adapter. II. Board-specific settings III. Driver operation IIIa. Descriptor Rings This driver uses two statically allocated fixed-size descriptor arrays treated as rings by the hardware. The ring sizes are set at compile time by RX/TX_RING_SIZE. IIIb/c. Transmit/Receive Structure This driver uses a zero-copy receive and transmit scheme. The driver allocates full frame size skbuffs for the Rx ring buffers at open() time and passes the skb->data field to the chip as receive data buffers. When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is copied to the new skbuff. When the incoming frame is larger, the skbuff is passed directly up the protocol stack. Buffers consumed this way are replaced by newly allocated skbuffs in a later phase of receives. The RX_COPYBREAK value is chosen to trade-off the memory wasted by using a full-sized skbuff for small frames vs. the copying costs of larger frames. New boards are typically used in generously configured machines and the underfilled buffers have negligible impact compared to the benefit of a single allocation size, so the default value of zero results in never copying packets. When copying is done, the cost is usually mitigated by using a combined copy/checksum routine. Copying also preloads the cache, which is most useful with small frames. A subtle aspect of the operation is that the IP header at offset 14 in an ethernet frame isn't longword aligned for further processing. When unaligned buffers are permitted by the hardware (and always on copies) frames are put into the skbuff at an offset of "+2", 16-byte aligning the IP header. IIId. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine which is single-threaded by the queue layer. The other thread is the interrupt handler, which is single threaded by the hardware and interrupt handling software. The send packet thread has partial control over the Tx ring. At the start of a transmit attempt netif_pause_tx_queue(dev) is called. If the transmit attempt fills the Tx queue controlled by the chip, the driver informs the software queue layer by not calling netif_unpause_tx_queue(dev) on exit. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. After reaping the stats, it marks the Tx queue entry as empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IIId. SMP semantics The following are serialized with respect to each other via the "xmit_lock". dev->hard_start_xmit() Transmit a packet dev->tx_timeout() Transmit watchdog for stuck Tx dev->set_multicast_list() Set the recieve filter. Note: The Tx timeout watchdog code is implemented by the timer routine in kernels up to 2.2.*. In 2.4.* and later the timeout code is part of the driver interface. The following fall under the global kernel lock. The module will not be unloaded during the call, unless a call with a potential reschedule e.g. kmalloc() is called. No other synchronization assertion is made. dev->open() dev->do_ioctl() dev->get_stats() Caution: The lock for dev->open() is commonly broken with request_irq() or kmalloc(). It is best to avoid any lock-breaking call in do_ioctl() and get_stats(), or additional module locking code must be implemented. The following is self-serialized (no simultaneous entry) An handler registered with request_irq(). IV. Notes IVb. References Intel has also released a Linux driver for this product, "e1000". IVc. Errata */ static void *igige_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int find_cnt); static int netdev_pwr_event(void *dev_instance, int event); enum chip_capability_flags { CanHaveMII=1, }; #define PCI_IOTYPE () static struct pci_id_info pci_id_tbl[] = { {"Intel Gigabit Ethernet adapter", {0x10008086, 0xffffffff, }, PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR0, 0x1ffff, 0}, {0,}, /* 0 terminated list. */ }; struct drv_id_info igige_drv_id = { "intel-gige", PCI_HOTSWAP, PCI_CLASS_NETWORK_ETHERNET<<8, pci_id_tbl, igige_probe1, netdev_pwr_event }; /* This hardware only has a PCI memory space BAR, not I/O space. */ #ifdef USE_IO_OPS #error This driver only works with PCI memory space access. #endif /* Offsets to the device registers. */ enum register_offsets { ChipCtrl=0x00, ChipStatus=0x08, EECtrl=0x10, FlowCtrlAddrLo=0x028, FlowCtrlAddrHi=0x02c, FlowCtrlType=0x030, VLANetherType=0x38, RxAddrCAM=0x040, IntrStatus=0x0C0, /* Interrupt, Clear on Read, AKA ICR */ IntrEnable=0x0D0, /* Set enable mask when '1' AKA IMS */ IntrDisable=0x0D8, /* Clear enable mask when '1' */ RxControl=0x100, RxQ0IntrDelay=0x108, /* Rx list #0 interrupt delay timer. */ RxRingPtr=0x110, /* Rx Desc. list #0 base address, 64bits */ RxRingLen=0x118, /* Num bytes of Rx descriptors in ring. */ RxDescHead=0x120, RxDescTail=0x128, RxQ1IntrDelay=0x130, /* Rx list #1 interrupt delay timer. */ RxRing1Ptr=0x138, /* Rx Desc. list #1 base address, 64bits */ RxRing1Len=0x140, /* Num bytes of Rx descriptors in ring. */ RxDesc1Head=0x148, RxDesc1Tail=0x150, FlowCtrlTimer=0x170, FlowCtrlThrshHi=0x160, FlowCtrlThrshLo=0x168, TxConfigReg=0x178, RxConfigReg=0x180, MulticastArray=0x200, TxControl=0x400, TxQState=0x408, /* 64 bit queue state */ TxIPG=0x410, /* Inter-Packet Gap */ TxRingPtr=0x420, TxRingLen=0x428, TxDescHead=0x430, TxDescTail=0x438, TxIntrDelay=0x440, RxCRCErrs=0x4000, RxMissed=0x4010, TxStatus=0x408, RxStatus=0x180, }; /* Bits in the interrupt status/mask registers. */ enum intr_status_bits { IntrTxDone=0x0001, /* Tx packet queued */ IntrLinkChange=0x0004, /* Link Status Change */ IntrRxSErr=0x0008, /* Rx Symbol/Sequence error */ IntrRxEmpty=0x0010, /* Rx queue 0 Empty */ IntrRxQ1Empty=0x0020, /* Rx queue 1 Empty */ IntrRxDone=0x0080, /* Rx Done, Queue 0*/ IntrRxDoneQ1=0x0100, /* Rx Done, Queue 0*/ IntrPCIErr=0x0200, /* PCI Bus Error */ IntrTxEmpty=0x0002, /* Guess */ StatsMax=0x1000, /* Unknown */ }; /* Bits in the RxFilterMode register. */ enum rx_mode_bits { RxCtrlReset=0x01, RxCtrlEnable=0x02, RxCtrlAllUnicast=0x08, RxCtrlAllMulticast=0x10, RxCtrlLoopback=0xC0, /* We never configure loopback */ RxCtrlAcceptBroadcast=0x8000, /* Aliased names.*/ AcceptAllPhys=0x08, AcceptAllMulticast=0x10, AcceptBroadcast=0x8000, AcceptMyPhys=0, AcceptMulticast=0, }; /* The Rx and Tx buffer descriptors. */ struct rx_desc { u32 buf_addr; u32 buf_addr_hi; u32 csum_length; /* Checksum and length */ u32 status; /* Errors and status. */ }; struct tx_desc { u32 buf_addr; u32 buf_addr_hi; u32 cmd_length; u32 status; /* And errors */ }; /* Bits in tx_desc.cmd_length */ enum tx_cmd_bits { TxDescEndPacket=0x02000000, TxCmdIntrDelay=0x80000000, TxCmdAddCRC=0x02000000, TxCmdDoTx=0x13000000, }; enum tx_status_bits { TxDescDone=0x0001, TxDescEndPkt=0x0002, }; /* Bits in tx_desc.status */ enum rx_status_bits { RxDescDone=0x0001, RxDescEndPkt=0x0002, }; #define PRIV_ALIGN 15 /* Required alignment mask */ /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment within the structure. */ struct netdev_private { struct net_device *next_module; /* Link for devices of this type. */ void *priv_addr; /* Unaligned address for kfree */ const char *product_name; /* The addresses of receive-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; /* The saved address of a sent-in-place packet/buffer, for later free(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; struct net_device_stats stats; struct timer_list timer; /* Media monitoring timer. */ /* Keep frequently used values adjacent for cache effect. */ int msg_level; int chip_id, drv_flags; struct pci_dev *pci_dev; int max_interrupt_work; int intr_enable; long in_interrupt; /* Word-long for SMP locks. */ struct rx_desc *rx_ring; struct rx_desc *rx_head_desc; unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ unsigned int rx_buf_sz; /* Based on MTU+slack. */ int rx_copybreak; struct tx_desc *tx_ring; unsigned int cur_tx, dirty_tx; unsigned int tx_full:1; /* The Tx queue is full. */ unsigned int rx_mode; unsigned int tx_config; int multicast_filter_limit; /* These values track the transceiver/media in use. */ unsigned int full_duplex:1; /* Full-duplex operation requested. */ unsigned int duplex_lock:1; unsigned int medialock:1; /* Do not sense media. */ unsigned int default_port; /* Last dev->if_port value. */ }; static int eeprom_read(long ioaddr, int location); static int netdev_open(struct net_device *dev); static int change_mtu(struct net_device *dev, int new_mtu); static void check_duplex(struct net_device *dev); static void netdev_timer(unsigned long data); static void tx_timeout(struct net_device *dev); static void init_ring(struct net_device *dev); static int start_tx(struct sk_buff *skb, struct net_device *dev); static void intr_handler(int irq, void *dev_instance, struct pt_regs *regs); static void netdev_error(struct net_device *dev, int intr_status); static int netdev_rx(struct net_device *dev); static void netdev_error(struct net_device *dev, int intr_status); static void set_rx_mode(struct net_device *dev); static struct net_device_stats *get_stats(struct net_device *dev); static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int netdev_close(struct net_device *dev); /* A list of our installed devices, for removing the driver module. */ static struct net_device *root_net_dev = NULL; #ifndef MODULE int igige_probe(struct net_device *dev) { if (pci_drv_register(&igige_drv_id, dev) < 0) return -ENODEV; printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2); return 0; } #endif static void *igige_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int card_idx) { struct net_device *dev; struct netdev_private *np; void *priv_mem; int i, option = card_idx < MAX_UNITS ? options[card_idx] : 0; dev = init_etherdev(init_dev, 0); if (!dev) return NULL; printk(KERN_INFO "%s: %s at 0x%lx, ", dev->name, pci_id_tbl[chip_idx].name, ioaddr); for (i = 0; i < 3; i++) ((u16*)dev->dev_addr)[i] = le16_to_cpu(eeprom_read(ioaddr, i)); for (i = 0; i < 5; i++) printk("%2.2x:", dev->dev_addr[i]); printk("%2.2x, IRQ %d.\n", dev->dev_addr[i], irq); /* Make certain elements e.g. descriptor lists are aligned. */ priv_mem = kmalloc(sizeof(*np) + PRIV_ALIGN, GFP_KERNEL); /* Check for the very unlikely case of no memory. */ if (priv_mem == NULL) return NULL; /* Do bogusness checks before this point. We do a request_region() only to register /proc/ioports info. */ request_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name); /* Reset the chip to erase previous misconfiguration. */ writel(0x04000000, ioaddr + ChipCtrl); dev->base_addr = ioaddr; dev->irq = irq; dev->priv = np = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN); memset(np, 0, sizeof(*np)); np->priv_addr = priv_mem; np->next_module = root_net_dev; root_net_dev = dev; np->pci_dev = pdev; np->chip_id = chip_idx; np->drv_flags = pci_id_tbl[chip_idx].drv_flags; np->msg_level = (1 << debug) - 1; np->rx_copybreak = rx_copybreak; np->max_interrupt_work = max_interrupt_work; np->multicast_filter_limit = multicast_filter_limit; if (dev->mem_start) option = dev->mem_start; /* The lower four bits are the media type. */ if (option > 0) { if (option & 0x2220) np->full_duplex = 1; np->default_port = option & 0x3330; if (np->default_port) np->medialock = 1; } if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) np->full_duplex = 1; if (np->full_duplex) np->duplex_lock = 1; #if ! defined(final_version) /* Dump the EEPROM contents during development. */ if (np->msg_level & NETIF_MSG_MISC) { int sum = 0; for (i = 0; i < 0x40; i++) { int eeval = eeprom_read(ioaddr, i); printk("%4.4x%s", eeval, i % 16 != 15 ? " " : "\n"); sum += eeval; } printk(KERN_DEBUG "%s: EEPROM checksum %4.4X (expected value 0xBABA).\n", dev->name, sum & 0xffff); } #endif /* The chip-specific entries in the device structure. */ dev->open = &netdev_open; dev->hard_start_xmit = &start_tx; dev->stop = &netdev_close; dev->get_stats = &get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &mii_ioctl; dev->change_mtu = &change_mtu; /* Turn off VLAN and clear the VLAN filter. */ writel(0x04000000, ioaddr + VLANetherType); for (i = 0x600; i < 0x800; i+=4) writel(0, ioaddr + i); np->tx_config = 0x80000020; writel(np->tx_config, ioaddr + TxConfigReg); { int eeword10 = eeprom_read(ioaddr, 10); writel(((eeword10 & 0x01e0) << 17) | ((eeword10 & 0x0010) << 3), ioaddr + ChipCtrl); } return dev; } /* Read the EEPROM interface with a serial bit streams generated by the host processor. The example below is for the common 93c46 EEPROM, 64 16 bit words. */ /* Delay between EEPROM clock transitions. The effectivly flushes the write cache to prevent quick double-writes. */ #define eeprom_delay(ee_addr) readl(ee_addr) enum EEPROM_Ctrl_Bits { EE_ShiftClk=0x01, EE_ChipSelect=0x02, EE_DataIn=0x08, EE_DataOut=0x04, }; #define EE_Write0 (EE_ChipSelect) #define EE_Write1 (EE_ChipSelect | EE_DataOut) /* The EEPROM commands include the alway-set leading bit. */ enum EEPROM_Cmds { EE_WriteCmd=5, EE_ReadCmd=6, EE_EraseCmd=7, }; static int eeprom_read(long addr, int location) { int i; int retval = 0; long ee_addr = addr + EECtrl; int read_cmd = ((EE_ReadCmd<<6) | location) << 16 ; int cmd_len = 2+6+16; u32 baseval = readl(ee_addr) & ~0x0f; writel(EE_Write0 | baseval, ee_addr); /* Shift the read command bits out. */ for (i = cmd_len; i >= 0; i--) { int dataval = baseval | ((read_cmd & (1 << i)) ? EE_Write1 : EE_Write0); writel(dataval, ee_addr); eeprom_delay(ee_addr); writel(dataval | EE_ShiftClk, ee_addr); eeprom_delay(ee_addr); retval = (retval << 1) | ((readl(ee_addr) & EE_DataIn) ? 1 : 0); } /* Terminate the EEPROM access. */ writel(baseval | EE_Write0, ee_addr); writel(baseval & ~EE_ChipSelect, ee_addr); return retval; } static int netdev_open(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; /* Some chips may need to be reset. */ MOD_INC_USE_COUNT; if (np->tx_ring == 0) np->tx_ring = (void *)get_free_page(GFP_KERNEL); if (np->tx_ring == 0) return -ENOMEM; if (np->rx_ring == 0) np->rx_ring = (void *)get_free_page(GFP_KERNEL); if (np->tx_ring == 0) { free_page((long)np->tx_ring); return -ENOMEM; } /* Note that both request_irq() and init_ring() call kmalloc(), which break the global kernel lock protecting this routine. */ if (request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev)) { MOD_DEC_USE_COUNT; return -EAGAIN; } if (np->msg_level & NETIF_MSG_IFUP) printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", dev->name, dev->irq); init_ring(dev); writel(0, ioaddr + RxControl); writel(virt_to_bus(np->rx_ring), ioaddr + RxRingPtr); #if ADDRLEN == 64 writel(virt_to_bus(np->rx_ring) >> 32, ioaddr + RxRingPtr + 4); #else writel(0, ioaddr + RxRingPtr + 4); #endif writel(RX_RING_SIZE * sizeof(struct rx_desc), ioaddr + RxRingLen); writel(0x80000000 | rx_intr_holdoff, ioaddr + RxQ0IntrDelay); writel(0, ioaddr + RxDescHead); writel(np->dirty_rx + RX_RING_SIZE, ioaddr + RxDescTail); /* Zero the unused Rx ring #1. */ writel(0, ioaddr + RxQ1IntrDelay); writel(0, ioaddr + RxRing1Ptr); writel(0, ioaddr + RxRing1Ptr + 4); writel(0, ioaddr + RxRing1Len); writel(0, ioaddr + RxDesc1Head); writel(0, ioaddr + RxDesc1Tail); /* Use 0x002000FA for half duplex. */ writel(0x000400FA, ioaddr + TxControl); writel(virt_to_bus(np->tx_ring), ioaddr + TxRingPtr); #if ADDRLEN == 64 writel(virt_to_bus(np->tx_ring) >> 32, ioaddr + TxRingPtr + 4); #else writel(0, ioaddr + TxRingPtr + 4); #endif writel(TX_RING_SIZE * sizeof(struct tx_desc), ioaddr + TxRingLen); writel(0, ioaddr + TxDescHead); writel(0, ioaddr + TxDescTail); writel(0, ioaddr + TxQState); writel(0, ioaddr + TxQState + 4); /* Set IPG register with Ethernet standard values. */ writel(0x00A0080A, ioaddr + TxIPG); /* The delay before announcing a Tx has completed. */ writel(tx_intr_holdoff, ioaddr + TxIntrDelay); writel(((u32*)dev->dev_addr)[0], ioaddr + RxAddrCAM); writel(0x80000000 | ((((u32*)dev->dev_addr)[1]) & 0xffff), ioaddr + RxAddrCAM + 4); /* Initialize other registers. */ /* Configure the PCI bus bursts and FIFO thresholds. */ if (dev->if_port == 0) dev->if_port = np->default_port; np->in_interrupt = 0; np->rx_mode = RxCtrlEnable; set_rx_mode(dev); /* Tx mode */ np->tx_config = 0x80000020; writel(np->tx_config, ioaddr + TxConfigReg); /* Flow control */ writel(0x00C28001, ioaddr + FlowCtrlAddrLo); writel(0x00000100, ioaddr + FlowCtrlAddrHi); writel(0x8808, ioaddr + FlowCtrlType); writel(0x0100, ioaddr + FlowCtrlTimer); writel(0x8000, ioaddr + FlowCtrlThrshHi); writel(0x4000, ioaddr + FlowCtrlThrshLo); netif_start_tx_queue(dev); /* Enable interrupts by setting the interrupt mask. */ writel(IntrTxDone | IntrLinkChange | IntrRxDone | IntrPCIErr | IntrRxEmpty | IntrRxSErr, ioaddr + IntrEnable); /* writel(1, dev->base_addr + RxCmd);*/ if (np->msg_level & NETIF_MSG_IFUP) printk(KERN_DEBUG "%s: Done netdev_open(), status: %x Rx %x Tx %x.\n", dev->name, (int)readl(ioaddr + ChipStatus), (int)readl(ioaddr + RxStatus), (int)readl(ioaddr + TxStatus)); /* Set the timer to check for link beat. */ init_timer(&np->timer); np->timer.expires = jiffies + 3*HZ; np->timer.data = (unsigned long)dev; np->timer.function = &netdev_timer; /* timer handler */ add_timer(&np->timer); return 0; } /* Update for jumbo frames... Changing the MTU while active is not allowed. */ static int change_mtu(struct net_device *dev, int new_mtu) { if ((new_mtu < 68) || (new_mtu > 1500)) return -EINVAL; if (netif_running(dev)) return -EBUSY; dev->mtu = new_mtu; return 0; } static void check_duplex(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int chip_ctrl = readl(ioaddr + ChipCtrl); int rx_cfg = readl(ioaddr + RxConfigReg); int tx_cfg = readl(ioaddr + TxConfigReg); #if 0 int chip_status = readl(ioaddr + ChipStatus); #endif if (np->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Link changed status. Ctrl %x rxcfg %8.8x " "txcfg %8.8x.\n", dev->name, chip_ctrl, rx_cfg, tx_cfg); if (np->medialock) { if (np->full_duplex) ; } /* writew(new_tx_mode, ioaddr + TxMode); */ } static void netdev_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 10*HZ; if (np->msg_level & NETIF_MSG_TIMER) { printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x, " "Tx %x Rx %x.\n", dev->name, (int)readl(ioaddr + ChipStatus), (int)readl(ioaddr + TxStatus), (int)readl(ioaddr + RxStatus)); } /* This will either have a small false-trigger window or will not catch tbusy incorrectly set when the queue is empty. */ if ((jiffies - dev->trans_start) > TX_TIMEOUT && (np->cur_tx - np->dirty_tx > 0 || netif_queue_paused(dev)) ) { tx_timeout(dev); } check_duplex(dev); np->timer.expires = jiffies + next_tick; add_timer(&np->timer); } static void tx_timeout(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; printk(KERN_WARNING "%s: Transmit timed out, status %8.8x," " resetting...\n", dev->name, (int)readl(ioaddr + ChipStatus)); #ifndef __alpha__ if (np->msg_level & NETIF_MSG_TX_ERR) { int i; printk(KERN_DEBUG " Tx registers: "); for (i = 0x400; i < 0x444; i += 8) printk(" %8.8x", (int)readl(ioaddr + i)); printk("\n"KERN_DEBUG " Rx ring %p: ", np->rx_ring); for (i = 0; i < RX_RING_SIZE; i++) printk(" %8.8x", (unsigned int)np->rx_ring[i].status); printk("\n"KERN_DEBUG" Tx ring %p: ", np->tx_ring); for (i = 0; i < TX_RING_SIZE; i++) printk(" %4.4x", np->tx_ring[i].status); printk("\n"); } #endif /* Perhaps we should reinitialize the hardware here. */ dev->if_port = 0; /* Stop and restart the chip's Tx processes . */ /* Trigger an immediate transmit demand. */ dev->trans_start = jiffies; np->stats.tx_errors++; return; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void init_ring(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; int i; np->tx_full = 0; np->cur_rx = np->cur_tx = 0; np->dirty_rx = np->dirty_tx = 0; np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); np->rx_head_desc = &np->rx_ring[0]; /* Initialize all Rx descriptors. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_skbuff[i] = 0; } /* The number of ring descriptors is set by the ring length register, thus the chip does not use 'next_desc' chains. */ /* Fill in the Rx buffers. Allocation failures are acceptable. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[i] = skb; if (skb == NULL) break; skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* 16 byte align the IP header. */ np->rx_ring[i].buf_addr = virt_to_le32desc(skb->tail); np->rx_ring[i].buf_addr_hi = 0; np->rx_ring[i].status = 0; } np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); for (i = 0; i < TX_RING_SIZE; i++) { np->tx_skbuff[i] = 0; np->tx_ring[i].status = 0; } return; } static int start_tx(struct sk_buff *skb, struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; unsigned entry; /* Block a timer-based transmit from overlapping. This happens when packets are presumed lost, and we use this check the Tx status. */ if (netif_pause_tx_queue(dev) != 0) { /* This watchdog code is redundant with the media monitor timer. */ if (jiffies - dev->trans_start > TX_TIMEOUT) tx_timeout(dev); return 1; } /* Calculate the next Tx descriptor entry. */ entry = np->cur_tx % TX_RING_SIZE; np->tx_skbuff[entry] = skb; /* Note: Descriptors may be uncached. Write each field only once. */ np->tx_ring[entry].buf_addr = virt_to_le32desc(skb->data); np->tx_ring[entry].buf_addr_hi = 0; np->tx_ring[entry].cmd_length = cpu_to_le32(TxCmdDoTx | skb->len); np->tx_ring[entry].status = 0; /* Non-CC architectures: explicitly flush descriptor and packet. cache_flush(np->tx_ring[entry], sizeof np->tx_ring[entry]); cache_flush(skb->data, skb->len); */ np->cur_tx++; if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) { np->tx_full = 1; /* Check for a just-cleared queue. */ if (np->cur_tx - (volatile int)np->dirty_tx < TX_QUEUE_LEN - 2) { netif_unpause_tx_queue(dev); np->tx_full = 0; } else netif_stop_tx_queue(dev); } else netif_unpause_tx_queue(dev); /* Typical path */ /* Inform the chip we have another Tx. */ if (np->msg_level & NETIF_MSG_TX_QUEUED) printk(KERN_DEBUG "%s: Tx queued to slot %d, desc tail now %d " "writing %d.\n", dev->name, entry, (int)readl(dev->base_addr + TxDescTail), np->cur_tx % TX_RING_SIZE); writel(np->cur_tx % TX_RING_SIZE, dev->base_addr + TxDescTail); dev->trans_start = jiffies; if (np->msg_level & NETIF_MSG_TX_QUEUED) { printk(KERN_DEBUG "%s: Transmit frame #%d (%x) queued in slot %d.\n", dev->name, np->cur_tx, (int)virt_to_bus(&np->tx_ring[entry]), entry); } return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void intr_handler(int irq, void *dev_instance, struct pt_regs *rgs) { struct net_device *dev = (struct net_device *)dev_instance; struct netdev_private *np; long ioaddr; int work_limit; ioaddr = dev->base_addr; np = (struct netdev_private *)dev->priv; work_limit = np->max_interrupt_work; #if defined(__i386__) && LINUX_VERSION_CODE < 0x020300 /* A lock to prevent simultaneous entry bug on Intel SMP machines. */ if (test_and_set_bit(0, (void*)&dev->interrupt)) { printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n", dev->name); dev->interrupt = 0; /* Avoid halting machine. */ return; } #endif do { u32 intr_status = readl(ioaddr + IntrStatus); if (np->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name, intr_status); if (intr_status == 0 || intr_status == 0xffffffff) break; if (intr_status & IntrRxDone) netdev_rx(dev); for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { int entry = np->dirty_tx % TX_RING_SIZE; if (np->tx_ring[entry].status == 0) break; if (np->msg_level & NETIF_MSG_TX_DONE) printk(KERN_DEBUG "%s: Transmit done, Tx status %8.8x.\n", dev->name, np->tx_ring[entry].status); np->stats.tx_packets++; #if LINUX_VERSION_CODE > 0x20127 np->stats.tx_bytes += np->tx_skbuff[entry]->len; #endif /* Free the original skb. */ dev_free_skb_irq(np->tx_skbuff[entry]); np->tx_skbuff[entry] = 0; } /* Note the 4 slot hysteresis to mark the queue non-full. */ if (np->tx_full && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { /* The ring is no longer full, allow new TX entries. */ np->tx_full = 0; netif_resume_tx_queue(dev); } /* Abnormal error summary/uncommon events handlers. */ if (intr_status & (IntrPCIErr | IntrLinkChange | StatsMax)) netdev_error(dev, intr_status); if (--work_limit < 0) { printk(KERN_WARNING "%s: Too much work at interrupt, " "status=0x%4.4x.\n", dev->name, intr_status); break; } } while (1); if (np->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", dev->name, (int)readl(ioaddr + IntrStatus)); #if defined(__i386__) && LINUX_VERSION_CODE < 0x020300 clear_bit(0, (void*)&dev->interrupt); #endif return; } /* This routine is logically part of the interrupt handler, but separated for clarity and better register allocation. */ static int netdev_rx(struct net_device *dev) { struct netdev_private *np = (struct netdev_private *)dev->priv; int entry = np->cur_rx % RX_RING_SIZE; int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; if (np->msg_level & NETIF_MSG_RX_STATUS) { printk(KERN_DEBUG " In netdev_rx(), entry %d status %4.4x.\n", entry, np->rx_ring[entry].status); } /* If EOP is set on the next entry, it's a new packet. Send it up. */ while (np->rx_head_desc->status & cpu_to_le32(RxDescDone)) { struct rx_desc *desc = np->rx_head_desc; u32 desc_status = le32_to_cpu(desc->status); int data_size = le32_to_cpu(desc->csum_length); if (np->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", desc_status); if (--boguscnt < 0) break; if ( ! (desc_status & RxDescEndPkt)) { printk(KERN_WARNING "%s: Oversized Ethernet frame spanned " "multiple buffers, entry %#x length %d status %4.4x!\n", dev->name, np->cur_rx, data_size, desc_status); np->stats.rx_length_errors++; } else { struct sk_buff *skb; /* Reported length should omit the CRC. */ int pkt_len = (data_size & 0xffff) - 4; #ifndef final_version if (np->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" " of %d, bogus_cnt %d.\n", pkt_len, data_size, boguscnt); #endif /* Check if the packet is long enough to accept without copying to a minimally-sized skbuff. */ if (pkt_len < np->rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ #if HAS_IP_COPYSUM /* Call copy + cksum if available. */ eth_copy_and_sum(skb, np->rx_skbuff[entry]->tail, pkt_len, 0); skb_put(skb, pkt_len); #else memcpy(skb_put(skb, pkt_len), np->rx_skbuff[entry]->tail, pkt_len); #endif } else { char *temp = skb_put(skb = np->rx_skbuff[entry], pkt_len); np->rx_skbuff[entry] = NULL; #ifndef final_version /* Remove after testing. */ if (le32desc_to_virt(np->rx_ring[entry].buf_addr) != temp) printk(KERN_ERR "%s: Internal fault: The skbuff addresses " "do not match in netdev_rx: %p vs. %p / %p.\n", dev->name, le32desc_to_virt(np->rx_ring[entry].buf_addr), skb->head, temp); #endif } #ifndef final_version /* Remove after testing. */ /* You will want this info for the initial debug. */ if (np->msg_level & NETIF_MSG_PKTDATA) printk(KERN_DEBUG " Rx data %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:" "%2.2x %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x %2.2x%2.2x " "%d.%d.%d.%d.\n", skb->data[0], skb->data[1], skb->data[2], skb->data[3], skb->data[4], skb->data[5], skb->data[6], skb->data[7], skb->data[8], skb->data[9], skb->data[10], skb->data[11], skb->data[12], skb->data[13], skb->data[14], skb->data[15], skb->data[16], skb->data[17]); #endif skb->protocol = eth_type_trans(skb, dev); /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */ netif_rx(skb); dev->last_rx = jiffies; np->stats.rx_packets++; #if LINUX_VERSION_CODE > 0x20127 np->stats.rx_bytes += pkt_len; #endif } entry = (++np->cur_rx) % RX_RING_SIZE; np->rx_head_desc = &np->rx_ring[entry]; } /* Refill the Rx ring buffers. */ for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { struct sk_buff *skb; entry = np->dirty_rx % RX_RING_SIZE; if (np->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb(np->rx_buf_sz); np->rx_skbuff[entry] = skb; if (skb == NULL) break; /* Better luck next round. */ skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ np->rx_ring[entry].buf_addr = virt_to_le32desc(skb->tail); } np->rx_ring[entry].status = 0; } /* Restart Rx engine if stopped. */ /* writel(1, dev->base_addr + RxCmd); */ return 0; } static void netdev_error(struct net_device *dev, int intr_status) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; if (intr_status & IntrLinkChange) { int chip_ctrl = readl(ioaddr + ChipCtrl); if (np->msg_level & NETIF_MSG_LINK) printk(KERN_ERR "%s: Link changed: Autonegotiation on-going.\n", dev->name); if (chip_ctrl & 1) netif_link_up(dev); else netif_link_down(dev); check_duplex(dev); } if (intr_status & StatsMax) { get_stats(dev); } if ((intr_status & ~(IntrLinkChange|StatsMax)) && (np->msg_level & NETIF_MSG_DRV)) printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", dev->name, intr_status); /* Hmmmmm, it's not clear how to recover from PCI faults. */ if (intr_status & IntrPCIErr) np->stats.tx_fifo_errors++; } static struct net_device_stats *get_stats(struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; int crc_errs = readl(ioaddr + RxCRCErrs); if (crc_errs != 0xffffffff) { /* We need not lock this segment of code for SMP. The non-atomic-add vulnerability is very small and statistics are non-critical. */ np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs); np->stats.rx_missed_errors += readl(ioaddr + RxMissed); } return &np->stats; } /* The little-endian AUTODIN II ethernet CRC calculations. A big-endian version is also available. This is slow but compact code. Do not use this routine for bulk data, use a table-based routine instead. This is common code and should be moved to net/core/crc.c. Chips may use the upper or lower CRC bits, and may reverse and/or invert them. Select the endian-ness that results in minimal calculations. */ static unsigned const ethernet_polynomial_le = 0xedb88320U; static inline unsigned ether_crc_le(int length, unsigned char *data) { unsigned int crc = 0xffffffff; /* Initial value. */ while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 8; --bit >= 0; current_octet >>= 1) { if ((crc ^ current_octet) & 1) { crc >>= 1; crc ^= ethernet_polynomial_le; } else crc >>= 1; } } return crc; } static void set_rx_mode(struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; u32 new_mc_filter[128]; /* Multicast filter table */ u32 new_rx_mode = np->rx_mode; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ /* Unconditionally log net taps. */ printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); new_rx_mode |= RxCtrlAcceptBroadcast | RxCtrlAllMulticast | RxCtrlAllUnicast; } else if ((dev->mc_count > np->multicast_filter_limit) || (dev->flags & IFF_ALLMULTI)) { /* Too many to match, or accept all multicasts. */ new_rx_mode &= ~RxCtrlAllUnicast; new_rx_mode |= RxCtrlAcceptBroadcast | RxCtrlAllMulticast; } else { struct dev_mc_list *mclist; int i; memset(new_mc_filter, 0, sizeof(new_mc_filter)); for (i = 0, mclist = dev->mc_list; mclist && i < 15; i++, mclist = mclist->next) { writel(((u32*)mclist->dmi_addr)[0], ioaddr + RxAddrCAM + 8 + i*8); writel((((u32*)mclist->dmi_addr)[1] & 0xffff) | 0x80000000, ioaddr + RxAddrCAM + 12 + i*8); } for (; mclist && i < dev->mc_count; i++, mclist = mclist->next) { set_bit(((u32*)mclist->dmi_addr)[1] & 0xfff, new_mc_filter); } new_rx_mode &= ~RxCtrlAllUnicast | RxCtrlAllMulticast; new_rx_mode |= RxCtrlAcceptBroadcast; if (dev->mc_count > 15) for (i = 0; i < 128; i++) writel(new_mc_filter[i], ioaddr + MulticastArray + (i<<2)); } if (np->rx_mode != new_rx_mode) writel(np->rx_mode = new_rx_mode, ioaddr + RxControl); } static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct netdev_private *np = (struct netdev_private *)dev->priv; u32 *data32 = (void *)&rq->ifr_data; switch(cmd) { case SIOCGPARAMS: data32[0] = np->msg_level; data32[1] = np->multicast_filter_limit; data32[2] = np->max_interrupt_work; data32[3] = np->rx_copybreak; return 0; case SIOCSPARAMS: if (!capable(CAP_NET_ADMIN)) return -EPERM; np->msg_level = data32[0]; np->multicast_filter_limit = data32[1]; np->max_interrupt_work = data32[2]; np->rx_copybreak = data32[3]; return 0; default: return -EOPNOTSUPP; } } static int netdev_close(struct net_device *dev) { long ioaddr = dev->base_addr; struct netdev_private *np = (struct netdev_private *)dev->priv; int i; netif_stop_tx_queue(dev); if (np->msg_level & NETIF_MSG_IFDOWN) { printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x " "Rx %4.4x Int %2.2x.\n", dev->name, (int)readl(ioaddr + TxStatus), (int)readl(ioaddr + RxStatus), (int)readl(ioaddr + IntrStatus)); printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx); } /* Disable interrupts by clearing the interrupt mask. */ writel(~0, ioaddr + IntrDisable); readl(ioaddr + IntrStatus); /* Reset everything. */ writel(0x04000000, ioaddr + ChipCtrl); del_timer(&np->timer); #ifdef __i386__ if (np->msg_level & NETIF_MSG_IFDOWN) { printk("\n"KERN_DEBUG" Tx ring at %8.8x:\n", (int)virt_to_bus(np->tx_ring)); for (i = 0; i < TX_RING_SIZE; i++) printk(" #%d desc. buf %8.8x, length %8.8x, status %8.8x.\n", i, np->tx_ring[i].buf_addr, np->tx_ring[i].cmd_length, np->tx_ring[i].status); printk("\n"KERN_DEBUG " Rx ring %8.8x:\n", (int)virt_to_bus(np->rx_ring)); for (i = 0; i < RX_RING_SIZE; i++) { printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n", i, np->rx_ring[i].csum_length, np->rx_ring[i].status, np->rx_ring[i].buf_addr); if (np->rx_ring[i].buf_addr) { if (*(u8*)np->rx_skbuff[i]->tail != 0x69) { u16 *pkt_buf = (void *)np->rx_skbuff[i]->tail; int j; for (j = 0; j < 0x50; j++) printk(" %4.4x", pkt_buf[j]); printk("\n"); } } } } #endif /* __i386__ debugging only */ free_irq(dev->irq, dev); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { np->rx_ring[i].status = 0; np->rx_ring[i].buf_addr = 0xBADF00D0; /* An invalid address. */ if (np->rx_skbuff[i]) { #if LINUX_VERSION_CODE < 0x20100 np->rx_skbuff[i]->free = 1; #endif dev_free_skb(np->rx_skbuff[i]); } np->rx_skbuff[i] = 0; } for (i = 0; i < TX_RING_SIZE; i++) { if (np->tx_skbuff[i]) dev_free_skb(np->tx_skbuff[i]); np->tx_skbuff[i] = 0; } MOD_DEC_USE_COUNT; return 0; } static int netdev_pwr_event(void *dev_instance, int event) { struct net_device *dev = dev_instance; struct netdev_private *np = (struct netdev_private *)dev->priv; long ioaddr = dev->base_addr; if (np->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Handling power event %d.\n", dev->name, event); switch(event) { case DRV_ATTACH: MOD_INC_USE_COUNT; break; case DRV_SUSPEND: /* Disable interrupts, stop Tx and Rx. */ writel(~0, ioaddr + IntrDisable); /* writel(2, ioaddr + RxCmd); */ /* writew(2, ioaddr + TxCmd); */ break; case DRV_RESUME: /* This is incomplete: the actions are very chip specific. */ set_rx_mode(dev); break; case DRV_DETACH: { struct net_device **devp, **next; if (dev->flags & IFF_UP) { /* Some, but not all, kernel versions close automatically. */ dev_close(dev); dev->flags &= ~(IFF_UP|IFF_RUNNING); } unregister_netdev(dev); release_region(dev->base_addr, pci_id_tbl[np->chip_id].io_size); iounmap((char *)dev->base_addr); for (devp = &root_net_dev; *devp; devp = next) { next = &((struct netdev_private *)(*devp)->priv)->next_module; if (*devp == dev) { *devp = *next; break; } } if (np->priv_addr) kfree(np->priv_addr); kfree(dev); MOD_DEC_USE_COUNT; break; } } return 0; } #ifdef MODULE int init_module(void) { /* Emit version even if no cards detected. */ printk(KERN_INFO "%s" KERN_INFO "%s", version1, version2); return pci_drv_register(&igige_drv_id, NULL); } void cleanup_module(void) { struct net_device *next_dev; pci_drv_unregister(&igige_drv_id); /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_net_dev) { struct netdev_private *np = (void *)(root_net_dev->priv); unregister_netdev(root_net_dev); release_region(root_net_dev->base_addr, pci_id_tbl[np->chip_id].io_size); iounmap((char *)(root_net_dev->base_addr)); next_dev = np->next_module; if (np->tx_ring == 0) free_page((long)np->tx_ring); if (np->rx_ring == 0) free_page((long)np->rx_ring); if (np->priv_addr) kfree(np->priv_addr); kfree(root_net_dev); root_net_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "make KERNVER=`uname -r` intel-gige.o" * compile-cmd: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c intel-gige.c" * simple-compile-command: "gcc -DMODULE -O6 -c intel-gige.c" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */