/* eepro.c: Intel EtherExpress Pro/10 device driver for Linux. */ /* Written 1994-1998 by Bao C. Ha. Copyright (C) 1994-1998 by Bao C. Ha. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. The author may be reached at bao@hacom.net or Hacom, 2477 Wrightsboro Rd., Augusta, GA 30904. Things remaining to do: Better record keeping of errors. Eliminate transmit interrupt to reduce overhead. Implement "concurrent processing". I won't be doing it! Bugs: If you have a problem of not detecting the 82595 during a reboot (warm reset), disable the FLASH memory should fix it. This is a compatibility hardware problem. Versions: 0.10c Some cosmetic changes. (9/28/98, BCH) 0.10b Should work now with (some) Pro/10+. At least for me (and my two cards) it does. _No_ guarantee for function with non-Pro/10+ cards! (don't have any) (RMC, 9/11/96) 0.10 Added support for the Etherexpress Pro/10+. The IRQ map was changed significantly from the old pro/10. The new interrupt map was provided by Rainer M. Canavan (Canavan@Zeus.cs.bonn.edu). (BCH, 9/3/96) 0.09 Fixed a race condition in the transmit algorithm, which causes crashes under heavy load with fast pentium computers. The performance should also improve a bit. The size of RX buffer, and hence TX buffer, can also be changed via lilo or insmod. (BCH, 7/31/96) 0.08 Implement 32-bit I/O for the 82595TX and 82595FX based lan cards. Disable full-duplex mode if TPE is not used. (BCH, 4/8/96) 0.07a Fix a stat report which counts every packet as a heart-beat failure. (BCH, 6/3/95) 0.07 Modified to support all other 82595-based lan cards. The IRQ vector of the EtherExpress Pro will be set according to the value saved in the EEPROM. For other cards, I will do autoirq_request() to grab the next available interrupt vector. (BCH, 3/17/95) 0.06a,b Interim released. Minor changes in the comments and print out format. (BCH, 3/9/95 and 3/14/95) 0.06 First stable release that I am comfortable with. (BCH, 3/2/95) 0.05 Complete testing of multicast. (BCH, 2/23/95) 0.04 Adding multicast support. (BCH, 2/14/95) 0.03 First widely alpha release for public testing. (BCH, 2/14/95) */ static const char *version = "eepro.c: v0.10c 9/28/98 Bao C. Ha (bao@hacom.net)\n"; #include /* Sources: This driver wouldn't have been written without the availability of the Crynwr's Lan595 driver source code. It helps me to familiarize with the 82595 chipset while waiting for the Intel documentation. I also learned how to detect the 82595 using the packet driver's technique. This driver is written by cutting and pasting the skeleton.c driver provided by Donald Becker. I also borrowed the EEPROM routine from Donald Becker's 82586 driver. Datasheet for the Intel 82595 (including the TX and FX version). It provides just enough info that the casual reader might think that it documents the i82595. The User Manual for the 82595. It provides a lot of the missing information. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* First, a few definitions that the brave might change. */ /* A zero-terminated list of I/O addresses to be probed. */ static unsigned int eepro_portlist[] = { 0x300, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360, 0}; /* use 0 for production, 1 for verification, >2 for debug */ #ifndef NET_DEBUG #define NET_DEBUG 1 #endif static unsigned int net_debug = NET_DEBUG; /* The number of low I/O ports used by the ethercard. */ #define EEPRO_IO_EXTENT 16 /* Different 82595 chips */ #define LAN595 0 #define LAN595TX 1 #define LAN595FX 2 /* Information that need to be kept for each board. */ struct eepro_local { struct enet_statistics stats; unsigned rx_start; unsigned tx_start; /* start of the transmit chain */ int tx_last; /* pointer to last packet in the transmit chain */ unsigned tx_end; /* end of the transmit chain (plus 1) */ int eepro; /* 1 for the EtherExpress Pro/10, 2 for the EtherExpress Pro/10+, 0 for other 82595-based lan cards. */ int version; /* a flag to indicate if this is a TX or FX version of the 82595 chip. */ int stepping; }; /* The station (ethernet) address prefix, used for IDing the board. */ #define SA_ADDR0 0x00 /* Etherexpress Pro/10 */ #define SA_ADDR1 0xaa #define SA_ADDR2 0x00 #define SA2_ADDR0 0x00 /* Etherexpress Pro/10+ */ #define SA2_ADDR1 0xa0 #define SA2_ADDR2 0xc9 #define SA3_ADDR0 0x00 /* more Etherexpress Pro/10+ */ #define SA3_ADDR1 0xaa #define SA3_ADDR2 0x00 #define SA3_ADDR3 0xc9 /* Index to functions, as function prototypes. */ extern int eepro_probe(struct device *dev); static int eepro_probe1(struct device *dev, short ioaddr); static int eepro_open(struct device *dev); static int eepro_send_packet(struct sk_buff *skb, struct device *dev); static void eepro_interrupt(int irq, void *dev_id, struct pt_regs *regs); static void eepro_rx(struct device *dev); static void eepro_transmit_interrupt(struct device *dev); static int eepro_close(struct device *dev); static struct enet_statistics *eepro_get_stats(struct device *dev); static void set_multicast_list(struct device *dev); static int read_eeprom(int ioaddr, int location); static void hardware_send_packet(struct device *dev, void *buf, short length); static int eepro_grab_irq(struct device *dev); /* Details of the i82595. You will need either the datasheet or the user manual to understand what is going on here. The 82595 is very different from the 82586, 82593. The receive algorithm in eepro_rx() is just an implementation of the RCV ring structure that the Intel 82595 imposes at the hardware level. The receive buffer is set at 24K, and the transmit buffer is 8K. I am assuming that the total buffer memory is 32K, which is true for the Intel EtherExpress Pro/10. If it is less than that on a generic card, the driver will be broken. The transmit algorithm in the hardware_send_packet() is similar to the one in the eepro_rx(). The transmit buffer is a ring linked list. I just queue the next available packet to the end of the list. In my system, the 82595 is so fast that the list seems to always contain a single packet. In other systems with faster computers and more congested network traffics, the ring linked list should improve performance by allowing up to 8K worth of packets to be queued. The sizes of the receive and transmit buffers can now be changed via lilo or insmod. Lilo uses the appended line "ether=io,irq,debug,rx-buffer,eth0" where rx-buffer is in KB unit. Modules uses the parameter mem which is also in KB unit, for example "insmod io=io-address irq=0 mem=rx-buffer." The receive buffer has to be more than 3K or less than 29K. Otherwise, it is reset to the default of 24K, and, hence, 8K for the trasnmit buffer (transmit-buffer = 32K - receive-buffer). */ #define RAM_SIZE 0x8000 #define RCV_HEADER 8 #define RCV_RAM 0x6000 /* 24KB default for RCV buffer */ #define RCV_LOWER_LIMIT 0x00 /* 0x0000 */ /* #define RCV_UPPER_LIMIT ((RCV_RAM - 2) >> 8) */ /* 0x5ffe */ #define RCV_UPPER_LIMIT (((rcv_ram) - 2) >> 8) /* #define XMT_RAM (RAM_SIZE - RCV_RAM) */ /* 8KB for XMT buffer */ #define XMT_RAM (RAM_SIZE - (rcv_ram)) /* 8KB for XMT buffer */ /* #define XMT_LOWER_LIMIT (RCV_RAM >> 8) */ /* 0x6000 */ #define XMT_LOWER_LIMIT ((rcv_ram) >> 8) #define XMT_UPPER_LIMIT ((RAM_SIZE - 2) >> 8) /* 0x7ffe */ #define XMT_HEADER 8 #define RCV_DONE 0x0008 #define RX_OK 0x2000 #define RX_ERROR 0x0d81 #define TX_DONE_BIT 0x0080 #define CHAIN_BIT 0x8000 #define XMT_STATUS 0x02 #define XMT_CHAIN 0x04 #define XMT_COUNT 0x06 #define BANK0_SELECT 0x00 #define BANK1_SELECT 0x40 #define BANK2_SELECT 0x80 /* Bank 0 registers */ #define COMMAND_REG 0x00 /* Register 0 */ #define MC_SETUP 0x03 #define XMT_CMD 0x04 #define DIAGNOSE_CMD 0x07 #define RCV_ENABLE_CMD 0x08 #define RCV_DISABLE_CMD 0x0a #define STOP_RCV_CMD 0x0b #define RESET_CMD 0x0e #define POWER_DOWN_CMD 0x18 #define RESUME_XMT_CMD 0x1c #define SEL_RESET_CMD 0x1e #define STATUS_REG 0x01 /* Register 1 */ #define RX_INT 0x02 #define TX_INT 0x04 #define EXEC_STATUS 0x30 #define ID_REG 0x02 /* Register 2 */ #define R_ROBIN_BITS 0xc0 /* round robin counter */ #define ID_REG_MASK 0x2c #define ID_REG_SIG 0x24 #define AUTO_ENABLE 0x10 #define INT_MASK_REG 0x03 /* Register 3 */ #define RX_STOP_MASK 0x01 #define RX_MASK 0x02 #define TX_MASK 0x04 #define EXEC_MASK 0x08 #define ALL_MASK 0x0f #define IO_32_BIT 0x10 #define RCV_BAR 0x04 /* The following are word (16-bit) registers */ #define RCV_STOP 0x06 #define XMT_BAR 0x0a #define HOST_ADDRESS_REG 0x0c #define IO_PORT 0x0e #define IO_PORT_32_BIT 0x0c /* Bank 1 registers */ #define REG1 0x01 #define WORD_WIDTH 0x02 #define INT_ENABLE 0x80 #define INT_NO_REG 0x02 #define RCV_LOWER_LIMIT_REG 0x08 #define RCV_UPPER_LIMIT_REG 0x09 #define XMT_LOWER_LIMIT_REG 0x0a #define XMT_UPPER_LIMIT_REG 0x0b /* Bank 2 registers */ #define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */ #define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */ #define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */ #define REG2 0x02 #define PRMSC_Mode 0x01 #define Multi_IA 0x20 #define REG3 0x03 #define TPE_BIT 0x04 #define BNC_BIT 0x20 #define REG13 0x0d #define FDX 0x00 #define A_N_ENABLE 0x02 #define I_ADD_REG0 0x04 #define I_ADD_REG1 0x05 #define I_ADD_REG2 0x06 #define I_ADD_REG3 0x07 #define I_ADD_REG4 0x08 #define I_ADD_REG5 0x09 #define EEPROM_REG 0x0a #define EESK 0x01 #define EECS 0x02 #define EEDI 0x04 #define EEDO 0x08 /* Check for a network adaptor of this type, and return '0' if one exists. If dev->base_addr == 0, probe all likely locations. If dev->base_addr == 1, always return failure. If dev->base_addr == 2, allocate space for the device and return success (detachable devices only). */ #ifdef HAVE_DEVLIST /* Support for a alternate probe manager, which will eliminate the boilerplate below. */ struct netdev_entry netcard_drv = {"eepro", eepro_probe1, EEPRO_IO_EXTENT, eepro_portlist}; #else int eepro_probe(struct device *dev) { int i; int base_addr = dev ? dev->base_addr : 0; if (base_addr > 0x1ff) /* Check a single specified location. */ return eepro_probe1(dev, base_addr); else if (base_addr != 0) /* Don't probe at all. */ return ENXIO; for (i = 0; eepro_portlist[i]; i++) { int ioaddr = eepro_portlist[i]; if (check_region(ioaddr, EEPRO_IO_EXTENT)) continue; if (eepro_probe1(dev, ioaddr) == 0) return 0; } return ENODEV; } #endif /* This is the real probe routine. Linux has a history of friendly device probes on the ISA bus. A good device probes avoids doing writes, and verifies that the correct device exists and functions. */ int eepro_probe1(struct device *dev, short ioaddr) { unsigned short station_addr[6], id, counter; int i; int eepro; const char *ifmap[] = {"AUI", "10Base2", "10BaseT"}; enum iftype { AUI=0, BNC=1, TPE=2 }; /* Now, we are going to check for the signature of the ID_REG (register 2 of bank 0) */ if (((id=inb(ioaddr + ID_REG)) & ID_REG_MASK) == ID_REG_SIG) { /* We seem to have the 82595 signature, let's play with its counter (last 2 bits of register 2 of bank 0) to be sure. */ counter = (id & R_ROBIN_BITS); if (((id=inb(ioaddr+ID_REG)) & R_ROBIN_BITS) == (counter + 0x40)) { /* Yes, the 82595 has been found */ /* Now, get the ethernet hardware address from the EEPROM */ station_addr[0] = read_eeprom(ioaddr, 2); station_addr[1] = read_eeprom(ioaddr, 3); station_addr[2] = read_eeprom(ioaddr, 4); /* Check the station address for the manufacturer's code */ if ((station_addr[2] == 0x00aa) && (station_addr[1]!= 0x00c9)) { eepro = 1; printk("%s: Intel EtherExpress Pro/10 ISA at %#x,", dev->name, ioaddr); } else if ( (station_addr[2] == 0x00a0) || ((station_addr[2] == 0x00aa) && (station_addr[1] == 0x00c9) )) { eepro = 2; printk("%s: Intel EtherExpress Pro/10+ ISA\n at %#x,", dev->name, ioaddr); } else { eepro = 0; printk("%s: Intel 82595-based lan card at %#x,", dev->name, ioaddr); } /* Fill in the 'dev' fields. */ dev->base_addr = ioaddr; for (i=0; i < 6; i++) { dev->dev_addr[i] = ((unsigned char *) station_addr)[5-i]; printk("%c%02x", i ? ':' : ' ', dev->dev_addr[i]); } if ((dev->mem_end & 0x3f) < 3 || /* RX buffer must be more than 3K */ (dev->mem_end & 0x3f) > 29) /* and less than 29K */ dev->mem_end = RCV_RAM; /* or it will be set to 24K */ else dev->mem_end = 1024*dev->mem_end; /* Maybe I should shift << 10 */ /* From now on, dev->mem_end contains the actual size of rx buffer */ if (net_debug > 3) printk(", %dK RCV buffer", (int)(dev->mem_end)/1024); outb(BANK2_SELECT, ioaddr); /* be CAREFUL, BANK 2 now */ id = inb(ioaddr + REG3); if (id & TPE_BIT) dev->if_port = TPE; else dev->if_port = BNC; if (net_debug>3) printk("id: %x\n", id); if (dev->irq < 2 && eepro) { i = read_eeprom(ioaddr, 1); if (eepro == 1) switch (i & 0x07) { case 0: dev->irq = 9; break; case 1: dev->irq = 3; break; case 2: dev->irq = 5; break; case 3: dev->irq = 10; break; case 4: dev->irq = 11; break; default: /* should never get here !!!!! */ printk(" illegal interrupt vector stored in EEPROM.\n"); return ENODEV; } else switch (i & 0x07) { case 0: dev->irq = 3; break; case 1: dev->irq = 4; break; case 2: dev->irq = 5; break; case 3: dev->irq = 7; break; case 4: dev->irq = 9; break; case 5: dev->irq = 10; break; case 6: dev->irq = 11; break; case 7: dev->irq = 12; break; } } else if (dev->irq == 2) dev->irq = 9; if (dev->irq > 2) { printk(", IRQ %d, %s.\n", dev->irq, ifmap[dev->if_port]); if (request_irq(dev->irq, &eepro_interrupt, 0, "eepro", NULL)) { printk("%s: unable to get IRQ %d.\n", dev->name, dev->irq); return -EAGAIN; } } else printk(", %s.\n", ifmap[dev->if_port]); if ((dev->mem_start & 0xf) > 0) /* I don't know if this is */ net_debug = dev->mem_start & 7; /* still useful or not */ if (net_debug > 3) { i = read_eeprom(ioaddr, 5); if (i & 0x2000) /* bit 13 of EEPROM word 5 */ printk("%s: Concurrent Processing is enabled but not used!\n", dev->name); } if (net_debug) printk("%s", version); /* Grab the region so we can find another board if autoIRQ fails. */ request_region(ioaddr, EEPRO_IO_EXTENT, "eepro"); /* Initialize the device structure */ dev->priv = kmalloc(sizeof(struct eepro_local), GFP_KERNEL); if (dev->priv == NULL) return -ENOMEM; memset(dev->priv, 0, sizeof(struct eepro_local)); dev->open = eepro_open; dev->stop = eepro_close; dev->hard_start_xmit = eepro_send_packet; dev->get_stats = eepro_get_stats; dev->set_multicast_list = &set_multicast_list; /* Fill in the fields of the device structure with ethernet generic values */ ether_setup(dev); outb(RESET_CMD, ioaddr); /* RESET the 82595 */ return 0; } else return ENODEV; } else if (net_debug > 3) printk ("EtherExpress Pro probed failed!\n"); return ENODEV; } /* Open/initialize the board. This is called (in the current kernel) sometime after booting when the 'ifconfig' program is run. This routine should set everything up anew at each open, even registers that "should" only need to be set once at boot, so that there is non-reboot way to recover if something goes wrong. */ static char irqrmap[] = {-1,-1,0,1,-1,2,-1,-1,-1,0,3,4,-1,-1,-1,-1}; static char irqrmap2[] = {-1,-1,4,0,1,2,-1,3,-1,4,5,6,7,-1,-1,-1}; static int eepro_grab_irq(struct device *dev) { int irqlist[] = { 3, 4, 5, 7, 9, 10, 11, 12 }; int *irqp = irqlist, temp_reg, ioaddr = dev->base_addr; outb(BANK1_SELECT, ioaddr); /* be CAREFUL, BANK 1 now */ /* Enable the interrupt line. */ temp_reg = inb(ioaddr + REG1); outb(temp_reg | INT_ENABLE, ioaddr + REG1); outb(BANK0_SELECT, ioaddr); /* be CAREFUL, BANK 0 now */ /* clear all interrupts */ outb(ALL_MASK, ioaddr + STATUS_REG); /* Let EXEC event to interrupt */ outb(ALL_MASK & ~(EXEC_MASK), ioaddr + INT_MASK_REG); do { outb(BANK1_SELECT, ioaddr); /* be CAREFUL, BANK 1 now */ temp_reg = inb(ioaddr + INT_NO_REG); outb((temp_reg & 0xf8) | irqrmap[*irqp], ioaddr + INT_NO_REG); outb(BANK0_SELECT, ioaddr); /* Switch back to Bank 0 */ if (request_irq (*irqp, NULL, 0, "bogus", NULL) != EBUSY) { /* Twinkle the interrupt, and check if it's seen */ autoirq_setup(0); outb(DIAGNOSE_CMD, ioaddr); /* RESET the 82595 */ if (*irqp == autoirq_report(2) && /* It's a good IRQ line */ (request_irq(dev->irq = *irqp, &eepro_interrupt, 0, "eepro", NULL) == 0)) break; /* clear all interrupts */ outb(ALL_MASK, ioaddr + STATUS_REG); } } while (*++irqp); outb(BANK1_SELECT, ioaddr); /* Switch back to Bank 1 */ /* Disable the physical interrupt line. */ temp_reg = inb(ioaddr + REG1); outb(temp_reg & 0x7f, ioaddr + REG1); outb(BANK0_SELECT, ioaddr); /* Switch back to Bank 0 */ /* Mask all the interrupts. */ outb(ALL_MASK, ioaddr + INT_MASK_REG); /* clear all interrupts */ outb(ALL_MASK, ioaddr + STATUS_REG); return dev->irq; } static int eepro_open(struct device *dev) { unsigned short temp_reg, old8, old9; int i, ioaddr = dev->base_addr, rcv_ram = dev->mem_end; struct eepro_local *lp = (struct eepro_local *)dev->priv; if (net_debug > 3) printk("eepro: entering eepro_open routine.\n"); if ((dev->dev_addr[0] == SA_ADDR0 && dev->dev_addr[1] == SA_ADDR1 && dev->dev_addr[2] == SA_ADDR2)&& (dev->dev_addr[3] != SA3_ADDR3)) { lp->eepro = 1; if (net_debug > 3) printk("p->eepro = 1;\n"); } /* Yes, an Intel EtherExpress Pro/10 */ else if ((dev->dev_addr[0] == SA2_ADDR0 && dev->dev_addr[1] == SA2_ADDR1 && dev->dev_addr[2] == SA2_ADDR2)|| (dev->dev_addr[0] == SA3_ADDR0 && dev->dev_addr[1] == SA3_ADDR1 && dev->dev_addr[2] == SA3_ADDR2 && dev->dev_addr[3] == SA3_ADDR3)) { lp->eepro = 2; /* Yes, an Intel EtherExpress Pro/10+ */ if (net_debug > 3) printk("p->eepro = 2;\n"); } else lp->eepro = 0; /* No, it is a generic 82585 lan card */ /* Get the interrupt vector for the 82595 */ if (dev->irq < 2 && eepro_grab_irq(dev) == 0) { printk("%s: unable to get IRQ %d.\n", dev->name, dev->irq); return -EAGAIN; } if (irq2dev_map[dev->irq] != 0 || (irq2dev_map[dev->irq] = dev) == 0) return -EAGAIN; /* Initialize the 82595. */ outb(BANK2_SELECT, ioaddr); /* be CAREFUL, BANK 2 now */ temp_reg = inb(ioaddr + EEPROM_REG); lp->stepping = temp_reg >> 5; /* Get the stepping number of the 595 */ if (net_debug > 3) printk("The stepping of the 82595 is %d\n", lp->stepping); if (temp_reg & 0x10) /* Check the TurnOff Enable bit */ outb(temp_reg & 0xef, ioaddr + EEPROM_REG); for (i=0; i < 6; i++) outb(dev->dev_addr[i] , ioaddr + I_ADD_REG0 + i); temp_reg = inb(ioaddr + REG1); /* Setup Transmit Chaining */ outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop /* and discard bad RCV frames */ | RCV_Discard_BadFrame, ioaddr + REG1); temp_reg = inb(ioaddr + REG2); /* Match broadcast */ outb(temp_reg | 0x14, ioaddr + REG2); temp_reg = inb(ioaddr + REG3); outb(temp_reg & 0x3f, ioaddr + REG3); /* clear test mode */ /* Set the receiving mode */ outb(BANK1_SELECT, ioaddr); /* be CAREFUL, BANK 1 now */ /* Set the interrupt vector */ temp_reg = inb(ioaddr + INT_NO_REG); if (lp->eepro == 2) outb((temp_reg & 0xf8) | irqrmap2[dev->irq], ioaddr + INT_NO_REG); else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG); temp_reg = inb(ioaddr + INT_NO_REG); if (lp->eepro == 2) outb((temp_reg & 0xf0) | irqrmap2[dev->irq] | 0x08,ioaddr+INT_NO_REG); else outb((temp_reg & 0xf8) | irqrmap[dev->irq], ioaddr + INT_NO_REG); if (net_debug > 3) printk("eepro_open: content of INT Reg is %x\n", temp_reg); /* Initialize the RCV and XMT upper and lower limits */ outb(RCV_LOWER_LIMIT, ioaddr + RCV_LOWER_LIMIT_REG); outb(RCV_UPPER_LIMIT, ioaddr + RCV_UPPER_LIMIT_REG); outb(XMT_LOWER_LIMIT, ioaddr + XMT_LOWER_LIMIT_REG); outb(XMT_UPPER_LIMIT, ioaddr + XMT_UPPER_LIMIT_REG); /* Enable the interrupt line. */ temp_reg = inb(ioaddr + REG1); outb(temp_reg | INT_ENABLE, ioaddr + REG1); outb(BANK0_SELECT, ioaddr); /* Switch back to Bank 0 */ /* Let RX and TX events to interrupt */ outb(ALL_MASK & ~(RX_MASK | TX_MASK), ioaddr + INT_MASK_REG); /* clear all interrupts */ outb(ALL_MASK, ioaddr + STATUS_REG); /* Initialize RCV */ outw(RCV_LOWER_LIMIT << 8, ioaddr + RCV_BAR); lp->rx_start = (RCV_LOWER_LIMIT << 8) ; outw((RCV_UPPER_LIMIT << 8) | 0xfe, ioaddr + RCV_STOP); /* Initialize XMT */ outw(XMT_LOWER_LIMIT << 8, ioaddr + XMT_BAR); /* Check for the i82595TX and i82595FX */ old8 = inb(ioaddr + 8); outb(~old8, ioaddr + 8); if ((temp_reg = inb(ioaddr + 8)) == old8) { if (net_debug > 3) printk("i82595 detected!\n"); lp->version = LAN595; } else { lp->version = LAN595TX; outb(old8, ioaddr + 8); old9 = inb(ioaddr + 9); outb(~old9, ioaddr + 9); if (((temp_reg = inb(ioaddr + 9)) == ( (~old9)&0xff) )) { enum iftype { AUI=0, BNC=1, TPE=2 }; if (net_debug > 3) { printk("temp_reg: %#x ~old9: %#x\n",temp_reg, ~old9); printk("i82595FX detected!\n"); } lp->version = LAN595FX; outb(old9, ioaddr + 9); if (dev->if_port != TPE) { /* Hopefully, this will fix the problem of using Pentiums and pro/10 w/ BNC. */ outb(BANK2_SELECT, ioaddr); /* be CAREFUL, BANK 2 now */ temp_reg = inb(ioaddr + REG13); /* disable the full duplex mode since it is not applicable with the 10Base2 cable. */ outb(temp_reg & ~(FDX | A_N_ENABLE), REG13); outb(BANK0_SELECT, ioaddr); /* be CAREFUL, BANK 0 now */ } } else if (net_debug > 3) { printk("temp_reg: %#x ~old9: %#x\n",temp_reg,((~old9)&0xff)); printk("i82595TX detected!\n"); } } outb(SEL_RESET_CMD, ioaddr); /* We are supposed to wait for 2 us after a SEL_RESET */ SLOW_DOWN_IO; SLOW_DOWN_IO; lp->tx_start = lp->tx_end = XMT_LOWER_LIMIT << 8; /* or = RCV_RAM */ lp->tx_last = 0; dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; if (net_debug > 3) printk("eepro: exiting eepro_open routine.\n"); outb(RCV_ENABLE_CMD, ioaddr); MOD_INC_USE_COUNT; return 0; } static int eepro_send_packet(struct sk_buff *skb, struct device *dev) { struct eepro_local *lp = (struct eepro_local *)dev->priv; int ioaddr = dev->base_addr; int rcv_ram = dev->mem_end; if (net_debug > 5) printk("eepro: entering eepro_send_packet routine.\n"); if (dev->tbusy) { /* If we get here, some higher level has decided we are broken. There should really be a "kick me" function call instead. */ int tickssofar = jiffies - dev->trans_start; if (tickssofar < 40) return 1; if (net_debug > 1) printk("%s: transmit timed out, %s?\n", dev->name, "network cable problem"); lp->stats.tx_errors++; /* Try to restart the adaptor. */ outb(SEL_RESET_CMD, ioaddr); /* We are supposed to wait for 2 us after a SEL_RESET */ SLOW_DOWN_IO; SLOW_DOWN_IO; /* Do I also need to flush the transmit buffers here? YES? */ lp->tx_start = lp->tx_end = rcv_ram; lp->tx_last = 0; dev->tbusy=0; dev->trans_start = jiffies; outb(RCV_ENABLE_CMD, ioaddr); } /* If some higher layer thinks we've missed an tx-done interrupt we are passed NULL. Caution: dev_tint() handles the cli()/sti() itself. */ if (skb == NULL) { dev_tint(dev); return 0; } /* Block a timer-based transmit from overlapping. */ if (set_bit(0, (void*)&dev->tbusy) != 0) printk("%s: Transmitter access conflict.\n", dev->name); else { short length = ETH_ZLEN < skb->len ? skb->len : ETH_ZLEN; unsigned char *buf = skb->data; hardware_send_packet(dev, buf, length); dev->trans_start = jiffies; } dev_kfree_skb (skb, FREE_WRITE); /* You might need to clean up and record Tx statistics here. */ /* lp->stats.tx_aborted_errors++; */ if (net_debug > 5) printk("eepro: exiting eepro_send_packet routine.\n"); return 0; } /* The typical workload of the driver: Handle the network interface interrupts. */ static void eepro_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct device *dev = (struct device *)(irq2dev_map[irq]); int ioaddr, status, boguscount = 20; if (net_debug > 5) printk("eepro: entering eepro_interrupt routine.\n"); if (dev == NULL) { printk ("eepro_interrupt(): irq %d for unknown device.\n", irq); return; } dev->interrupt = 1; ioaddr = dev->base_addr; do { status = inb(ioaddr + STATUS_REG); if (status & RX_INT) { if (net_debug > 4) printk("eepro: packet received interrupt.\n"); /* Acknowledge the RX_INT */ outb(RX_INT, ioaddr + STATUS_REG); /* Get the received packets */ eepro_rx(dev); } else if (status & TX_INT) { if (net_debug > 4) printk("eepro: packet transmit interrupt.\n"); /* Acknowledge the TX_INT */ outb(TX_INT, ioaddr + STATUS_REG); /* Process the status of transmitted packets */ eepro_transmit_interrupt(dev); } } while ((boguscount-- > 0) && (status & 0x06)); dev->interrupt = 0; if (net_debug > 5) printk("eepro: exiting eepro_interrupt routine.\n"); return; } static int eepro_close(struct device *dev) { struct eepro_local *lp = (struct eepro_local *)dev->priv; int ioaddr = dev->base_addr; int rcv_ram = dev->mem_end; short temp_reg; dev->tbusy = 1; dev->start = 0; outb(BANK1_SELECT, ioaddr); /* Switch back to Bank 1 */ /* Disable the physical interrupt line. */ temp_reg = inb(ioaddr + REG1); outb(temp_reg & 0x7f, ioaddr + REG1); outb(BANK0_SELECT, ioaddr); /* Switch back to Bank 0 */ /* Flush the Tx and disable Rx. */ outb(STOP_RCV_CMD, ioaddr); lp->tx_start = lp->tx_end = rcv_ram ; lp->tx_last = 0; /* Mask all the interrupts. */ outb(ALL_MASK, ioaddr + INT_MASK_REG); /* clear all interrupts */ outb(ALL_MASK, ioaddr + STATUS_REG); /* Reset the 82595 */ outb(RESET_CMD, ioaddr); /* release the interrupt */ free_irq(dev->irq, NULL); irq2dev_map[dev->irq] = 0; /* Update the statistics here. What statistics? */ /* We are supposed to wait for 200 us after a RESET */ SLOW_DOWN_IO; SLOW_DOWN_IO; /* May not be enough? */ MOD_DEC_USE_COUNT; return 0; } /* Get the current statistics. This may be called with the card open or closed. */ static struct enet_statistics * eepro_get_stats(struct device *dev) { struct eepro_local *lp = (struct eepro_local *)dev->priv; return &lp->stats; } /* Set or clear the multicast filter for this adaptor. */ static void set_multicast_list(struct device *dev) { struct eepro_local *lp = (struct eepro_local *)dev->priv; short ioaddr = dev->base_addr; unsigned short mode; struct dev_mc_list *dmi=dev->mc_list; if (dev->flags&(IFF_ALLMULTI|IFF_PROMISC) || dev->mc_count > 63) { /* * We must make the kernel realise we had to move * into promisc mode or we start all out war on * the cable. If it was a promisc request the * flag is already set. If not we assert it. */ dev->flags|=IFF_PROMISC; outb(BANK2_SELECT, ioaddr); /* be CAREFUL, BANK 2 now */ mode = inb(ioaddr + REG2); outb(mode | PRMSC_Mode, ioaddr + REG2); mode = inb(ioaddr + REG3); outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */ outb(BANK0_SELECT, ioaddr); /* Return to BANK 0 now */ printk("%s: promiscuous mode enabled.\n", dev->name); } else if (dev->mc_count==0 ) { outb(BANK2_SELECT, ioaddr); /* be CAREFUL, BANK 2 now */ mode = inb(ioaddr + REG2); outb(mode & 0xd6, ioaddr + REG2); /* Turn off Multi-IA and PRMSC_Mode bits */ mode = inb(ioaddr + REG3); outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */ outb(BANK0_SELECT, ioaddr); /* Return to BANK 0 now */ } else { unsigned short status, *eaddrs; int i, boguscount = 0; /* Disable RX and TX interrupts. Necessary to avoid corruption of the HOST_ADDRESS_REG by interrupt service routines. */ outb(ALL_MASK, ioaddr + INT_MASK_REG); outb(BANK2_SELECT, ioaddr); /* be CAREFUL, BANK 2 now */ mode = inb(ioaddr + REG2); outb(mode | Multi_IA, ioaddr + REG2); mode = inb(ioaddr + REG3); outb(mode, ioaddr + REG3); /* writing reg. 3 to complete the update */ outb(BANK0_SELECT, ioaddr); /* Return to BANK 0 now */ outw(lp->tx_end, ioaddr + HOST_ADDRESS_REG); outw(MC_SETUP, ioaddr + IO_PORT); outw(0, ioaddr + IO_PORT); outw(0, ioaddr + IO_PORT); outw(6*(dev->mc_count + 1), ioaddr + IO_PORT); for (i = 0; i < dev->mc_count; i++) { eaddrs=(unsigned short *)dmi->dmi_addr; dmi=dmi->next; outw(*eaddrs++, ioaddr + IO_PORT); outw(*eaddrs++, ioaddr + IO_PORT); outw(*eaddrs++, ioaddr + IO_PORT); } eaddrs = (unsigned short *) dev->dev_addr; outw(eaddrs[0], ioaddr + IO_PORT); outw(eaddrs[1], ioaddr + IO_PORT); outw(eaddrs[2], ioaddr + IO_PORT); outw(lp->tx_end, ioaddr + XMT_BAR); outb(MC_SETUP, ioaddr); /* Update the transmit queue */ i = lp->tx_end + XMT_HEADER + 6*(dev->mc_count + 1); if (lp->tx_start != lp->tx_end) { /* update the next address and the chain bit in the last packet */ outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG); outw(i, ioaddr + IO_PORT); outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG); status = inw(ioaddr + IO_PORT); outw(status | CHAIN_BIT, ioaddr + IO_PORT); lp->tx_end = i ; } else { lp->tx_start = lp->tx_end = i ; } /* Acknowledge that the MC setup is done */ do { /* We should be doing this in the eepro_interrupt()! */ SLOW_DOWN_IO; SLOW_DOWN_IO; if (inb(ioaddr + STATUS_REG) & 0x08) { i = inb(ioaddr); outb(0x08, ioaddr + STATUS_REG); if (i & 0x20) { /* command ABORTed */ printk("%s: multicast setup failed.\n", dev->name); break; } else if ((i & 0x0f) == 0x03) { /* MC-Done */ printk("%s: set Rx mode to %d addresses.\n", dev->name, dev->mc_count); break; } } } while (++boguscount < 100); /* Re-enable RX and TX interrupts */ outb(ALL_MASK & ~(RX_MASK | TX_MASK), ioaddr + INT_MASK_REG); } outb(RCV_ENABLE_CMD, ioaddr); } /* The horrible routine to read a word from the serial EEPROM. */ /* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */ /* The delay between EEPROM clock transitions. */ #define eeprom_delay() { int _i = 40; while (--_i > 0) { __SLOW_DOWN_IO; }} #define EE_READ_CMD (6 << 6) int read_eeprom(int ioaddr, int location) { int i; unsigned short retval = 0; short ee_addr = ioaddr + EEPROM_REG; int read_cmd = location | EE_READ_CMD; short ctrl_val = EECS ; outb(BANK2_SELECT, ioaddr); outb(ctrl_val, ee_addr); /* Shift the read command bits out. */ for (i = 8; i >= 0; i--) { short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI : ctrl_val; outb(outval, ee_addr); outb(outval | EESK, ee_addr); /* EEPROM clock tick. */ eeprom_delay(); outb(outval, ee_addr); /* Finish EEPROM a clock tick. */ eeprom_delay(); } outb(ctrl_val, ee_addr); for (i = 16; i > 0; i--) { outb(ctrl_val | EESK, ee_addr); eeprom_delay(); retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0); outb(ctrl_val, ee_addr); eeprom_delay(); } /* Terminate the EEPROM access. */ ctrl_val &= ~EECS; outb(ctrl_val | EESK, ee_addr); eeprom_delay(); outb(ctrl_val, ee_addr); eeprom_delay(); outb(BANK0_SELECT, ioaddr); return retval; } static void hardware_send_packet(struct device *dev, void *buf, short length) { struct eepro_local *lp = (struct eepro_local *)dev->priv; short ioaddr = dev->base_addr; int rcv_ram = dev->mem_end; unsigned status, tx_available, last, end, boguscount = 100; if (net_debug > 5) printk("eepro: entering hardware_send_packet routine.\n"); while (boguscount-- > 0) { /* Disable RX and TX interrupts. Necessary to avoid corruption of the HOST_ADDRESS_REG by interrupt service routines. */ outb(ALL_MASK, ioaddr + INT_MASK_REG); if (dev->interrupt == 1) { /* Enable RX and TX interrupts */ outb(ALL_MASK & ~(RX_MASK | TX_MASK), ioaddr + INT_MASK_REG); continue; } /* determine how much of the transmit buffer space is available */ if (lp->tx_end > lp->tx_start) tx_available = XMT_RAM - (lp->tx_end - lp->tx_start); else if (lp->tx_end < lp->tx_start) tx_available = lp->tx_start - lp->tx_end; else tx_available = XMT_RAM; if (((((length + 3) >> 1) << 1) + 2*XMT_HEADER) >= tx_available) /* No space available ??? */ { eepro_transmit_interrupt(dev); /* Clean up the transmiting queue */ /* Enable RX and TX interrupts */ outb(ALL_MASK & ~(RX_MASK | TX_MASK), ioaddr + INT_MASK_REG); continue; } last = lp->tx_end; end = last + (((length + 3) >> 1) << 1) + XMT_HEADER; if (end >= RAM_SIZE) { /* the transmit buffer is wrapped around */ if ((RAM_SIZE - last) <= XMT_HEADER) { /* Arrrr!!!, must keep the xmt header together, several days were lost to chase this one down. */ last = rcv_ram; end = last + (((length + 3) >> 1) << 1) + XMT_HEADER; } else end = rcv_ram + (end - RAM_SIZE); } outw(last, ioaddr + HOST_ADDRESS_REG); outw(XMT_CMD, ioaddr + IO_PORT); outw(0, ioaddr + IO_PORT); outw(end, ioaddr + IO_PORT); outw(length, ioaddr + IO_PORT); if (lp->version == LAN595) outsw(ioaddr + IO_PORT, buf, (length + 3) >> 1); else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */ unsigned short temp = inb(ioaddr + INT_MASK_REG); outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG); outsl(ioaddr + IO_PORT_32_BIT, buf, (length + 3) >> 2); outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG); } /* A dummy read to flush the DRAM write pipeline */ status = inw(ioaddr + IO_PORT); if (lp->tx_start == lp->tx_end) { outw(last, ioaddr + XMT_BAR); outb(XMT_CMD, ioaddr); lp->tx_start = last; /* I don't like to change tx_start here */ } else { /* update the next address and the chain bit in the last packet */ if (lp->tx_end != last) { outw(lp->tx_last + XMT_CHAIN, ioaddr + HOST_ADDRESS_REG); outw(last, ioaddr + IO_PORT); } outw(lp->tx_last + XMT_COUNT, ioaddr + HOST_ADDRESS_REG); status = inw(ioaddr + IO_PORT); outw(status | CHAIN_BIT, ioaddr + IO_PORT); /* Continue the transmit command */ outb(RESUME_XMT_CMD, ioaddr); } lp->tx_last = last; lp->tx_end = end; /* Enable RX and TX interrupts */ outb(ALL_MASK & ~(RX_MASK | TX_MASK), ioaddr + INT_MASK_REG); if (dev->tbusy) { dev->tbusy = 0; } if (net_debug > 5) printk("eepro: exiting hardware_send_packet routine.\n"); return; } dev->tbusy = 1; if (net_debug > 5) printk("eepro: exiting hardware_send_packet routine.\n"); } static void eepro_rx(struct device *dev) { struct eepro_local *lp = (struct eepro_local *)dev->priv; short ioaddr = dev->base_addr, rcv_ram = dev->mem_end; short boguscount = 20; short rcv_car = lp->rx_start; unsigned rcv_event, rcv_status, rcv_next_frame, rcv_size; if (net_debug > 5) printk("eepro: entering eepro_rx routine.\n"); /* Set the read pointer to the start of the RCV */ outw(rcv_car, ioaddr + HOST_ADDRESS_REG); rcv_event = inw(ioaddr + IO_PORT); while (rcv_event == RCV_DONE) { rcv_status = inw(ioaddr + IO_PORT); rcv_next_frame = inw(ioaddr + IO_PORT); rcv_size = inw(ioaddr + IO_PORT); if ((rcv_status & (RX_OK | RX_ERROR)) == RX_OK) { /* Malloc up new buffer. */ struct sk_buff *skb; rcv_size &= 0x3fff; skb = dev_alloc_skb(rcv_size+5); if (skb == NULL) { printk("%s: Memory squeeze, dropping packet.\n", dev->name); lp->stats.rx_dropped++; break; } skb->dev = dev; skb_reserve(skb,2); if (lp->version == LAN595) insw(ioaddr+IO_PORT, skb_put(skb,rcv_size), (rcv_size + 3) >> 1); else { /* LAN595TX or LAN595FX, capable of 32-bit I/O processing */ unsigned short temp = inb(ioaddr + INT_MASK_REG); outb(temp | IO_32_BIT, ioaddr + INT_MASK_REG); insl(ioaddr+IO_PORT_32_BIT, skb_put(skb,rcv_size), (rcv_size + 3) >> 2); outb(temp & ~(IO_32_BIT), ioaddr + INT_MASK_REG); } skb->protocol = eth_type_trans(skb,dev); netif_rx(skb); lp->stats.rx_packets++; } else { /* Not sure will ever reach here, I set the 595 to discard bad received frames */ lp->stats.rx_errors++; if (rcv_status & 0x0100) lp->stats.rx_over_errors++; else if (rcv_status & 0x0400) lp->stats.rx_frame_errors++; else if (rcv_status & 0x0800) lp->stats.rx_crc_errors++; printk("%s: event = %#x, status = %#x, next = %#x, size = %#x\n", dev->name, rcv_event, rcv_status, rcv_next_frame, rcv_size); } if (rcv_status & 0x1000) lp->stats.rx_length_errors++; if (--boguscount == 0) break; rcv_car = lp->rx_start + RCV_HEADER + rcv_size; lp->rx_start = rcv_next_frame; outw(rcv_next_frame, ioaddr + HOST_ADDRESS_REG); rcv_event = inw(ioaddr + IO_PORT); } if (rcv_car == 0) rcv_car = (RCV_UPPER_LIMIT << 8) | 0xff; outw(rcv_car - 1, ioaddr + RCV_STOP); if (net_debug > 5) printk("eepro: exiting eepro_rx routine.\n"); } static void eepro_transmit_interrupt(struct device *dev) { struct eepro_local *lp = (struct eepro_local *)dev->priv; short ioaddr = dev->base_addr; short boguscount = 20; short xmt_status; while (lp->tx_start != lp->tx_end) { outw(lp->tx_start, ioaddr + HOST_ADDRESS_REG); xmt_status = inw(ioaddr+IO_PORT); if ((xmt_status & TX_DONE_BIT) == 0) break; xmt_status = inw(ioaddr+IO_PORT); lp->tx_start = inw(ioaddr+IO_PORT); dev->tbusy = 0; mark_bh(NET_BH); if (xmt_status & 0x2000) lp->stats.tx_packets++; else { lp->stats.tx_errors++; if (xmt_status & 0x0400) lp->stats.tx_carrier_errors++; printk("%s: XMT status = %#x\n", dev->name, xmt_status); } if (xmt_status & 0x000f) { lp->stats.collisions += (xmt_status & 0x000f); } if ((xmt_status & 0x0040) == 0x0) { lp->stats.tx_heartbeat_errors++; } if (--boguscount == 0) break; } } #ifdef MODULE static char devicename[9] = { 0, }; static struct device dev_eepro = { devicename, /* device name is inserted by linux/drivers/net/net_init.c */ 0, 0, 0, 0, 0, 0, 0, 0, 0, NULL, eepro_probe }; static int io = 0x200; static int irq = 0; static int mem = (RCV_RAM/1024); /* Size of the rx buffer in KB */ int init_module(void) { if (io == 0) printk("eepro: You should not use auto-probing with insmod!\n"); dev_eepro.base_addr = io; dev_eepro.irq = irq; dev_eepro.mem_end = mem; if (register_netdev(&dev_eepro) != 0) return -EIO; return 0; } void cleanup_module(void) { unregister_netdev(&dev_eepro); kfree_s(dev_eepro.priv,sizeof(struct eepro_local)); dev_eepro.priv=NULL; /* If we don't do this, we can't re-insmod it later. */ release_region(dev_eepro.base_addr, EEPRO_IO_EXTENT); } #endif /* MODULE */