/* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */ /* Written/copyright 1997-2002 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Drivers based on or derived from this code fall under the GPL and must retain the authorship, copyright and license notice. This file is not a complete program and may only be used when the entire operating system is licensed under the GPL. This driver is for the SMC83c170/175 "EPIC" series, as used on the SMC EtherPower II 9432 PCI adapter, and several CardBus cards. The author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 914 Bay Ridge Road, Suite 220 Annapolis MD 21403 Information and updates available at http://www.scyld.com/network/epic100.html */ /* These identify the driver base version and may not be removed. */ static const char version[] = "epic100.c:v1.18 7/22/2003 Written by Donald Becker \n"; static const char version2[] = " http://www.scyld.com/network/epic100.html\n"; /* The user-configurable values. These may be modified when a driver module is loaded.*/ /* Message enable level: 0..31 = no..all messages. See NETIF_MSG docs. */ static int debug = 2; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 32; /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). This chip uses a 64 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 32; /* Used to set a special media speed or duplex. Both 'options[]' and 'full_duplex[]' should exist for driver interoperability. The media type is usually passed in 'options[]'. The default is autonegotation for speed and duplex. This should rarely be overridden. Use option values 0x10/0x20 for 10Mbps, 0x100,0x200 for 100Mbps. Use option values 0x10 and 0x100 for forcing half duplex fixed speed. Use option values 0x20 and 0x200 for forcing full duplex operation. */ #define MAX_UNITS 8 /* More are supported, limit only on options */ static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1518 effectively disables this feature. */ static int rx_copybreak = 0; /* Operational parameters that are set at compile time. */ /* Keep the ring sizes a power of two for operational efficiency. The compiler will convert '%'<2^N> into a bit mask. Making the Tx ring too large decreases the effectiveness of channel bonding and packet priority. Too-large receive rings only waste memory. */ #define TX_RING_SIZE 16 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ #define RX_RING_SIZE 32 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (6*HZ) /* Allocation size of Rx buffers with normal sized Ethernet frames. Do not change this value without good reason. This is not a limit, but a way to keep a consistent allocation size among drivers. */ #define PKT_BUF_SZ 1536 /* Bytes transferred to chip before transmission starts. */ /* Initial threshold, increased on underflow, rounded down to 4 byte units. */ #define TX_FIFO_THRESH 256 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */ #ifndef __KERNEL__ #define __KERNEL__ #endif #if !defined(__OPTIMIZE__) #warning You must compile this file with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include #if defined(CONFIG_SMP) && ! defined(__SMP__) #define __SMP__ #endif #if defined(MODULE) && defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS) #define MODVERSIONS #endif #include #if defined(MODVERSIONS) #include #endif #include #include #include #include #include #include #if LINUX_VERSION_CODE >= 0x20400 #include #else #include #endif #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE >= 0x20300 #include #elif LINUX_VERSION_CODE >= 0x20200 #include #endif #ifdef INLINE_PCISCAN #include "k_compat.h" #else #include "pci-scan.h" #include "kern_compat.h" #endif #if (LINUX_VERSION_CODE >= 0x20100) && defined(MODULE) char kernel_version[] = UTS_RELEASE; #endif MODULE_AUTHOR("Donald Becker "); MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver"); MODULE_LICENSE("GPL"); MODULE_PARM(debug, "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(multicast_filter_limit, "i"); MODULE_PARM_DESC(debug, "Driver message level (0-31)"); MODULE_PARM_DESC(options, "Force transceiver type or fixed speed+duplex.\n" "Values are 0x10/0x20/0x100/0x200."); MODULE_PARM_DESC(max_interrupt_work, "Driver maximum events handled per interrupt"); MODULE_PARM_DESC(full_duplex, "Non-zero to set forced full duplex."); MODULE_PARM_DESC(rx_copybreak, "Breakpoint in bytes for copy-only-tiny-frames"); MODULE_PARM_DESC(multicast_filter_limit, "Multicast addresses before switching to Rx-all-multicast"); /* Theory of Operation I. Board Compatibility This device driver is designed for the SMC "EPIC/100", the SMC single-chip Ethernet controllers for PCI. This chip is used on the SMC EtherPower II boards. II. Board-specific settings PCI bus devices are configured by the system at boot time, so no jumpers need to be set on the board. The system BIOS will assign the PCI INTA signal to a (preferably otherwise unused) system IRQ line. Note: Kernel versions earlier than 1.3.73 do not support shared PCI interrupt lines. III. Driver operation IIIa. Ring buffers IVb. References http://www.smsc.com/main/datasheets/83c171.pdf http://www.smsc.com/main/datasheets/83c175.pdf http://scyld.com/expert/NWay.html http://www.national.com/pf/DP/DP83840A.html IVc. Errata */ static void *epic_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int find_cnt); static int epic_pwr_event(void *dev_instance, int event); enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 }; #define EPIC_TOTAL_SIZE 0x100 #ifdef USE_IO_OPS #define EPIC_IOTYPE PCI_USES_MASTER|PCI_USES_IO|PCI_ADDR0 #else #define EPIC_IOTYPE PCI_USES_MASTER|PCI_USES_MEM|PCI_ADDR1 #endif static struct pci_id_info pci_id_tbl[] = { {"SMSC EPIC 83c172", {0x000510B8, 0xffffffff, 0,0, 9,0xff}, EPIC_IOTYPE, EPIC_TOTAL_SIZE, TYPE2_INTR | MII_PWRDWN, }, {"SMSC EPIC 83c171", {0x000510B8, 0xffffffff, 0,0, 6,0xff}, EPIC_IOTYPE, EPIC_TOTAL_SIZE, TYPE2_INTR | MII_PWRDWN, }, {"SMSC EPIC/100 83c170", {0x000510B8, 0xffffffff, 0x0ab41092, 0xffffffff}, EPIC_IOTYPE, EPIC_TOTAL_SIZE, TYPE2_INTR | NO_MII | MII_PWRDWN, }, {"SMSC EPIC/100 83c170", {0x000510B8, 0xffffffff}, EPIC_IOTYPE, EPIC_TOTAL_SIZE, TYPE2_INTR, }, {"SMSC EPIC/C 83c175", {0x000610B8, 0xffffffff}, EPIC_IOTYPE, EPIC_TOTAL_SIZE, TYPE2_INTR | MII_PWRDWN, }, {0,}, }; struct drv_id_info epic_drv_id = { "epic100", PCI_HOTSWAP, PCI_CLASS_NETWORK_ETHERNET<<8, pci_id_tbl, epic_probe1, epic_pwr_event }; #ifndef USE_IO_OPS #undef inb #undef inw #undef inl #undef outb #undef outw #undef outl #define inb readb #define inw readw #define inl readl #define outb writeb #define outw writew #define outl writel #endif /* Offsets to registers, using the (ugh) SMC names. */ enum epic_registers { COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14, PCIBurstCnt=0x18, TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */ MIICtrl=0x30, MIIData=0x34, MIICfg=0x38, LAN0=64, /* MAC address. */ MC0=80, /* Multicast filter table. */ RxCtrl=96, TxCtrl=112, TxSTAT=0x74, PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC, }; /* Interrupt register bits, using my own meaningful names. */ enum IntrStatus { TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000, PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000, RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100, TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010, RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001, }; enum CommandBits { StopRx=1, StartRx=2, TxQueued=4, RxQueued=8, StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80, }; /* The EPIC100 Rx and Tx buffer descriptors. */ struct epic_tx_desc { u32 txstatus; u32 bufaddr; u32 buflength; u32 next; }; struct epic_rx_desc { u32 rxstatus; u32 bufaddr; u32 buflength; u32 next; }; enum desc_status_bits { DescOwn=0x8000, }; #define PRIV_ALIGN 15 /* Required alignment mask */ struct epic_private { /* Tx and Rx rings first so that they remain paragraph aligned. */ struct epic_rx_desc rx_ring[RX_RING_SIZE]; struct epic_tx_desc tx_ring[TX_RING_SIZE]; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; /* The addresses of receive-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; struct net_device *next_module; void *priv_addr; /* Unaligned address for kfree */ /* Ring pointers. */ spinlock_t lock; /* Group with Tx control cache line. */ unsigned int cur_tx, dirty_tx; struct descriptor *last_tx_desc; unsigned int cur_rx, dirty_rx; unsigned int rx_buf_sz; /* Based on MTU+slack. */ struct descriptor *last_rx_desc; long last_rx_time; /* Last Rx, in jiffies. */ int rx_copybreak; int msg_level; int max_interrupt_work; struct pci_dev *pci_dev; /* PCI bus location. */ int chip_id, chip_flags; struct net_device_stats stats; struct timer_list timer; /* Media selection timer. */ int tx_threshold; int genctl; /* Including Rx threshold. */ u32 cur_rx_mode; unsigned char mc_filter[8]; int multicast_filter_limit; signed char phys[4]; /* MII device addresses. */ u16 mii_bmcr; /* MII control register */ u16 advertising; /* NWay media advertisement */ int mii_phy_cnt; unsigned int tx_full:1; /* The Tx queue is full. */ unsigned int full_duplex:1; /* Current duplex setting. */ unsigned int duplex_lock:1; /* Duplex forced by the user. */ unsigned int default_port; /* Last dev->if_port value. */ unsigned int media2:4; /* Secondary monitored media port. */ unsigned int medialock:1; /* Don't sense media type. */ unsigned int mediasense:1; /* Media sensing in progress. */ }; static int epic_open(struct net_device *dev); static int read_eeprom(long ioaddr, int location); static int mdio_read(struct net_device *dev, int phy_id, int location); static void mdio_write(struct net_device *dev, int phy_id, int loc, int val); static void epic_start(struct net_device *dev, int restart); static void check_media(struct net_device *dev); static void epic_timer(unsigned long data); static void epic_tx_timeout(struct net_device *dev); static void epic_init_ring(struct net_device *dev); static int epic_start_xmit(struct sk_buff *skb, struct net_device *dev); static int epic_rx(struct net_device *dev); static void epic_interrupt(int irq, void *dev_instance, struct pt_regs *regs); static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); static int epic_close(struct net_device *dev); static struct net_device_stats *epic_get_stats(struct net_device *dev); static void set_rx_mode(struct net_device *dev); /* A list of all installed EPIC devices, for removing the driver module. */ static struct net_device *root_epic_dev = NULL; static void *epic_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int card_idx) { struct net_device *dev; struct epic_private *ep; void *priv_mem; int i, option = 0, duplex = 0; dev = init_etherdev(init_dev, 0); if (!dev) return NULL; if (dev->mem_start) { option = dev->mem_start; duplex = (dev->mem_start & 16) ? 1 : 0; } else if (card_idx >= 0 && card_idx < MAX_UNITS) { if (options[card_idx] >= 0) option = options[card_idx]; if (full_duplex[card_idx] >= 0) duplex = full_duplex[card_idx]; } dev->base_addr = ioaddr; dev->irq = irq; printk(KERN_INFO "%s: %s at %#lx, %2.2x:%2.2x IRQ %d, ", dev->name, pci_id_tbl[chip_idx].name, ioaddr, pci_bus_number(pdev), pci_devfn(pdev)>>3, dev->irq); /* Bring the chip out of low-power mode. */ outl(0x4200, ioaddr + GENCTL); /* Magic from SMSC app note 7.15 */ outl(0x0008, ioaddr + TEST1); /* Turn on the MII transceiver. */ outl(0x12, ioaddr + MIICfg); if (pci_id_tbl[chip_idx].drv_flags & NO_MII) outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL); outl(0x0200, ioaddr + GENCTL); if (((1 << debug) - 1) & NETIF_MSG_MISC) { printk(KERN_DEBUG "%s: EEPROM contents\n", dev->name); for (i = 0; i < 64; i++) printk(" %4.4x%s", read_eeprom(ioaddr, i), i % 16 == 15 ? "\n" : ""); } /* Note: the '175 does not have a serial EEPROM. */ for (i = 0; i < 3; i++) ((u16 *)dev->dev_addr)[i] = le16_to_cpu(inw(ioaddr + LAN0 + i*4)); for (i = 0; i < 5; i++) printk("%2.2x:", dev->dev_addr[i]); printk("%2.2x.\n", dev->dev_addr[i]); /* Make certain elements e.g. descriptor lists are aligned. */ priv_mem = kmalloc(sizeof(*ep) + PRIV_ALIGN, GFP_KERNEL); /* Check for the very unlikely case of no memory. */ if (priv_mem == NULL) return NULL; /* We do a request_region() to register /proc/ioports info. */ request_region(ioaddr, pci_id_tbl[chip_idx].io_size, dev->name); dev->priv = ep = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN); memset(ep, 0, sizeof(*ep)); ep->priv_addr = priv_mem; ep->next_module = root_epic_dev; root_epic_dev = dev; ep->pci_dev = pdev; ep->chip_id = chip_idx; ep->chip_flags = pci_id_tbl[chip_idx].drv_flags; ep->msg_level = (1 << debug) - 1; ep->rx_copybreak = rx_copybreak; ep->max_interrupt_work = max_interrupt_work; ep->multicast_filter_limit = multicast_filter_limit; /* The lower four bits are non-TP media types. */ if (option > 0) { if (option & 0x220) ep->duplex_lock = ep->full_duplex = 1; ep->default_port = option & 0xFFFF; ep->medialock = 1; } if (duplex) { ep->duplex_lock = ep->full_duplex = 1; printk(KERN_INFO "%s: Forced full duplex operation requested.\n", dev->name); } dev->if_port = ep->default_port; /* Find the connected MII xcvrs. Doing this in open() would allow detecting external xcvrs later, but takes much time and no cards have external MII. */ { int phy, phy_idx = 0; for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) { int mii_status = mdio_read(dev, phy, 1); if (mii_status != 0xffff && mii_status != 0x0000) { ep->phys[phy_idx++] = phy; printk(KERN_INFO "%s: Located MII transceiver #%d control " "%4.4x status %4.4x.\n", dev->name, phy, mdio_read(dev, phy, 0), mii_status); } } ep->mii_phy_cnt = phy_idx; } if (ep->mii_phy_cnt == 0 && ! (ep->chip_flags & NO_MII)) { printk(KERN_WARNING "%s: ***WARNING***: No MII transceiver found!\n", dev->name); /* Use the known PHY address of the EPII. */ ep->phys[0] = 3; } if (ep->mii_phy_cnt) { int phy = ep->phys[0]; int xcvr = ep->default_port & 0x330; if (xcvr) { printk(KERN_INFO " Forcing %dMbs %s-duplex operation.\n", (xcvr & 0x300 ? 100 : 10), (xcvr & 0x220 ? "full" : "half")); ep->mii_bmcr = xcvr & 0x300 ? 0x2000 : 0; /* 10/100mbps? */ ep->mii_bmcr |= xcvr & 0x220 ? 0x0100 : 0; /* duplex */ mdio_write(dev, phy, 0, ep->mii_bmcr); } else { ep->mii_bmcr = 0x3000; ep->advertising = mdio_read(dev, phy, 4); printk(KERN_INFO "%s: Autonegotiation advertising %4.4x link " "partner %4.4x.\n", dev->name, ep->advertising, mdio_read(dev, phy, 5)); } } #if EPIC_POWER_SAVE /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */ if (ep->chip_flags & MII_PWRDWN) outl(inl(ioaddr + NVCTL) & ~0x483C, ioaddr + NVCTL); #endif outl(0x0008, ioaddr + GENCTL); /* The Epic-specific entries in the device structure. */ dev->open = &epic_open; dev->hard_start_xmit = &epic_start_xmit; dev->stop = &epic_close; dev->get_stats = &epic_get_stats; dev->set_multicast_list = &set_rx_mode; dev->do_ioctl = &mii_ioctl; return dev; } /* Serial EEPROM section. */ /* EEPROM_Ctrl bits. */ #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */ #define EE_CS 0x02 /* EEPROM chip select. */ #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */ #define EE_WRITE_0 0x01 #define EE_WRITE_1 0x09 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */ #define EE_ENB (0x0001 | EE_CS) /* Delay between EEPROM clock transitions. This serves to flush the operation to the PCI bus. */ #define eeprom_delay() inl(ee_addr) /* The EEPROM commands include the alway-set leading bit. */ #define EE_WRITE_CMD (5 << 6) #define EE_READ64_CMD (6 << 6) #define EE_READ256_CMD (6 << 8) #define EE_ERASE_CMD (7 << 6) static int read_eeprom(long ioaddr, int location) { int i; int retval = 0; long ee_addr = ioaddr + EECTL; int read_cmd = location | (inl(ee_addr) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD); outl(EE_ENB & ~EE_CS, ee_addr); outl(EE_ENB, ee_addr); /* Shift the read command bits out. */ for (i = 12; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0; outl(EE_ENB | dataval, ee_addr); eeprom_delay(); outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); eeprom_delay(); } outl(EE_ENB, ee_addr); for (i = 16; i > 0; i--) { outl(EE_ENB | EE_SHIFT_CLK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0); outl(EE_ENB, ee_addr); eeprom_delay(); } /* Terminate the EEPROM access. */ outl(EE_ENB & ~EE_CS, ee_addr); return retval; } #define MII_READOP 1 #define MII_WRITEOP 2 static int mdio_read(struct net_device *dev, int phy_id, int location) { long ioaddr = dev->base_addr; int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP; int i; outl(read_cmd, ioaddr + MIICtrl); /* Typical operation takes 25 loops. */ for (i = 400; i > 0; i--) if ((inl(ioaddr + MIICtrl) & MII_READOP) == 0) { /* Work around read failure bug. */ if (phy_id == 1 && location < 6 && inw(ioaddr + MIIData) == 0xffff) { outl(read_cmd, ioaddr + MIICtrl); continue; } return inw(ioaddr + MIIData); } return 0xffff; } static void mdio_write(struct net_device *dev, int phy_id, int loc, int value) { long ioaddr = dev->base_addr; int i; outw(value, ioaddr + MIIData); outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl); for (i = 10000; i > 0; i--) { if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0) break; } return; } static int epic_open(struct net_device *dev) { struct epic_private *ep = (struct epic_private *)dev->priv; MOD_INC_USE_COUNT; if (request_irq(dev->irq, &epic_interrupt, SA_SHIRQ, dev->name, dev)) { MOD_DEC_USE_COUNT; return -EAGAIN; } epic_init_ring(dev); check_media(dev); epic_start(dev, 0); /* Set the timer to switch to check for link beat and perhaps switch to an alternate media type. */ init_timer(&ep->timer); ep->timer.expires = jiffies + 3*HZ; ep->timer.data = (unsigned long)dev; ep->timer.function = &epic_timer; /* timer handler */ add_timer(&ep->timer); return 0; } /* Reset the chip to recover from a PCI transaction error. This may occur at interrupt time. */ static void epic_pause(struct net_device *dev) { long ioaddr = dev->base_addr; struct epic_private *ep = (struct epic_private *)dev->priv; /* Disable interrupts by clearing the interrupt mask. */ outl(0x00000000, ioaddr + INTMASK); /* Stop the chip's Tx and Rx DMA processes. */ outw(StopRx | StopTxDMA | StopRxDMA, ioaddr + COMMAND); /* Update the error counts. */ if (inw(ioaddr + COMMAND) != 0xffff) { ep->stats.rx_missed_errors += inb(ioaddr + MPCNT); ep->stats.rx_frame_errors += inb(ioaddr + ALICNT); ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT); } /* Remove the packets on the Rx queue. */ epic_rx(dev); } static void epic_start(struct net_device *dev, int restart) { long ioaddr = dev->base_addr; struct epic_private *ep = (struct epic_private *)dev->priv; int i; if (restart) { /* Soft reset the chip. */ outl(0x4001, ioaddr + GENCTL); printk(KERN_DEBUG "%s: Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n", dev->name, ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx); udelay(1); /* This magic is documented in SMSC app note 7.15 */ for (i = 16; i > 0; i--) outl(0x0008, ioaddr + TEST1); } #if defined(__powerpc__) || defined(__sparc__) || defined(__BIG_ENDIAN) ep->genctl = 0x0432 | (RX_FIFO_THRESH<<8); #elif defined(__LITTLE_ENDIAN) || defined(__i386__) ep->genctl = 0x0412 | (RX_FIFO_THRESH<<8); #else #error The byte order of this architecture is not defined. #endif /* Power and reset the PHY. */ if (ep->chip_flags & MII_PWRDWN) outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL); if (restart) { outl(ep->genctl | 0x4000, ioaddr + GENCTL); inl(ioaddr + GENCTL); } outl(ep->genctl, ioaddr + GENCTL); if (dev->if_port == 2 || dev->if_port == 5) { /* 10base2 or AUI */ outl(0x13, ioaddr + MIICfg); printk(KERN_INFO "%s: Disabling MII PHY to use 10base2/AUI.\n", dev->name); mdio_write(dev, ep->phys[0], 0, 0x0C00); } else { outl(0x12, ioaddr + MIICfg); mdio_write(dev, ep->phys[0], 0, ep->advertising); mdio_write(dev, ep->phys[0], 0, ep->mii_bmcr); check_media(dev); } for (i = 0; i < 3; i++) outl(cpu_to_le16(((u16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4); ep->tx_threshold = TX_FIFO_THRESH; outl(ep->tx_threshold, ioaddr + TxThresh); outl(ep->full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl); outl(virt_to_bus(&ep->rx_ring[ep->cur_rx % RX_RING_SIZE]), ioaddr + PRxCDAR); outl(virt_to_bus(&ep->tx_ring[ep->dirty_tx % TX_RING_SIZE]), ioaddr + PTxCDAR); /* Start the chip's Rx process. */ set_rx_mode(dev); outl(StartRx | RxQueued, ioaddr + COMMAND); if ( ! restart) netif_start_tx_queue(dev); /* Enable interrupts by setting the interrupt mask. */ outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170) | CntFull | TxUnderrun | TxDone | TxEmpty | RxError | RxOverflow | RxFull | RxHeader | RxDone, ioaddr + INTMASK); if (ep->msg_level & NETIF_MSG_IFUP) printk(KERN_DEBUG "%s: epic_start() done, cmd status %4.4x, " "ctl %4.4x interrupt %4.4x.\n", dev->name, (int)inl(ioaddr + COMMAND), (int)inl(ioaddr + GENCTL), (int)inl(ioaddr + INTSTAT)); return; } static void check_media(struct net_device *dev) { struct epic_private *ep = (struct epic_private *)dev->priv; long ioaddr = dev->base_addr; int mii_reg5 = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], 5) : 0; int negotiated = mii_reg5 & ep->advertising; int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; if (ep->duplex_lock) return; if (mii_reg5 == 0xffff) /* Bogus read */ return; if (ep->full_duplex != duplex) { ep->full_duplex = duplex; printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link" " partner capability of %4.4x.\n", dev->name, ep->full_duplex ? "full" : "half", ep->phys[0], mii_reg5); outl(ep->full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl); } } static void epic_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct epic_private *ep = (struct epic_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 5*HZ; if (ep->msg_level & NETIF_MSG_TIMER) { printk(KERN_DEBUG "%s: Media monitor tick, Tx status %8.8x.\n", dev->name, (int)inl(ioaddr + TxSTAT)); printk(KERN_DEBUG "%s: Other registers are IntMask %4.4x " "IntStatus %4.4x RxStatus %4.4x.\n", dev->name, (int)inl(ioaddr + INTMASK), (int)inl(ioaddr + INTSTAT), (int)inl(ioaddr + RxSTAT)); } if (ep->cur_tx - ep->dirty_tx > 1 && jiffies - dev->trans_start > TX_TIMEOUT) { printk(KERN_WARNING "%s: Tx hung, %d vs. %d.\n", dev->name, ep->cur_tx, ep->dirty_tx); epic_tx_timeout(dev); } check_media(dev); ep->timer.expires = jiffies + next_tick; add_timer(&ep->timer); } static void epic_tx_timeout(struct net_device *dev) { struct epic_private *ep = (struct epic_private *)dev->priv; long ioaddr = dev->base_addr; int tx_status = inw(ioaddr + TxSTAT); printk(KERN_WARNING "%s: EPIC transmit timeout, Tx status %4.4x.\n", dev->name, tx_status); if (ep->msg_level & NETIF_MSG_TX_ERR) printk(KERN_DEBUG "%s: Tx indices: dirty_tx %d, cur_tx %d.\n", dev->name, ep->dirty_tx, ep->cur_tx); if (tx_status & 0x10) { /* Tx FIFO underflow. */ ep->stats.tx_fifo_errors++; outl(RestartTx, ioaddr + COMMAND); } else { epic_start(dev, 1); outl(TxQueued, dev->base_addr + COMMAND); } dev->trans_start = jiffies; ep->stats.tx_errors++; return; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void epic_init_ring(struct net_device *dev) { struct epic_private *ep = (struct epic_private *)dev->priv; int i; ep->tx_full = 0; ep->lock = (spinlock_t) SPIN_LOCK_UNLOCKED; ep->dirty_tx = ep->cur_tx = 0; ep->cur_rx = ep->dirty_rx = 0; ep->last_rx_time = jiffies; ep->rx_buf_sz = (dev->mtu <= 1522 ? PKT_BUF_SZ : dev->mtu + 14); /* Initialize all Rx descriptors. */ for (i = 0; i < RX_RING_SIZE; i++) { ep->rx_ring[i].rxstatus = 0; ep->rx_ring[i].buflength = ep->rx_buf_sz; ep->rx_ring[i].next = virt_to_bus(&ep->rx_ring[i+1]); ep->rx_skbuff[i] = 0; } /* Mark the last entry as wrapping the ring. */ ep->rx_ring[i-1].next = virt_to_bus(&ep->rx_ring[0]); /* Fill in the Rx buffers. Handle allocation failure gracefully. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = dev_alloc_skb(ep->rx_buf_sz); ep->rx_skbuff[i] = skb; if (skb == NULL) break; skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* 16 byte align the IP header. */ ep->rx_ring[i].bufaddr = virt_to_bus(skb->tail); ep->rx_ring[i].rxstatus = DescOwn; } ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE); /* The Tx buffer descriptor is filled in as needed, but we do need to clear the ownership bit. */ for (i = 0; i < TX_RING_SIZE; i++) { ep->tx_skbuff[i] = 0; ep->tx_ring[i].txstatus = 0x0000; ep->tx_ring[i].next = virt_to_bus(&ep->tx_ring[i+1]); } ep->tx_ring[i-1].next = virt_to_bus(&ep->tx_ring[0]); return; } static int epic_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct epic_private *ep = (struct epic_private *)dev->priv; int entry, free_count; u32 ctrl_word; unsigned long flags; /* Block a timer-based transmit from overlapping. */ if (netif_pause_tx_queue(dev) != 0) { /* This watchdog code is redundant with the media monitor timer. */ if (jiffies - dev->trans_start > TX_TIMEOUT) epic_tx_timeout(dev); return 1; } /* Caution: the write order is important here, set the field with the "ownership" bit last. */ /* Calculate the next Tx descriptor entry. */ spin_lock_irqsave(&ep->lock, flags); free_count = ep->cur_tx - ep->dirty_tx; entry = ep->cur_tx % TX_RING_SIZE; ep->tx_skbuff[entry] = skb; ep->tx_ring[entry].bufaddr = virt_to_bus(skb->data); if (free_count < TX_QUEUE_LEN/2) {/* Typical path */ ctrl_word = 0x100000; /* No interrupt */ } else if (free_count == TX_QUEUE_LEN/2) { ctrl_word = 0x140000; /* Tx-done intr. */ } else if (free_count < TX_QUEUE_LEN - 1) { ctrl_word = 0x100000; /* No Tx-done intr. */ } else { /* Leave room for an additional entry. */ ctrl_word = 0x140000; /* Tx-done intr. */ ep->tx_full = 1; } ep->tx_ring[entry].buflength = ctrl_word | skb->len; ep->tx_ring[entry].txstatus = ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16) | DescOwn; ep->cur_tx++; if (ep->tx_full) { /* Check for a just-cleared queue. */ if (ep->cur_tx - (volatile int)ep->dirty_tx < TX_QUEUE_LEN - 2) { netif_unpause_tx_queue(dev); ep->tx_full = 0; } else netif_stop_tx_queue(dev); } else netif_unpause_tx_queue(dev); spin_unlock_irqrestore(&ep->lock, flags); /* Trigger an immediate transmit demand. */ outl(TxQueued, dev->base_addr + COMMAND); dev->trans_start = jiffies; if (ep->msg_level & NETIF_MSG_TX_QUEUED) printk(KERN_DEBUG "%s: Queued Tx packet size %d to slot %d, " "flag %2.2x Tx status %8.8x.\n", dev->name, (int)skb->len, entry, ctrl_word, (int)inl(dev->base_addr + TxSTAT)); return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void epic_interrupt(int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = (struct net_device *)dev_instance; struct epic_private *ep = (struct epic_private *)dev->priv; long ioaddr = dev->base_addr; int status, boguscnt = max_interrupt_work; do { status = inl(ioaddr + INTSTAT); /* Acknowledge all of the current interrupt sources ASAP. */ outl(status & 0x00007fff, ioaddr + INTSTAT); if (ep->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: Interrupt, status=%#8.8x new " "intstat=%#8.8x.\n", dev->name, status, (int)inl(ioaddr + INTSTAT)); if ((status & IntrSummary) == 0) break; if (status & (RxDone | RxStarted | RxEarlyWarn | RxOverflow)) epic_rx(dev); if (status & (TxEmpty | TxDone)) { unsigned int dirty_tx, cur_tx; /* Note: if this lock becomes a problem we can narrow the locked region at the cost of occasionally grabbing the lock more times. */ spin_lock(&ep->lock); cur_tx = ep->cur_tx; dirty_tx = ep->dirty_tx; for (; cur_tx - dirty_tx > 0; dirty_tx++) { int entry = dirty_tx % TX_RING_SIZE; int txstatus = ep->tx_ring[entry].txstatus; if (txstatus & DescOwn) break; /* It still hasn't been Txed */ if ( ! (txstatus & 0x0001)) { /* There was an major error, log it. */ #ifndef final_version if (ep->msg_level & NETIF_MSG_TX_ERR) printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n", dev->name, txstatus); #endif ep->stats.tx_errors++; if (txstatus & 0x1050) ep->stats.tx_aborted_errors++; if (txstatus & 0x0008) ep->stats.tx_carrier_errors++; if (txstatus & 0x0040) ep->stats.tx_window_errors++; if (txstatus & 0x0010) ep->stats.tx_fifo_errors++; #ifdef ETHER_STATS if (txstatus & 0x1000) ep->stats.collisions16++; #endif } else { if (ep->msg_level & NETIF_MSG_TX_DONE) printk(KERN_DEBUG "%s: Transmit done, Tx status " "%8.8x.\n", dev->name, txstatus); #ifdef ETHER_STATS if ((txstatus & 0x0002) != 0) ep->stats.tx_deferred++; #endif ep->stats.collisions += (txstatus >> 8) & 15; ep->stats.tx_packets++; #if LINUX_VERSION_CODE > 0x20127 ep->stats.tx_bytes += ep->tx_skbuff[entry]->len; #endif } /* Free the original skb. */ dev_free_skb_irq(ep->tx_skbuff[entry]); ep->tx_skbuff[entry] = 0; } #ifndef final_version if (cur_tx - dirty_tx > TX_RING_SIZE) { printk(KERN_WARNING "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n", dev->name, dirty_tx, cur_tx, ep->tx_full); dirty_tx += TX_RING_SIZE; } #endif ep->dirty_tx = dirty_tx; if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) { /* The ring is no longer full, allow new TX entries. */ ep->tx_full = 0; spin_unlock(&ep->lock); netif_resume_tx_queue(dev); } else spin_unlock(&ep->lock); } /* Check uncommon events all at once. */ if (status & (CntFull | TxUnderrun | RxOverflow | RxFull | PCIBusErr170 | PCIBusErr175)) { if (status == 0xffffffff) /* Chip failed or removed (CardBus). */ break; /* Always update the error counts to avoid overhead later. */ ep->stats.rx_missed_errors += inb(ioaddr + MPCNT); ep->stats.rx_frame_errors += inb(ioaddr + ALICNT); ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT); if (status & TxUnderrun) { /* Tx FIFO underflow. */ ep->stats.tx_fifo_errors++; outl(ep->tx_threshold += 128, ioaddr + TxThresh); /* Restart the transmit process. */ outl(RestartTx, ioaddr + COMMAND); } if (status & RxOverflow) { /* Missed a Rx frame. */ ep->stats.rx_errors++; } if (status & (RxOverflow | RxFull)) outw(RxQueued, ioaddr + COMMAND); if (status & PCIBusErr170) { printk(KERN_ERR "%s: PCI Bus Error! EPIC status %4.4x.\n", dev->name, status); epic_pause(dev); epic_start(dev, 1); } /* Clear all error sources. */ outl(status & 0x7f18, ioaddr + INTSTAT); } if (--boguscnt < 0) { printk(KERN_WARNING "%s: Too much work at interrupt, " "IntrStatus=0x%8.8x.\n", dev->name, status); /* Clear all interrupt sources. */ outl(0x0001ffff, ioaddr + INTSTAT); /* Ill-advised: Slowly stop emitting this message. */ max_interrupt_work++; break; } } while (1); if (ep->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: Exiting interrupt, intr_status=%#4.4x.\n", dev->name, status); return; } static int epic_rx(struct net_device *dev) { struct epic_private *ep = (struct epic_private *)dev->priv; int entry = ep->cur_rx % RX_RING_SIZE; int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx; int work_done = 0; if (ep->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " In epic_rx(), entry %d %8.8x.\n", entry, ep->rx_ring[entry].rxstatus); /* If we own the next entry, it's a new packet. Send it up. */ while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) { int status = ep->rx_ring[entry].rxstatus; if (ep->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " epic_rx() status was %8.8x.\n", status); if (--rx_work_limit < 0) break; if (status & 0x2006) { if (ep->msg_level & NETIF_MSG_RX_ERR) printk(KERN_DEBUG "%s: epic_rx() error status was %8.8x.\n", dev->name, status); if (status & 0x2000) { printk(KERN_WARNING "%s: Oversized Ethernet frame spanned " "multiple buffers, status %4.4x!\n", dev->name, status); ep->stats.rx_length_errors++; } else if (status & 0x0006) /* Rx Frame errors are counted in hardware. */ ep->stats.rx_errors++; } else { /* Malloc up new buffer, compatible with net-2e. */ /* Omit the four octet CRC from the length. */ short pkt_len = (status >> 16) - 4; struct sk_buff *skb; if (pkt_len > PKT_BUF_SZ - 4) { printk(KERN_ERR "%s: Oversized Ethernet frame, status %x " "%d bytes.\n", dev->name, pkt_len, status); pkt_len = 1514; } if (ep->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" ", bogus_cnt %d.\n", pkt_len, rx_work_limit); /* Check if the packet is long enough to accept without copying to a minimally-sized skbuff. */ if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* 16 byte align the IP header */ #if 1 /* HAS_IP_COPYSUM */ eth_copy_and_sum(skb, ep->rx_skbuff[entry]->tail, pkt_len, 0); skb_put(skb, pkt_len); #else memcpy(skb_put(skb, pkt_len), ep->rx_skbuff[entry]->tail, pkt_len); #endif } else { skb_put(skb = ep->rx_skbuff[entry], pkt_len); ep->rx_skbuff[entry] = NULL; } skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); ep->stats.rx_packets++; #if LINUX_VERSION_CODE > 0x20127 ep->stats.rx_bytes += pkt_len; #endif } work_done++; entry = (++ep->cur_rx) % RX_RING_SIZE; } /* Refill the Rx ring buffers. */ for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) { entry = ep->dirty_rx % RX_RING_SIZE; if (ep->rx_skbuff[entry] == NULL) { struct sk_buff *skb; skb = ep->rx_skbuff[entry] = dev_alloc_skb(ep->rx_buf_sz); if (skb == NULL) break; skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ ep->rx_ring[entry].bufaddr = virt_to_bus(skb->tail); work_done++; } ep->rx_ring[entry].rxstatus = DescOwn; } return work_done; } static int epic_close(struct net_device *dev) { long ioaddr = dev->base_addr; struct epic_private *ep = (struct epic_private *)dev->priv; int i; netif_stop_tx_queue(dev); if (ep->msg_level & NETIF_MSG_IFDOWN) printk(KERN_DEBUG "%s: Shutting down ethercard, status was %8.8x.\n", dev->name, (int)inl(ioaddr + INTSTAT)); epic_pause(dev); del_timer(&ep->timer); free_irq(dev->irq, dev); /* Free all the skbuffs in the Rx queue. */ for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = ep->rx_skbuff[i]; ep->rx_skbuff[i] = 0; ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */ ep->rx_ring[i].buflength = 0; ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */ if (skb) { #if LINUX_VERSION_CODE < 0x20100 skb->free = 1; #endif dev_free_skb(skb); } } for (i = 0; i < TX_RING_SIZE; i++) { if (ep->tx_skbuff[i]) dev_free_skb(ep->tx_skbuff[i]); ep->tx_skbuff[i] = 0; } /* Green! Leave the chip in low-power mode. */ outl(0x440008, ioaddr + GENCTL); MOD_DEC_USE_COUNT; return 0; } static struct net_device_stats *epic_get_stats(struct net_device *dev) { struct epic_private *ep = (struct epic_private *)dev->priv; long ioaddr = dev->base_addr; if (netif_running(dev)) { /* Update the error counts. */ ep->stats.rx_missed_errors += inb(ioaddr + MPCNT); ep->stats.rx_frame_errors += inb(ioaddr + ALICNT); ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT); } return &ep->stats; } /* Set or clear the multicast filter for this adaptor. Note that we only use exclusion around actually queueing the new frame, not around filling ep->setup_frame. This is non-deterministic when re-entered but still correct. */ /* The little-endian AUTODIN II ethernet CRC calculation. N.B. Do not use for bulk data, use a table-based routine instead. This is common code and should be moved to net/core/crc.c */ static unsigned const ethernet_polynomial_le = 0xedb88320U; static inline unsigned ether_crc_le(int length, unsigned char *data) { unsigned int crc = 0xffffffff; /* Initial value. */ while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 8; --bit >= 0; current_octet >>= 1) { if ((crc ^ current_octet) & 1) { crc >>= 1; crc ^= ethernet_polynomial_le; } else crc >>= 1; } } return crc; } static void set_rx_mode(struct net_device *dev) { long ioaddr = dev->base_addr; struct epic_private *ep = (struct epic_private *)dev->priv; unsigned char mc_filter[8]; /* Multicast hash filter */ u32 new_rx_mode; int i; if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ new_rx_mode = 0x002C; /* Unconditionally log net taps. */ printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); memset(mc_filter, 0xff, sizeof(mc_filter)); } else if ((dev->mc_count > 0) || (dev->flags & IFF_ALLMULTI)) { /* There is apparently a chip bug, so the multicast filter is never enabled. */ /* Too many to filter perfectly -- accept all multicasts. */ memset(mc_filter, 0xff, sizeof(mc_filter)); new_rx_mode = 0x000C; } else if (dev->mc_count == 0) { memset(mc_filter, 0, sizeof(mc_filter)); new_rx_mode = 0x0004; } else { /* Never executed, for now. */ struct dev_mc_list *mclist; memset(mc_filter, 0, sizeof(mc_filter)); for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) set_bit(ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x3f, mc_filter); new_rx_mode = 0x000C; } if (ep->cur_rx_mode != new_rx_mode) { ep->cur_rx_mode = new_rx_mode; outl(new_rx_mode, ioaddr + RxCtrl); } /* ToDo: perhaps we need to stop the Tx and Rx process here? */ if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) { for (i = 0; i < 4; i++) outw(((u16 *)mc_filter)[i], ioaddr + MC0 + i*4); memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter)); } return; } static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct epic_private *ep = (void *)dev->priv; long ioaddr = dev->base_addr; u16 *data = (u16 *)&rq->ifr_data; u32 *data32 = (void *)&rq->ifr_data; switch(cmd) { case 0x8947: case 0x89F0: /* SIOCGMIIPHY: Get the address of the PHY in use. */ data[0] = ep->phys[0] & 0x1f; /* Fall Through */ case 0x8948: case 0x89F1: /* SIOCGMIIREG: Read the specified MII register. */ if (! netif_running(dev)) { outl(0x0200, ioaddr + GENCTL); outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL); } data[3] = mdio_read(dev, data[0] & 0x1f, data[1] & 0x1f); #if defined(PWRDWN_AFTER_IOCTL) if (! netif_running(dev)) { outl(0x0008, ioaddr + GENCTL); outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL); } #endif return 0; case 0x8949: case 0x89F2: /* SIOCSMIIREG: Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; if (! netif_running(dev)) { outl(0x0200, ioaddr + GENCTL); outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL); } if (data[0] == ep->phys[0]) { u16 value = data[2]; switch (data[1]) { case 0: /* Check for autonegotiation on or reset. */ ep->duplex_lock = (value & 0x9000) ? 0 : 1; if (ep->duplex_lock) ep->full_duplex = (value & 0x0100) ? 1 : 0; break; case 4: ep->advertising = value; break; } /* Perhaps check_duplex(dev), depending on chip semantics. */ } mdio_write(dev, data[0] & 0x1f, data[1] & 0x1f, data[2]); #if defined(PWRDWN_AFTER_IOCTL) if (! netif_running(dev)) { outl(0x0008, ioaddr + GENCTL); outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL); } #endif return 0; case SIOCGPARAMS: data32[0] = ep->msg_level; data32[1] = ep->multicast_filter_limit; data32[2] = ep->max_interrupt_work; data32[3] = ep->rx_copybreak; return 0; case SIOCSPARAMS: if (!capable(CAP_NET_ADMIN)) return -EPERM; ep->msg_level = data32[0]; ep->multicast_filter_limit = data32[1]; ep->max_interrupt_work = data32[2]; ep->rx_copybreak = data32[3]; return 0; default: return -EOPNOTSUPP; } } static int epic_pwr_event(void *dev_instance, int event) { struct net_device *dev = dev_instance; struct epic_private *ep = (struct epic_private *)dev->priv; long ioaddr = dev->base_addr; if (ep->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Handling power event %d.\n", dev->name, event); switch(event) { case DRV_SUSPEND: epic_pause(dev); /* Put the chip into low-power mode. */ outl(0x0008, ioaddr + GENCTL); break; case DRV_RESUME: epic_start(dev, 1); break; case DRV_DETACH: { struct net_device **devp, **next; if (dev->flags & IFF_UP) { dev_close(dev); dev->flags &= ~(IFF_UP|IFF_RUNNING); } unregister_netdev(dev); release_region(dev->base_addr, pci_id_tbl[ep->chip_id].io_size); #ifndef USE_IO_OPS iounmap((char *)dev->base_addr); #endif for (devp = &root_epic_dev; *devp; devp = next) { next = &((struct epic_private *)(*devp)->priv)->next_module; if (*devp == dev) { *devp = *next; break; } } if (ep->priv_addr) kfree(ep->priv_addr); kfree(dev); /*MOD_DEC_USE_COUNT;*/ break; } } return 0; } #ifdef CARDBUS #include static dev_node_t *epic_attach(dev_locator_t *loc) { struct net_device *dev; u16 dev_id; u32 pciaddr; u8 bus, devfn, irq; long ioaddr; if (loc->bus != LOC_PCI) return NULL; bus = loc->b.pci.bus; devfn = loc->b.pci.devfn; printk(KERN_DEBUG "epic_attach(bus %d, function %d)\n", bus, devfn); #ifdef USE_IO_OPS pcibios_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_0, &pciaddr); ioaddr = pciaddr & PCI_BASE_ADDRESS_IO_MASK; #else pcibios_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_1, &pciaddr); ioaddr = (long)ioremap(pciaddr & PCI_BASE_ADDRESS_MEM_MASK, pci_id_tbl[1].io_size); #endif pcibios_read_config_byte(bus, devfn, PCI_INTERRUPT_LINE, &irq); pcibios_read_config_word(bus, devfn, PCI_DEVICE_ID, &dev_id); if (ioaddr == 0 || irq == 0) { printk(KERN_ERR "The EPIC/C CardBus Ethernet interface at %d/%d was " "not assigned an %s.\n" KERN_ERR " It will not be activated.\n", bus, devfn, ioaddr == 0 ? "address" : "IRQ"); return NULL; } dev = epic_probe1(pci_find_slot(bus, devfn), NULL, ioaddr, irq, 1, 0); if (dev) { dev_node_t *node = kmalloc(sizeof(dev_node_t), GFP_KERNEL); strcpy(node->dev_name, dev->name); node->major = node->minor = 0; node->next = NULL; MOD_INC_USE_COUNT; return node; } return NULL; } static void epic_suspend(dev_node_t *node) { struct net_device **devp, **next; printk(KERN_INFO "epic_suspend(%s)\n", node->dev_name); for (devp = &root_epic_dev; *devp; devp = next) { next = &((struct epic_private *)(*devp)->priv)->next_module; if (strcmp((*devp)->name, node->dev_name) == 0) break; } if (*devp) { long ioaddr = (*devp)->base_addr; epic_pause(*devp); /* Put the chip into low-power mode. */ outl(0x0008, ioaddr + GENCTL); } } static void epic_resume(dev_node_t *node) { struct net_device **devp, **next; printk(KERN_INFO "epic_resume(%s)\n", node->dev_name); for (devp = &root_epic_dev; *devp; devp = next) { next = &((struct epic_private *)(*devp)->priv)->next_module; if (strcmp((*devp)->name, node->dev_name) == 0) break; } if (*devp) { epic_start(*devp, 1); } } static void epic_detach(dev_node_t *node) { struct net_device **devp, **next; printk(KERN_INFO "epic_detach(%s)\n", node->dev_name); for (devp = &root_epic_dev; *devp; devp = next) { next = &((struct epic_private *)(*devp)->priv)->next_module; if (strcmp((*devp)->name, node->dev_name) == 0) break; } if (*devp) { unregister_netdev(*devp); release_region((*devp)->base_addr, EPIC_TOTAL_SIZE); #ifndef USE_IO_OPS iounmap((char *)(*devp)->base_addr); #endif kfree(*devp); *devp = *next; kfree(node); MOD_DEC_USE_COUNT; } } struct driver_operations epic_ops = { "epic_cb", epic_attach, epic_suspend, epic_resume, epic_detach }; #endif /* Cardbus support */ #ifdef MODULE int init_module(void) { /* Emit version even if no cards detected. */ printk(KERN_INFO "%s", version); #ifdef CARDBUS register_driver(&epic_ops); return 0; #else return pci_drv_register(&epic_drv_id, NULL); #endif } void cleanup_module(void) { struct net_device *next_dev; #ifdef CARDBUS unregister_driver(&epic_ops); #else pci_drv_unregister(&epic_drv_id); #endif /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_epic_dev) { struct epic_private *ep = (struct epic_private *)root_epic_dev->priv; unregister_netdev(root_epic_dev); release_region(root_epic_dev->base_addr, pci_id_tbl[ep->chip_id].io_size); #ifndef USE_IO_OPS iounmap((char *)root_epic_dev->base_addr); #endif next_dev = ep->next_module; if (ep->priv_addr) kfree(ep->priv_addr); kfree(root_epic_dev); root_epic_dev = next_dev; } } #else int epic100_probe(struct net_device *dev) { int retval = pci_drv_register(&epic_drv_id, dev); if (retval >= 0) printk(KERN_INFO "%s", version); return retval; } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c epic100.c" * cardbus-compile-command: "gcc -DCARDBUS -DMODULE -Wall -Wstrict-prototypes -O6 -c epic100.c -o epic_cb.o -I/usr/src/pcmcia/include/" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */