/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */ /* Written 1996-2003 by Donald Becker. This software may be used and distributed according to the terms of the GNU General Public License (GPL), incorporated herein by reference. Drivers based on or derived from this code fall under the GPL and must retain the authorship, copyright and license notice. This file is not a complete program and may only be used when the entire operating system is licensed under the GPL. This driver is for the 3Com "Vortex" and "Boomerang" series ethercards. Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597 and the EtherLink XL 3c900 and 3c905 cards. The original author may be reached as becker@scyld.com, or C/O Scyld Computing Corporation 410 Severn Ave., Suite 210 Annapolis MD 21403 Support information and updates are available at http://www.scyld.com/network/vortex.html */ static const char versionA[] = "3c59x.c:v0.99Za 4/17/2003 Donald Becker, becker@scyld.com\n"; static const char versionB[] = " http://www.scyld.com/network/vortex.html\n"; /* The user-configurable values. These may be modified when a driver module is loaded.*/ /* Message enable level: 0..31 = no..all messages. See NETIF_MSG docs. */ static int debug = 2; /* This driver uses 'options' to pass the media type, full-duplex flag, etc. See media_tbl[] and the web page for the possible types. There is no limit on card count, MAX_UNITS limits only module options. */ #define MAX_UNITS 8 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1,}; static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 20; /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1512 effectively disables this feature. */ static const int rx_copybreak = 200; /* Allow setting MTU to a larger size, bypassing the normal Ethernet setup. */ static const int mtu = 1500; /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). Cyclones and later have a 64 or 256 element hash table based on the Ethernet CRC. */ static int multicast_filter_limit = 64; /* Operational parameters that are set at compile time. */ /* Keep the ring sizes a power of two for compile efficiency. The compiler will convert '%'<2^N> into a bit mask. Making the Tx ring too large decreases the effectiveness of channel bonding and packet priority. Do not increase the Tx ring beyond 256. Large receive rings waste memory and confound network buffer limits. These values have been carefully studied: changing these might mask a problem, it won't fix it. */ #define TX_RING_SIZE 16 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ #define RX_RING_SIZE 32 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT (6*HZ) /* Allocation size of Rx buffers with normal sized Ethernet frames. Do not change this value without good reason. The 1536 value is not a limit, or directly related to MTU, but rather a way to keep a consistent allocation size among drivers. */ #define PKT_BUF_SZ 1536 #ifndef __KERNEL__ #define __KERNEL__ #endif #if !defined(__OPTIMIZE__) #warning You must compile this file with the correct options! #warning See the last lines of the source file. #error You must compile this driver with "-O". #endif #include #if defined(CONFIG_SMP) && ! defined(__SMP__) #define __SMP__ #endif #if defined(MODULE) && defined(CONFIG_MODVERSIONS) && ! defined(MODVERSIONS) #define MODVERSIONS #endif #include #if LINUX_VERSION_CODE < 0x20300 && defined(MODVERSIONS) #include #include #else #include #include #endif #include #include #include #include #include #if LINUX_VERSION_CODE >= 0x20400 #include #else #include #endif #include #include #include #include #include #include #include #include #include #ifdef INLINE_PCISCAN #include "k_compat.h" #else #include "pci-scan.h" #include "kern_compat.h" #endif /* Condensed operations for readability. Compatibility defines are now in kern_compat.h */ #define virt_to_le32desc(addr) cpu_to_le32(virt_to_bus(addr)) #define le32desc_to_virt(addr) bus_to_virt(le32_to_cpu(addr)) #if (LINUX_VERSION_CODE >= 0x20100) && defined(MODULE) char kernel_version[] = UTS_RELEASE; #endif MODULE_AUTHOR("Donald Becker "); MODULE_DESCRIPTION("3Com EtherLink XL (3c590/3c900 series) driver"); MODULE_LICENSE("GPL"); MODULE_PARM(debug, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(MAX_UNITS) "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(multicast_filter_limit, "i"); #ifdef MODULE_PARM_DESC MODULE_PARM_DESC(debug, "3c59x message level (0-31)"); MODULE_PARM_DESC(options, "3c59x force fixed media type"); MODULE_PARM_DESC(full_duplex, "3c59x set to 1 to force full duplex (deprecated)"); MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames"); MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt"); MODULE_PARM_DESC(multicast_filter_limit, "Multicast address count before switching to Rx-all-multicast"); #endif /* Operational parameter that usually are not changed. */ /* Set iff a MII transceiver on any interface requires mdio preamble. This only set with the original DP83840 on older 3c905 boards, so the extra code size of a per-interface flag is not worthwhile. */ static char mii_preamble_required = 0; /* Performance and path-coverage information. */ static int rx_nocopy = 0, rx_copy = 0, queued_packet = 0, rx_csumhits; /* Theory of Operation I. Board Compatibility This device driver is designed for the 3Com FastEtherLink and FastEtherLink XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs versions of the FastEtherLink cards. The supported product IDs are in the pci_tbl[] list. The related ISA 3c515 is supported with a separate driver, 3c515.c, included with the kernel source. II. Board-specific settings PCI bus devices are configured by the system at boot time, so no jumpers need to be set on the board. The system BIOS should be set to assign the PCI INTA signal to an otherwise unused system IRQ line. The EEPROM settings for media type and forced-full-duplex are observed. The EEPROM media type should be left at the default "autoselect" unless using 10base2 or AUI connections which cannot be reliably detected. III. Driver operation The 3c59x series use an interface that's very similar to the previous 3c5x9 series. The primary interface is two programmed-I/O FIFOs, with an alternate single-contiguous-region bus-master transfer (see next). The 3c900 "Boomerang" series uses a full-bus-master interface with separate lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet, DEC Tulip and Intel Speedo3. The first chip version retains a compatible programmed-I/O interface that has been removed in 'B' and subsequent board revisions. One extension that is advertised in a very large font is that the adapters are capable of being bus masters. On the Vortex chip this capability was only for a single contiguous region making it far less useful than the full bus master capability. There is a significant performance impact of taking an extra interrupt or polling for the completion of each transfer, as well as difficulty sharing the single transfer engine between the transmit and receive threads. Using DMA transfers is a win only with large blocks or with the flawed versions of the Intel Orion motherboard PCI controller. The Boomerang chip's full-bus-master interface is useful, and has the currently-unused advantages over other similar chips that queued transmit packets may be reordered and receive buffer groups are associated with a single frame. With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme. Rather than a fixed intermediate receive buffer, this scheme allocates full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as the copying breakpoint: it is chosen to trade-off the memory wasted by passing the full-sized skbuff to the queue layer for all frames vs. the copying cost of copying a frame to a correctly-sized skbuff. IIIC. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and other software. IV. Notes Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development 3c590, 3c595, and 3c900 boards. The name "Vortex" is the internal 3Com project name for the PCI ASIC, and the EISA version is called "Demon". According to Terry these names come from rides at the local amusement park. The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes. This driver only supports ethernet packets on some kernels because of the skbuff allocation limit of 4K. */ /* The Vortex size is twice that of the original EtherLinkIII series: the runtime register window, window 1, is now always mapped in. The Boomerang size is twice as large as the Vortex -- it has additional bus master control registers. */ #define VORTEX_SIZE 0x20 #define BOOMERANG_SIZE 0x40 #define CYCLONE_SIZE 0x80 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=0x804, IS_TORNADO=0x08, HAS_PWR_CTRL=0x10, HAS_MII=0x20, HAS_NWAY=0x40, HAS_CB_FNS=0x80, EEPROM_8BIT=0x200, INVERT_LED_PWR=0x400, MII_XCVR_PWR=0x4000, HAS_V2_TX=0x800, WN0_XCVR_PWR=0x1000, }; /* Base feature sets for the generations. */ #define FEATURE_BOOMERANG (HAS_MII) /* 905 */ #define FEATURE_CYCLONE (IS_CYCLONE|HAS_V2_TX) /* 905B */ #define FEATURE_TORNADO (IS_TORNADO|HAS_NWAY|HAS_V2_TX) /* 905C */ static void *vortex_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int find_cnt); static int pwr_event(void *dev_instance, int event); #ifdef USE_MEM_OPS #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1) #else #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_IO | PCI_ADDR0) #endif static struct pci_id_info pci_tbl[] = { {"3c590 Vortex 10Mbps", { 0x590010B7, 0xffffffff }, PCI_IOTYPE, VORTEX_SIZE, IS_VORTEX, }, {"3c595 Vortex 100baseTx", { 0x595010B7, 0xffffffff }, PCI_IOTYPE, VORTEX_SIZE, IS_VORTEX, }, {"3c595 Vortex 100baseT4", { 0x595110B7, 0xffffffff }, PCI_IOTYPE, VORTEX_SIZE, IS_VORTEX, }, {"3c595 Vortex 100base-MII",{ 0x595210B7, 0xffffffff }, PCI_IOTYPE, VORTEX_SIZE, IS_VORTEX, }, /* Change EISA_scan if these move from index 4 and 5. */ {"3c592 EISA Vortex", { 0x592010B7, 0xffffffff }, PCI_IOTYPE, VORTEX_SIZE, IS_VORTEX, }, {"3c597 EISA Vortex", { 0x597010B7, 0xffffffff }, PCI_IOTYPE, VORTEX_SIZE, IS_VORTEX, }, {"Vortex (unknown)", { 0x590010B7, 0xff00ffff }, PCI_IOTYPE, VORTEX_SIZE, IS_VORTEX, }, {"3c900 Boomerang 10baseT", { 0x900010B7, 0xffffffff }, PCI_IOTYPE, BOOMERANG_SIZE, IS_BOOMERANG, }, {"3c900 Boomerang 10Mbps Combo", { 0x900110B7, 0xffffffff }, PCI_IOTYPE,BOOMERANG_SIZE, IS_BOOMERANG, }, {"3c900 Cyclone 10Mbps TPO", { 0x900410B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, IS_CYCLONE, }, {"3c900 Cyclone 10Mbps Combo", { 0x900510B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, IS_CYCLONE, }, {"3c900 Cyclone 10Mbps TPC", { 0x900610B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, IS_CYCLONE, }, {"3c900B-FL Cyclone 10base-FL",{ 0x900A10B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, IS_CYCLONE, }, {"3c905 Boomerang 100baseTx",{ 0x905010B7, 0xffffffff }, PCI_IOTYPE,BOOMERANG_SIZE, IS_BOOMERANG|HAS_MII, }, {"3c905 Boomerang 100baseT4",{ 0x905110B7, 0xffffffff }, PCI_IOTYPE,BOOMERANG_SIZE, IS_BOOMERANG|HAS_MII, }, {"3c905B Cyclone 100baseTx",{ 0x905510B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, IS_CYCLONE|HAS_NWAY, }, {"3c905B Cyclone 10/100/BNC",{ 0x905810B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, IS_CYCLONE|HAS_NWAY, }, {"3c905B-FX Cyclone 100baseFx",{ 0x905A10B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, IS_CYCLONE, }, {"3c905C Tornado",{ 0x920010B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO, }, {"3c920 Tornado",{ 0x920110B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO, }, {"3c920 series Tornado",{ 0x920010B7, 0xfff0ffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO, }, {"3c982 Server Tornado",{ 0x980510B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO, }, {"3c980 Cyclone",{ 0x980010B7, 0xfff0ffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_CYCLONE|HAS_NWAY, }, {"3cSOHO100-TX Hurricane", { 0x764610B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_CYCLONE, }, {"3c555 Laptop Hurricane", { 0x505510B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_CYCLONE, }, {"3c556 Laptop Tornado",{ 0x605510B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO|EEPROM_8BIT, }, {"3c556 series Laptop Tornado",{ 0x605510B7, 0xf0ffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO|EEPROM_8BIT, }, {"3c1556B-5 mini-PCI",{ 0x605610B7, 0xffffffff, 0x655610b7, 0xffffffff, }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO|EEPROM_8BIT|INVERT_LED_PWR|WN0_XCVR_PWR, }, {"3c1556B mini-PCI",{ 0x605610B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO|EEPROM_8BIT|HAS_CB_FNS|INVERT_LED_PWR|MII_XCVR_PWR, }, {"3c1556B series mini-PCI",{ 0x605610B7, 0xf0ffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO|EEPROM_8BIT|HAS_CB_FNS|INVERT_LED_PWR|MII_XCVR_PWR, }, {"3c575 Boomerang CardBus", { 0x505710B7, 0xffffffff }, PCI_IOTYPE,BOOMERANG_SIZE, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, }, {"3CCFE575BT Cyclone CardBus",{ 0x515710B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_CYCLONE | HAS_CB_FNS | EEPROM_8BIT | INVERT_LED_PWR, }, {"3CCFE575CT Tornado CardBus",{ 0x525710B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO|HAS_CB_FNS|EEPROM_8BIT|MII_XCVR_PWR, }, {"3CCFE656 Cyclone CardBus",{ 0x656010B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS| INVERT_LED_PWR | MII_XCVR_PWR, }, {"3CCFE656B Cyclone+Winmodem CardBus",{ 0x656210B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_CYCLONE/*|HAS_NWAY*/ |HAS_CB_FNS|EEPROM_8BIT|INVERT_LED_PWR|MII_XCVR_PWR, }, {"3CCFE656C Tornado+Winmodem CardBus",{ 0x656410B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, (FEATURE_TORNADO & ~HAS_NWAY)|HAS_CB_FNS|EEPROM_8BIT | MII_XCVR_PWR, }, {"3c450 HomePNA Tornado",{ 0x450010B7, 0xffffffff }, PCI_IOTYPE, CYCLONE_SIZE, FEATURE_TORNADO, }, {"3c575 series CardBus (unknown version)", {0x505710B7, 0xf0ffffff }, PCI_IOTYPE, BOOMERANG_SIZE, IS_BOOMERANG|HAS_MII, }, {"3Com Boomerang (unknown version)",{ 0x900010B7, 0xff00ffff }, PCI_IOTYPE, BOOMERANG_SIZE, IS_BOOMERANG, }, {0,}, /* 0 terminated list. */ }; struct drv_id_info vortex_drv_id = { "vortex", PCI_HOTSWAP, PCI_CLASS_NETWORK_ETHERNET<<8, pci_tbl, vortex_probe1, pwr_event }; /* This driver was written to use I/O operations. However there are performance benefits to using memory operations, so that mode is now an options. Compiling for memory ops turns off EISA support. */ #ifdef USE_MEM_OPS #undef inb #undef inw #undef inl #undef outb #undef outw #undef outl #define inb readb #define inw readw #define inl readl #define outb writeb #define outw writew #define outl writel #endif /* Operational definitions. These are not used by other compilation units and thus are not exported in a ".h" file. First the windows. There are eight register windows, with the command and status registers available in each. */ #define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD) #define EL3_CMD 0x0e #define EL3_STATUS 0x0e /* The top five bits written to EL3_CMD are a command, the lower 11 bits are the parameter, if applicable. Note that 11 parameters bits was fine for ethernet, but the new chip can handle FDDI length frames (~4500 octets) and now parameters count 32-bit 'Dwords' rather than octets. */ enum vortex_cmd { TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, UpStall = 6<<11, UpUnstall = (6<<11)+1, DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, SetTxThreshold = 18<<11, SetTxStart = 19<<11, StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,}; /* The SetRxFilter command accepts the following classes: */ enum RxFilter { RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8, RxMulticastHash = 0x10, }; /* Bits in the general status register. */ enum vortex_status { IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004, TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, IntReq = 0x0040, StatsFull = 0x0080, DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, DMAInProgress = 1<<11, /* DMA controller is still busy.*/ CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ }; /* Register window 1 offsets, the window used in normal operation. On the Vortex this window is always mapped at offsets 0x10-0x1f. */ enum Window1 { TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14, RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B, TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */ }; enum Window0 { Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ Wn0EepromData = 12, /* Window 0: EEPROM results register. */ IntrStatus=0x0E, /* Valid in all windows. */ }; /* EEPROM locations. */ enum eeprom_offset { PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3, EtherLink3ID=7, IFXcvrIO=8, IRQLine=9, NodeAddr01=10, NodeAddr23=11, NodeAddr45=12, DriverTune=13, Checksum=15}; enum Window2 { /* Window 2. */ Wn2_ResetOptions=12, }; enum Window3 { /* Window 3: MAC/config bits. */ Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8, }; enum Window4 { /* Window 4: Xcvr/media bits. */ Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, }; enum Window5 { Wn5_TxThreshold = 0, Wn5_RxFilter = 8, }; enum Win4_Media_bits { Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */ Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */ Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */ Media_LnkBeat = 0x0800, }; enum Window7 { /* Bus Master control on Vortex. */ Wn7_MasterAddr = 0, Wn7_MasterLen = 6, Wn7_MasterStatus = 12, /* On Cyclone and later, VLAN and PowerMgt control. */ Wn7_VLAN_Mask = 0, Wn7_VLAN_EtherType = 4, Wn7_PwrMgmtEvent = 12, }; /* Boomerang and Cyclone bus master control registers. */ enum MasterCtrl { PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c, DownPollRate = 0x2d, TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38, /* Cyclone+. */ TxPktID=0x18, RxPriorityThresh = 0x3c, }; /* The Rx and Tx descriptor lists. Caution Alpha hackers: these types are 32 bits! Note also the 8 byte alignment contraint on tx_ring[] and rx_ring[]. */ #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */ struct boom_rx_desc { u32 next; /* Last entry points to 0. */ s32 status; u32 addr; /* Up to 63 addr/len pairs possible. */ s32 length; /* Set LAST_FRAG to indicate last pair. */ }; /* Values for the Rx status entry. */ enum rx_desc_status { RxDComplete=0x00008000, RxDError=0x4000, /* See boomerang_rx() for actual error bits */ IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27, IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31, }; struct boom_tx_desc { u32 next; /* Last entry points to 0. */ s32 status; /* bits 0:12 length, others see below. */ u32 addr; s32 length; }; /* Values for the Tx status entry. */ enum tx_desc_status { CRCDisable=0x2000, TxIntrDnComplete=0x8000, TxDownComplete=0x10000, AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000, TxNoRoundup=0x10000000, /* HAS_V2_TX should not word-pad packet. */ TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */ }; /* Chip features we care about in vp->capabilities, read from the EEPROM. */ enum ChipCaps { CapBusMaster=0x20, CapNoTxLength=0x0200, CapPwrMgmt=0x2000 }; #define PRIV_ALIGN 15 /* Required alignment mask */ struct vortex_private { /* The Rx and Tx rings should be quad-word-aligned. */ struct boom_rx_desc rx_ring[RX_RING_SIZE]; struct boom_tx_desc tx_ring[TX_RING_SIZE]; /* The addresses of transmit- and receive-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; struct sk_buff* tx_skbuff[TX_RING_SIZE]; struct net_device *next_module; void *priv_addr; /* Keep the Rx and Tx variables grouped on their own cache lines. */ struct boom_rx_desc *rx_head_desc; unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ unsigned int rx_buf_sz; /* Based on MTU+slack. */ int rx_copybreak; struct boom_tx_desc *tx_desc_tail; struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */ unsigned int cur_tx, dirty_tx; unsigned int tx_full:1, restart_tx:1; long last_reset; spinlock_t window_lock; struct net_device_stats stats; char *cb_fn_base; /* CardBus function status addr space. */ int msg_level; int chip_id, drv_flags; struct pci_dev *pci_dev; /* PCI configuration space information. */ /* The remainder are related to chip state, mostly media selection. */ int multicast_filter_limit; u32 mc_filter[8]; int max_interrupt_work; int rx_mode; struct timer_list timer; /* Media selection timer. */ int options; /* User-settable misc. driver options. */ unsigned int media_override:4, /* Passed-in media type. */ default_media:4, /* Read from the EEPROM/Wn3_Config. */ full_duplex:1, medialock:1, autoselect:1, bus_master:1, /* Vortex can only do a fragment bus-m. */ full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */ hw_csums:1, /* Has hardware checksums. */ restore_intr_mask:1, polling:1; u16 status_enable; u16 intr_enable; u16 available_media; /* From Wn3_Options. */ u16 wn3_mac_ctrl; /* Current settings. */ u16 capabilities, info1, info2; /* Various, from EEPROM. */ u16 advertising; /* NWay media advertisement */ unsigned char phys[2]; /* MII device addresses. */ }; /* The action to take with a media selection timer tick. Note that we deviate from the 3Com order by checking 10base2 before AUI. */ enum xcvr_types { XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx, XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10, }; static struct media_table { char *name; unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */ mask:8, /* The transceiver-present bit in Wn3_Config.*/ next:8; /* The media type to try next. */ int wait; /* Time before we check media status. */ } media_tbl[] = { { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10}, { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10}, { "undefined", 0, 0x80, XCVR_10baseT, 10000}, { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10}, { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10}, { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10}, { "MII", 0, 0x41, XCVR_10baseT, 3*HZ }, { "undefined", 0, 0x01, XCVR_10baseT, 10000}, { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ}, { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ }, { "Default", 0, 0xFF, XCVR_10baseT, 10000}, }; #if ! defined(CARDBUS) && ! defined(USE_MEM_OPS) static int eisa_scan(struct net_device *dev); #endif static int vortex_open(struct net_device *dev); static void set_media_type(struct net_device *dev); static void activate_xcvr(struct net_device *dev); static void start_operation(struct net_device *dev); static void start_operation1(struct net_device *dev); static void mdio_sync(long ioaddr, int bits); static int mdio_read(long ioaddr, int phy_id, int location); static void mdio_write(long ioaddr, int phy_id, int location, int value); static void vortex_timer(unsigned long arg); static void vortex_tx_timeout(struct net_device *dev); static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev); static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev); static int vortex_rx(struct net_device *dev); static int boomerang_rx(struct net_device *dev); static void vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int vortex_close(struct net_device *dev); static void update_stats(long ioaddr, struct net_device *dev); static struct net_device_stats *vortex_get_stats(struct net_device *dev); static void set_rx_mode(struct net_device *dev); static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); #if defined(NO_PCI) #define acpi_set_WOL(dev) do {} while(0); #define acpi_wake(pci_dev) do {} while(0); #define acpi_set_pwr_state(pci_dev, state) do {} while(0); #else static void acpi_set_WOL(struct net_device *dev); #endif /* A list of all installed Vortex devices, for removing the driver module. */ static struct net_device *root_vortex_dev = NULL; #if defined(MODULE) && defined(CARDBUS) #include static dev_node_t *vortex_attach(dev_locator_t *loc) { u32 io, pci_id; u8 bus, devfn, irq; struct net_device *dev; int chip_idx; if (loc->bus != LOC_PCI) return NULL; bus = loc->b.pci.bus; devfn = loc->b.pci.devfn; pcibios_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_0, &io); pcibios_read_config_byte(bus, devfn, PCI_INTERRUPT_LINE, &irq); pcibios_read_config_dword(bus, devfn, PCI_VENDOR_ID, &pci_id); printk(KERN_INFO "vortex_attach(bus %d, function %d, device %8.8x)\n", bus, devfn, pci_id); io &= ~3; if (io == 0 || irq == 0) { printk(KERN_ERR "The 3Com CardBus Ethernet interface was not " "assigned an %s.\n" KERN_ERR " It will not be activated.\n", io == 0 ? "I/O address" : "IRQ"); return NULL; } for (chip_idx = 0; pci_tbl[chip_idx].id.pci; chip_idx++) if ((pci_id & pci_tbl[chip_idx].id.pci_mask) == pci_tbl[chip_idx].id.pci) break; if (pci_tbl[chip_idx].id.pci == 0) { /* Compiled out! */ printk(KERN_INFO "Unable to match chip type %8.8x in " "vortex_attach().\n", pci_id); return NULL; } dev = vortex_probe1(pci_find_slot(bus, devfn), NULL, io, irq, chip_idx, MAX_UNITS+1); if (dev) { dev_node_t *node = kmalloc(sizeof(dev_node_t), GFP_KERNEL); strcpy(node->dev_name, dev->name); node->major = node->minor = 0; node->next = NULL; MOD_INC_USE_COUNT; return node; } return NULL; } static void vortex_detach(dev_node_t *node) { struct net_device **devp, **next; printk(KERN_DEBUG "vortex_detach(%s)\n", node->dev_name); for (devp = &root_vortex_dev; *devp; devp = next) { next = &((struct vortex_private *)(*devp)->priv)->next_module; if (strcmp((*devp)->name, node->dev_name) == 0) break; } if (*devp) { struct net_device *dev = *devp; struct vortex_private *vp = dev->priv; if (dev->flags & IFF_UP) dev_close(dev); dev->flags &= ~(IFF_UP|IFF_RUNNING); unregister_netdev(dev); if (vp->cb_fn_base) iounmap(vp->cb_fn_base); kfree(dev); *devp = *next; kfree(vp->priv_addr); kfree(node); MOD_DEC_USE_COUNT; } } struct driver_operations vortex_ops = { "3c575_cb", vortex_attach, NULL, NULL, vortex_detach }; #endif /* Old-style Cardbus module support */ #if defined(MODULE) || (LINUX_VERSION_CODE >= 0x020400) #if ! defined(MODULE) /* Must be a 2.4 kernel */ module_init(init_module); module_exit(cleanup_module); #endif int init_module(void) { printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB); #ifdef CARDBUS register_driver(&vortex_ops); return 0; #else #ifndef USE_MEM_OPS /* This is not quite correct, but both EISA and PCI cards is unlikely. */ if (eisa_scan(0) >= 0) return 0; #if defined(NO_PCI) return 0; #endif #endif return pci_drv_register(&vortex_drv_id, NULL); #endif } #else int tc59x_probe(struct net_device *dev) { int retval = -ENODEV; /* Allow an EISA-only driver. */ #if ! defined(NO_PCI) if (pci_drv_register(&vortex_drv_id, dev) >= 0) { retval = 0; dev = 0; } #endif #ifndef USE_MEM_OPS if (eisa_scan(dev) >= 0) retval = 0; #endif if (retval >= 0) printk(KERN_INFO "%s" KERN_INFO "%s", versionA, versionB); return retval; } #endif /* not MODULE */ #if ! defined(CARDBUS) && ! defined(USE_MEM_OPS) static int eisa_scan(struct net_device *dev) { int cards_found = 0; /* Check the slots of the EISA bus. */ if (EISA_bus) { static long ioaddr = 0x1000; for ( ; ioaddr < 0x9000; ioaddr += 0x1000) { int device_id; if (check_region(ioaddr, VORTEX_SIZE)) continue; /* Check the standard EISA ID register for an encoded '3Com'. */ if (inw(ioaddr + 0xC80) != 0x6d50) continue; /* Check for a product that we support, 3c59{2,7} any rev. */ device_id = (inb(ioaddr + 0xC82)<<8) + inb(ioaddr + 0xC83); if ((device_id & 0xFF00) != 0x5900) continue; vortex_probe1(0, dev, ioaddr, inw(ioaddr + 0xC88) >> 12, (device_id & 0xfff0) == 0x5970 ? 5 : 4, cards_found); dev = 0; cards_found++; } } return cards_found ? 0 : -ENODEV; } #endif /* ! Cardbus */ static int do_eeprom_op(long ioaddr, int ee_cmd) { int timer; outw(ee_cmd, ioaddr + Wn0EepromCmd); /* Wait for the read to take place, worst-case 162 us. */ for (timer = 1620; timer >= 0; timer--) { if ((inw(ioaddr + Wn0EepromCmd) & 0x8000) == 0) break; } return inw(ioaddr + Wn0EepromData); } static void *vortex_probe1(struct pci_dev *pdev, void *init_dev, long ioaddr, int irq, int chip_idx, int find_cnt) { struct net_device *dev; struct vortex_private *vp; void *priv_mem; int option; unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */ int ee_read_cmd; int drv_flags = pci_tbl[chip_idx].drv_flags; int i; dev = init_etherdev(init_dev, 0); if (!dev) return NULL; #if ! defined(NO_PCI) /* Check the PCI latency value. On the 3c590 series the latency timer must be set to the maximum value to avoid data corruption that occurs when the timer expires during a transfer. This bug exists the Vortex chip only. */ if (pdev) { u8 pci_latency; u8 new_latency = (drv_flags & IS_VORTEX) ? 248 : 32; pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < new_latency) { printk(KERN_INFO "%s: Overriding PCI latency" " timer (CFLT) setting of %d, new value is %d.\n", dev->name, pci_latency, new_latency); pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency); } } #endif printk(KERN_INFO "%s: 3Com %s at 0x%lx, ", dev->name, pci_tbl[chip_idx].name, ioaddr); /* Make certain elements e.g. descriptor lists are aligned. */ priv_mem = kmalloc(sizeof(*vp) + PRIV_ALIGN, GFP_KERNEL); /* Check for the very unlikely case of no memory. */ if (priv_mem == NULL) { printk(" INTERFACE MEMORY ALLOCATION FAILURE.\n"); return NULL; } dev->base_addr = ioaddr; dev->irq = irq; dev->mtu = mtu; dev->priv = vp = (void *)(((long)priv_mem + PRIV_ALIGN) & ~PRIV_ALIGN); memset(vp, 0, sizeof(*vp)); vp->priv_addr = priv_mem; vp->next_module = root_vortex_dev; root_vortex_dev = dev; vp->chip_id = chip_idx; vp->pci_dev = pdev; vp->drv_flags = drv_flags; vp->msg_level = (1 << debug) - 1; vp->rx_copybreak = rx_copybreak; vp->max_interrupt_work = max_interrupt_work; vp->multicast_filter_limit = multicast_filter_limit; /* The lower four bits are the media type. */ if (dev->mem_start) option = dev->mem_start; else if (find_cnt < MAX_UNITS) option = options[find_cnt]; else option = -1; if (option >= 0) { vp->media_override = ((option & 7) == 2) ? 0 : option & 15; vp->full_duplex = (option & 0x200) ? 1 : 0; vp->bus_master = (option & 16) ? 1 : 0; } else { vp->media_override = 7; vp->full_duplex = 0; vp->bus_master = 0; } if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0) vp->full_duplex = 1; vp->options = option; /* Read the station address from the EEPROM. */ EL3WINDOW(0); /* Figure out the size and offset of the EEPROM table. This is complicated by potential discontiguous address bits. */ /* Locate the opcode bits, 0xC0 or 0x300. */ outw(0x5555, ioaddr + Wn0EepromData); ee_read_cmd = do_eeprom_op(ioaddr, 0x80) == 0x5555 ? 0x200 : 0x80; /* Locate the table base for CardBus cards. */ if (do_eeprom_op(ioaddr, ee_read_cmd + 0x37) == 0x6d50) ee_read_cmd += 0x30; for (i = 0; i < 0x40; i++) { int cmd_and_addr = ee_read_cmd + i; if (ee_read_cmd == 0xB0) { /* Correct for discontinuity. */ int offset = 0x30 + i; cmd_and_addr = 0x80 + (offset & 0x3f) + ((offset<<2) & 0x0f00); } eeprom[i] = do_eeprom_op(ioaddr, cmd_and_addr); } for (i = 0; i < 0x18; i++) checksum ^= eeprom[i]; checksum = (checksum ^ (checksum >> 8)) & 0xff; if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */ while (i < 0x21) checksum ^= eeprom[i++]; checksum = (checksum ^ (checksum >> 8)) & 0xff; } if (checksum != 0x00 && !(drv_flags & IS_TORNADO)) printk(" ***INVALID CHECKSUM %4.4x*** ", checksum); for (i = 0; i < 3; i++) ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]); for (i = 0; i < 6; i++) printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]); EL3WINDOW(2); for (i = 0; i < 6; i++) outb(dev->dev_addr[i], ioaddr + i); printk(", IRQ %d\n", dev->irq); /* Tell them about an invalid IRQ. */ if (dev->irq <= 0) printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n", dev->irq); #if ! defined(NO_PCI) if (drv_flags & HAS_CB_FNS) { u32 fn_st_addr; /* Cardbus function status space */ pci_read_config_dword(pdev, PCI_BASE_ADDRESS_2, &fn_st_addr); if (fn_st_addr) vp->cb_fn_base = ioremap(fn_st_addr & ~3, 128); printk(KERN_INFO "%s: CardBus functions mapped %8.8x->%p.\n", dev->name, fn_st_addr, vp->cb_fn_base); } #endif /* Extract our information from the EEPROM data. */ vp->info1 = eeprom[13]; vp->info2 = eeprom[15]; vp->capabilities = eeprom[16]; if (vp->info1 & 0x8000) vp->full_duplex = 1; if (vp->full_duplex) vp->medialock = 1; /* Turn on the transceiver. */ activate_xcvr(dev); { char *ram_split[] = {"5:3", "3:1", "1:1", "3:5"}; int i_cfg; EL3WINDOW(3); vp->available_media = inw(ioaddr + Wn3_Options); if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */ vp->available_media = 0x40; i_cfg = inl(ioaddr + Wn3_Config); /* Internal Configuration */ vp->default_media = (i_cfg >> 20) & 15; if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG " Internal config register is %8.8x, " "transceivers %#x.\n", i_cfg, inw(ioaddr + Wn3_Options)); printk(KERN_INFO " %dK buffer %s Rx:Tx split, %s%s interface.\n", 8 << (i_cfg & 7), ram_split[(i_cfg >> 16) & 3], i_cfg & 0x01000000 ? "autoselect/" : "", vp->default_media > XCVR_ExtMII ? "" : media_tbl[vp->default_media].name); vp->autoselect = i_cfg & 0x01000000 ? 1 : 0; } if (vp->media_override != 7) { printk(KERN_INFO " Media override to transceiver type %d (%s).\n", vp->media_override, media_tbl[vp->media_override].name); dev->if_port = vp->media_override; } else dev->if_port = vp->default_media; if ((vp->available_media & 0x41) || (drv_flags & HAS_NWAY) || dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { int phy, phy_idx = 0; EL3WINDOW(4); mii_preamble_required++; mdio_sync(ioaddr, 32); mdio_read(ioaddr, 24, 1); for (phy = 1; phy <= 32 && phy_idx < sizeof(vp->phys); phy++) { int mii_status, phyx = phy & 0x1f; mii_status = mdio_read(ioaddr, phyx, 1); if ((mii_status & 0xf800) && mii_status != 0xffff) { vp->phys[phy_idx++] = phyx; printk(KERN_INFO " MII transceiver found at address %d," " status %4x.\n", phyx, mii_status); if ((mii_status & 0x0040) == 0) mii_preamble_required++; } } mii_preamble_required--; if (phy_idx == 0) { printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n"); vp->phys[0] = 24; } else { if (mii_preamble_required == 0 && mdio_read(ioaddr, vp->phys[0], 1) == 0) { printk(KERN_INFO "%s: MII transceiver has preamble bug.\n", dev->name); mii_preamble_required = 1; } vp->advertising = mdio_read(ioaddr, vp->phys[0], 4); if (vp->full_duplex) { /* Only advertise the FD media types. */ vp->advertising &= ~0x02A0; mdio_write(ioaddr, vp->phys[0], 4, vp->advertising); } } } else { /* We will emulate MII management. */ vp->phys[0] = 32; } if (vp->capabilities & CapBusMaster) { vp->full_bus_master_tx = 1; printk(KERN_INFO" Using bus-master transmits and %s receives.\n", (vp->info2 & 1) ? "early" : "whole-frame" ); vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2; } /* We do a request_region() to register /proc/ioports info. */ request_region(ioaddr, pci_tbl[chip_idx].io_size, dev->name); /* The 3c59x-specific entries in the device structure. */ dev->open = &vortex_open; dev->hard_start_xmit = &vortex_start_xmit; dev->stop = &vortex_close; dev->get_stats = &vortex_get_stats; dev->do_ioctl = &vortex_ioctl; dev->set_multicast_list = &set_rx_mode; return dev; } static int vortex_open(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int i; MOD_INC_USE_COUNT; acpi_wake(vp->pci_dev); vp->window_lock = SPIN_LOCK_UNLOCKED; activate_xcvr(dev); /* Before initializing select the active media port. */ if (vp->media_override != 7) { if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n", dev->name, vp->media_override, media_tbl[vp->media_override].name); dev->if_port = vp->media_override; } else if (vp->autoselect) { if (vp->drv_flags & HAS_NWAY) dev->if_port = XCVR_NWAY; else { /* Find first available media type, starting with 100baseTx. */ dev->if_port = XCVR_100baseTx; while (! (vp->available_media & media_tbl[dev->if_port].mask)) dev->if_port = media_tbl[dev->if_port].next; } } else dev->if_port = vp->default_media; if (! vp->medialock) vp->full_duplex = 0; vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete| (vp->full_bus_master_tx ? DownComplete : TxAvailable) | (vp->full_bus_master_rx ? UpComplete : RxComplete) | (vp->bus_master ? DMADone : 0); vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable | RxComplete | StatsFull | HostError | TxComplete | IntReq | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete; if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Initial media type %s %s-duplex.\n", dev->name, media_tbl[dev->if_port].name, vp->full_duplex ? "full":"half"); set_media_type(dev); start_operation(dev); /* Use the now-standard shared IRQ implementation. */ if (request_irq(dev->irq, &vortex_interrupt, SA_SHIRQ, dev->name, dev)) { MOD_DEC_USE_COUNT; return -EAGAIN; } spin_lock(&vp->window_lock); if (vp->msg_level & NETIF_MSG_IFUP) { EL3WINDOW(4); printk(KERN_DEBUG "%s: vortex_open() irq %d media status %4.4x.\n", dev->name, dev->irq, inw(ioaddr + Wn4_Media)); } /* Switch to the stats window, and clear all stats by reading. */ outw(StatsDisable, ioaddr + EL3_CMD); EL3WINDOW(6); for (i = 0; i < 10; i++) inb(ioaddr + i); inw(ioaddr + 10); inw(ioaddr + 12); /* New: On the Vortex we must also clear the BadSSD counter. */ EL3WINDOW(4); inb(ioaddr + 12); /* ..and on the Boomerang we enable the extra statistics bits. */ outw(0x0040, ioaddr + Wn4_NetDiag); /* Switch to register set 7 for normal use. */ EL3WINDOW(7); #if defined(CONFIG_VLAN) /* If this value is set no MTU adjustment is needed for 802.1Q. */ outw(0x8100, ioaddr + Wn7_VLAN_EtherType); #endif spin_unlock(&vp->window_lock); if (vp->full_bus_master_rx) { /* Boomerang bus master. */ vp->cur_rx = vp->dirty_rx = 0; /* Use 1518/+18 if the CRC is transferred. */ vp->rx_buf_sz = dev->mtu + 14; if (vp->rx_buf_sz < PKT_BUF_SZ) vp->rx_buf_sz = PKT_BUF_SZ; /* Initialize the RxEarly register as recommended. */ outw(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); outl(0x0020, ioaddr + PktStatus); for (i = 0; i < RX_RING_SIZE; i++) { vp->rx_ring[i].length = cpu_to_le32(vp->rx_buf_sz | LAST_FRAG); vp->rx_ring[i].status = 0; vp->rx_ring[i].next = virt_to_le32desc(&vp->rx_ring[i+1]); vp->rx_skbuff[i] = 0; } /* Wrap the ring. */ vp->rx_head_desc = &vp->rx_ring[0]; vp->rx_ring[i-1].next = virt_to_le32desc(&vp->rx_ring[0]); for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb = dev_alloc_skb(vp->rx_buf_sz); vp->rx_skbuff[i] = skb; if (skb == NULL) break; /* Bad news! */ skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ vp->rx_ring[i].addr = virt_to_le32desc(skb->tail); } outl(virt_to_bus(vp->rx_head_desc), ioaddr + UpListPtr); } if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */ dev->hard_start_xmit = &boomerang_start_xmit; vp->cur_tx = vp->dirty_tx = 0; vp->tx_desc_tail = &vp->tx_ring[TX_RING_SIZE - 1]; if (vp->drv_flags & IS_BOOMERANG) { /* Room for a packet, to avoid long DownStall delays. */ outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); } else if (vp->drv_flags & HAS_V2_TX) outb(20, ioaddr + DownPollRate); /* Clear the Tx ring. */ for (i = 0; i < TX_RING_SIZE; i++) vp->tx_skbuff[i] = 0; outl(0, ioaddr + DownListPtr); vp->tx_full = 0; vp->restart_tx = 1; } /* The multicast filter is an ill-considered, write-only design. The semantics are not documented, so we assume but do not rely on the table being cleared with an RxReset. Here we do an explicit clear of the largest known table. */ if (vp->drv_flags & HAS_V2_TX) for (i = 0; i < 0x100; i++) outw(SetFilterBit | i, ioaddr + EL3_CMD); memset(vp->mc_filter, 0, sizeof vp->mc_filter); /* Set receiver mode: presumably accept b-case and phys addr only. */ vp->rx_mode = 0; set_rx_mode(dev); start_operation1(dev); init_timer(&vp->timer); vp->timer.expires = jiffies + media_tbl[dev->if_port].wait; vp->timer.data = (unsigned long)dev; vp->timer.function = &vortex_timer; /* timer handler */ add_timer(&vp->timer); return 0; } static void set_media_type(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int i_cfg; EL3WINDOW(3); i_cfg = inl(ioaddr + Wn3_Config); i_cfg &= ~0x00f00000; if (vp->drv_flags & HAS_NWAY) outl(i_cfg | 0x00800000, ioaddr + Wn3_Config); else outl(i_cfg | (dev->if_port << 20), ioaddr + Wn3_Config); if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { int mii_reg1, mii_reg5; EL3WINDOW(4); /* Read BMSR (reg1) only to clear old status. */ mii_reg1 = mdio_read(ioaddr, vp->phys[0], 1); mii_reg5 = mdio_read(ioaddr, vp->phys[0], 5); if (mii_reg5 == 0xffff || mii_reg5 == 0x0000) ; /* No MII device or no link partner report */ else if ((mii_reg5 & 0x0100) != 0 /* 100baseTx-FD */ || (mii_reg5 & 0x00C0) == 0x0040) /* 10T-FD, but not 100-HD */ vp->full_duplex = 1; if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_INFO "%s: MII #%d status %4.4x, link partner capability %4.4x," " setting %s-duplex.\n", dev->name, vp->phys[0], mii_reg1, mii_reg5, vp->full_duplex ? "full" : "half"); EL3WINDOW(3); } if (dev->if_port == XCVR_10base2) /* Start the thinnet transceiver. We should really wait 50ms...*/ outw(StartCoax, ioaddr + EL3_CMD); EL3WINDOW(4); if (dev->if_port != XCVR_NWAY) { outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) | media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media); } /* Do we require link beat to transmit? */ if (vp->info1 & 0x4000) outw(inw(ioaddr + Wn4_Media) & ~Media_Lnk, ioaddr + Wn4_Media); /* Set the full-duplex and oversized frame bits. */ EL3WINDOW(3); vp->wn3_mac_ctrl = vp->full_duplex ? 0x0120 : 0; if (dev->mtu > 1500) vp->wn3_mac_ctrl |= (dev->mtu == 1504 ? 0x0400 : 0x0040); outb(vp->wn3_mac_ctrl, ioaddr + Wn3_MAC_Ctrl); if (vp->drv_flags & HAS_V2_TX) outw(dev->mtu + 14, ioaddr + Wn3_MaxPktSize); } static void activate_xcvr(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int reset_opts; /* Correct some magic bits. */ EL3WINDOW(2); reset_opts = inw(ioaddr + Wn2_ResetOptions); if (vp->drv_flags & INVERT_LED_PWR) reset_opts |= 0x0010; if (vp->drv_flags & MII_XCVR_PWR) reset_opts |= 0x4000; outw(reset_opts, ioaddr + Wn2_ResetOptions); if (vp->drv_flags & WN0_XCVR_PWR) { EL3WINDOW(0); outw(0x0900, ioaddr); } } static void start_operation(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int i; outw(TxReset, ioaddr + EL3_CMD); for (i = 2000; i >= 0 ; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; outw(RxReset | 0x04, ioaddr + EL3_CMD); /* Assume this cleared the filter. */ memset(vp->mc_filter, 0, sizeof vp->mc_filter); /* Wait a few ticks for the RxReset command to complete. */ for (i = 0; i < 200000; i++) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; if (i >= 200 && (vp->msg_level & NETIF_MSG_DRV)) printk(KERN_DEBUG "%s: Rx Reset took an unexpectedly long time" " to finish, %d ticks.\n", dev->name, i); outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD); /* Handle VLANs and jumbo frames. */ if ((vp->drv_flags & HAS_V2_TX) && dev->mtu > 1500) { EL3WINDOW(3); outw(dev->mtu + 14, ioaddr + Wn3_MaxPktSize); if (dev->mtu > 2033) { outl(inl(ioaddr + Wn3_Config) | 0x0000C000, ioaddr + Wn3_Config); outw(SetTxStart + (2000>>2), ioaddr + EL3_CMD); } } /* Reset the station address and mask. */ EL3WINDOW(2); for (i = 0; i < 6; i++) outb(dev->dev_addr[i], ioaddr + i); for (; i < 12; i+=2) outw(0, ioaddr + i); if (vp->drv_flags & IS_BOOMERANG) { /* Room for a packet, to avoid long DownStall delays. */ outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); } else if (vp->drv_flags & HAS_V2_TX) { outb(20, ioaddr + DownPollRate); vp->restart_tx = 1; } } static void start_operation1(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; if (vp->full_bus_master_rx) { /* post-Vortex bus master. */ /* Initialize the RxEarly register as recommended. */ outw(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); outl(0x0020, ioaddr + PktStatus); outl(virt_to_bus(&vp->rx_ring[vp->cur_rx % RX_RING_SIZE]), ioaddr + UpListPtr); } outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */ outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */ outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */ /* Allow status bits to be seen. */ outw(vp->status_enable, ioaddr + EL3_CMD); /* Ack all pending events, and set active indicator mask. */ outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq, ioaddr + EL3_CMD); outw(vp->intr_enable, ioaddr + EL3_CMD); if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ writel(0x8000, vp->cb_fn_base + 4); netif_start_tx_queue(dev); } static void vortex_timer(unsigned long data) { struct net_device *dev = (struct net_device *)data; struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 60*HZ; int ok = 0; int media_status, old_window; if (vp->msg_level & NETIF_MSG_TIMER) printk(KERN_DEBUG "%s: Media selection timer tick happened, " "%s %s duplex.\n", dev->name, media_tbl[dev->if_port].name, vp->full_duplex ? "full" : "half"); /* This only works with bus-master (non-3c590) chips. */ if (vp->cur_tx - vp->dirty_tx > 1 && (jiffies - dev->trans_start) > TX_TIMEOUT) { /* Check for blocked interrupts. */ if (inw(ioaddr + EL3_STATUS) & IntLatch) { /* We have a blocked IRQ line. This should never happen, but we recover as best we can.*/ if ( ! vp->polling) { if (jiffies - vp->last_reset > 10*HZ) { printk(KERN_ERR "%s: IRQ %d is physically blocked! " "Failing back to low-rate polling.\n", dev->name, dev->irq); vp->last_reset = jiffies; } vp->polling = 1; } vortex_interrupt(dev->irq, dev, 0); next_tick = jiffies + 2; } else { vortex_tx_timeout(dev); vp->last_reset = jiffies; } } disable_irq(dev->irq); old_window = inw(ioaddr + EL3_CMD) >> 13; EL3WINDOW(4); media_status = inw(ioaddr + Wn4_Media); switch (dev->if_port) { case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx: if (media_status & Media_LnkBeat) { ok = 1; if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n", dev->name, media_tbl[dev->if_port].name, media_status); } else if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Media %s is has no link beat, %x.\n", dev->name, media_tbl[dev->if_port].name, media_status); break; case XCVR_MII: case XCVR_NWAY: { int mii_status = mdio_read(ioaddr, vp->phys[0], 1); int mii_reg5, negotiated, duplex; ok = 1; if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: MII transceiver has status %4.4x.\n", dev->name, mii_status); if (vp->medialock) break; if ((mii_status & 0x0004) == 0) { next_tick = 5*HZ; break; } mii_reg5 = mdio_read(ioaddr, vp->phys[0], 5); negotiated = mii_reg5 & vp->advertising; duplex = (negotiated & 0x0100) || (negotiated & 0x03C0) == 0x0040; if (mii_reg5 == 0xffff || vp->full_duplex == duplex) break; if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_INFO "%s: Setting %s-duplex based on " "MII #%d link partner capability of %4.4x.\n", dev->name, vp->full_duplex ? "full" : "half", vp->phys[0], mii_reg5); vp->full_duplex = duplex; /* Set the full-duplex bit. */ EL3WINDOW(3); if (duplex) vp->wn3_mac_ctrl |= 0x120; else vp->wn3_mac_ctrl &= ~0x120; outb(vp->wn3_mac_ctrl, ioaddr + Wn3_MAC_Ctrl); break; } default: /* Other media types handled by Tx timeouts. */ if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Media %s is has no indication, %x.\n", dev->name, media_tbl[dev->if_port].name, media_status); ok = 1; } if ( ! ok) { int i_cfg; do { dev->if_port = media_tbl[dev->if_port].next; } while ( ! (vp->available_media & media_tbl[dev->if_port].mask)); if (dev->if_port == XCVR_Default) { /* Go back to default. */ dev->if_port = vp->default_media; if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Media selection failing, using default " "%s port.\n", dev->name, media_tbl[dev->if_port].name); } else { if (vp->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Media selection failed, now trying " "%s port.\n", dev->name, media_tbl[dev->if_port].name); next_tick = media_tbl[dev->if_port].wait; } outw((media_status & ~(Media_10TP|Media_SQE)) | media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media); EL3WINDOW(3); i_cfg = inl(ioaddr + Wn3_Config); i_cfg &= ~0x00f00000; i_cfg |= (dev->if_port << 20); outl(i_cfg, ioaddr + Wn3_Config); outw(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax, ioaddr + EL3_CMD); } EL3WINDOW(old_window); enable_irq(dev->irq); if (vp->restore_intr_mask) outw(FakeIntr, ioaddr + EL3_CMD); if (vp->msg_level & NETIF_MSG_TIMER) printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n", dev->name, media_tbl[dev->if_port].name); vp->timer.expires = jiffies + next_tick; add_timer(&vp->timer); return; } static void vortex_tx_timeout(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int tx_status = inb(ioaddr + TxStatus); int intr_status = inw(ioaddr + EL3_STATUS); int j; printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n", dev->name, tx_status, intr_status); /* Slight code bloat to be user friendly. */ if ((tx_status & 0x88) == 0x88) printk(KERN_ERR "%s: Transmitter encountered 16 collisions --" " network cable problem?\n", dev->name); if (intr_status & IntLatch) { printk(KERN_ERR "%s: Interrupt posted but not delivered --" " IRQ blocked by another device?\n", dev->name); /* Race condition possible, but we handle a few events. */ vortex_interrupt(dev->irq, dev, 0); } #if ! defined(final_version) && LINUX_VERSION_CODE >= 0x10300 if (vp->full_bus_master_tx) { int i; printk(KERN_DEBUG " Flags: bus-master %d full %d dirty %d " "current %d restart_tx %d.\n", vp->full_bus_master_tx, vp->tx_full, vp->dirty_tx, vp->cur_tx, vp->restart_tx); printk(KERN_DEBUG " Transmit list %8.8x vs. %p, packet ID %2.2x.\n", (int)inl(ioaddr + DownListPtr), &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE], inb(ioaddr + TxPktID)); for (i = 0; i < TX_RING_SIZE; i++) { printk(KERN_DEBUG " %d: @%p length %8.8x status %8.8x\n", i, &vp->tx_ring[i], le32_to_cpu(vp->tx_ring[i].length), le32_to_cpu(vp->tx_ring[i].status)); } } #endif outw(TxReset, ioaddr + EL3_CMD); for (j = 200; j >= 0 ; j--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; vp->stats.tx_errors++; if (vp->full_bus_master_tx) { if (vp->drv_flags & HAS_V2_TX) outb(20, ioaddr + DownPollRate); if (vp->msg_level & NETIF_MSG_TX_ERR) printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name); if (vp->cur_tx - vp->dirty_tx > 0 && inl(ioaddr + DownListPtr) == 0) outl(virt_to_bus(&vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]), ioaddr + DownListPtr); else vp->restart_tx = 1; if (vp->drv_flags & IS_BOOMERANG) { /* Room for a packet, to avoid long DownStall delays. */ outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); outw(DownUnstall, ioaddr + EL3_CMD); } else { if (dev->mtu > 2033) outw(SetTxStart + (2000>>2), ioaddr + EL3_CMD); } if (vp->tx_full && (vp->cur_tx - vp->dirty_tx <= TX_QUEUE_LEN - 1)) { vp->tx_full = 0; netif_unpause_tx_queue(dev); } } else { netif_unpause_tx_queue(dev); vp->stats.tx_dropped++; } /* Issue Tx Enable */ outw(TxEnable, ioaddr + EL3_CMD); dev->trans_start = jiffies; /* Switch to register set 7 for normal use. */ EL3WINDOW(7); } /* * Handle uncommon interrupt sources. This is a separate routine to minimize * the cache impact. */ static void vortex_error(struct net_device *dev, int status) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int do_tx_reset = 0; int i; if (status & TxComplete) { /* Really "TxError" for us. */ unsigned char tx_status = inb(ioaddr + TxStatus); /* Presumably a tx-timeout. We must merely re-enable. */ if (vp->msg_level & NETIF_MSG_TX_ERR) printk(KERN_DEBUG"%s: Transmit error, Tx status register %2.2x.\n", dev->name, tx_status); if (tx_status & 0x14) vp->stats.tx_fifo_errors++; if (tx_status & 0x38) vp->stats.tx_aborted_errors++; outb(0, ioaddr + TxStatus); if (tx_status & 0x30) do_tx_reset = 1; else { /* Merely re-enable the transmitter. */ outw(TxEnable, ioaddr + EL3_CMD); vp->restart_tx = 1; } } if (status & RxEarly) { /* Rx early is unused. */ vortex_rx(dev); outw(AckIntr | RxEarly, ioaddr + EL3_CMD); } if (status & StatsFull) { /* Empty statistics. */ static int DoneDidThat = 0; if (vp->msg_level & NETIF_MSG_MISC) printk(KERN_DEBUG "%s: Updating stats.\n", dev->name); update_stats(ioaddr, dev); /* HACK: Disable statistics as an interrupt source. */ /* This occurs when we have the wrong media type! */ if (DoneDidThat == 0 && inw(ioaddr + EL3_STATUS) & StatsFull) { printk(KERN_WARNING "%s: Updating statistics failed, disabling " "stats as an interrupt source.\n", dev->name); EL3WINDOW(5); outw(SetIntrEnb | (inw(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD); EL3WINDOW(7); DoneDidThat++; } } if (status & IntReq) { /* Restore all interrupt sources. */ outw(vp->status_enable, ioaddr + EL3_CMD); outw(vp->intr_enable, ioaddr + EL3_CMD); vp->restore_intr_mask = 0; } if (status & HostError) { u16 fifo_diag; EL3WINDOW(4); fifo_diag = inw(ioaddr + Wn4_FIFODiag); if (vp->msg_level & NETIF_MSG_DRV) printk(KERN_ERR "%s: Host error, status %x, FIFO diagnostic " "register %4.4x.\n", dev->name, status, fifo_diag); /* Adapter failure requires Tx/Rx reset and reinit. */ if (vp->full_bus_master_tx) { int bus_status = inl(ioaddr + PktStatus); /* 0x80000000 PCI master abort. */ /* 0x40000000 PCI target abort. */ outw(TotalReset | 0xff, ioaddr + EL3_CMD); for (i = 2000; i >= 0 ; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; if (vp->msg_level & NETIF_MSG_DRV) printk(KERN_ERR "%s: PCI bus error, bus status %8.8x, reset " "had %d tick left.\n", dev->name, bus_status, i); /* Re-enable the receiver. */ outw(RxEnable, ioaddr + EL3_CMD); outw(TxEnable, ioaddr + EL3_CMD); vp->restart_tx = 1; } else if (fifo_diag & 0x0400) do_tx_reset = 1; if (fifo_diag & 0x3000) { outw(RxReset | 7, ioaddr + EL3_CMD); for (i = 200000; i >= 0 ; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; if ((vp->drv_flags & HAS_V2_TX) && dev->mtu > 1500) { EL3WINDOW(3); outw(dev->mtu + 14, ioaddr + Wn3_MaxPktSize); } /* Set the Rx filter to the current state. */ memset(vp->mc_filter, 0, sizeof vp->mc_filter); vp->rx_mode = 0; set_rx_mode(dev); outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */ outw(AckIntr | HostError, ioaddr + EL3_CMD); } } if (do_tx_reset) { int j; outw(TxReset, ioaddr + EL3_CMD); for (j = 200; j >= 0 ; j--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; outw(TxEnable, ioaddr + EL3_CMD); vp->restart_tx = 1; } } static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; /* Block a timer-based transmit from overlapping. This happens when packets are presumed lost, and we use this check the Tx status. */ if (netif_pause_tx_queue(dev) != 0) { /* This watchdog code is redundant with the media monitor timer. */ if (jiffies - dev->trans_start > TX_TIMEOUT) vortex_tx_timeout(dev); return 1; } /* Put out the doubleword header... */ outl(skb->len, ioaddr + TX_FIFO); if (vp->bus_master) { /* Set the bus-master controller to transfer the packet. */ outl(virt_to_bus(skb->data), ioaddr + Wn7_MasterAddr); outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); vp->tx_skb = skb; outw(StartDMADown, ioaddr + EL3_CMD); netif_stop_tx_queue(dev); /* Tx busy will be cleared at the DMADone interrupt. */ } else { /* ... and the packet rounded to a doubleword. */ outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2); dev_free_skb(skb); if (inw(ioaddr + TxFree) <= 1536) { /* Interrupt us when the FIFO has room for max-sized packet. */ outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); netif_stop_tx_queue(dev); } else netif_unpause_tx_queue(dev); /* Typical path */ } dev->trans_start = jiffies; /* Clear the Tx status stack. */ { int tx_status; int i = 32; while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) { if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */ if (vp->msg_level & NETIF_MSG_TX_ERR) printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n", dev->name, tx_status); if (tx_status & 0x04) vp->stats.tx_fifo_errors++; if (tx_status & 0x38) vp->stats.tx_aborted_errors++; if (tx_status & 0x30) { int j; outw(TxReset, ioaddr + EL3_CMD); for (j = 200; j >= 0 ; j--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; } outw(TxEnable, ioaddr + EL3_CMD); vp->restart_tx = 1; } outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */ } } return 0; } static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int entry; struct boom_tx_desc *prev_entry; unsigned long flags; int i; if (netif_pause_tx_queue(dev) != 0) { /* This watchdog code is redundant with the media monitor timer. */ if (jiffies - dev->trans_start > TX_TIMEOUT) vortex_tx_timeout(dev); return 1; } /* Calculate the next Tx descriptor entry. */ entry = vp->cur_tx % TX_RING_SIZE; prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE]; if (vp->msg_level & NETIF_MSG_TX_QUEUED) printk(KERN_DEBUG "%s: Queuing Tx packet, index %d.\n", dev->name, vp->cur_tx); /* Impossible error. */ if (vp->tx_full) { printk(KERN_WARNING "%s: Tx Ring full, refusing to send buffer.\n", dev->name); return 1; } vp->tx_skbuff[entry] = skb; vp->tx_ring[entry].next = 0; vp->tx_ring[entry].addr = virt_to_le32desc(skb->data); vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG); if (vp->capabilities & CapNoTxLength) vp->tx_ring[entry].status = cpu_to_le32(TxNoRoundup | TxIntrUploaded | (entry << 2)); else vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); if (vp->drv_flags & IS_BOOMERANG) { save_flags(flags); cli(); outw(DownStall, ioaddr + EL3_CMD); /* Wait for the stall to complete. */ for (i = 600; i >= 0 ; i--) if ( (inw(ioaddr + EL3_STATUS) & CmdInProgress) == 0) break; vp->tx_desc_tail->next = virt_to_le32desc(&vp->tx_ring[entry]); vp->tx_desc_tail = &vp->tx_ring[entry]; if (inl(ioaddr + DownListPtr) == 0) { outl(virt_to_bus(&vp->tx_ring[entry]), ioaddr + DownListPtr); queued_packet++; } outw(DownUnstall, ioaddr + EL3_CMD); restore_flags(flags); } else { vp->tx_desc_tail->next = virt_to_le32desc(&vp->tx_ring[entry]); vp->tx_desc_tail = &vp->tx_ring[entry]; if (vp->restart_tx) { outl(virt_to_bus(vp->tx_desc_tail), ioaddr + DownListPtr); vp->restart_tx = 0; queued_packet++; } } vp->cur_tx++; if (vp->cur_tx - vp->dirty_tx >= TX_QUEUE_LEN) { vp->tx_full = 1; /* Check for a just-cleared queue. */ if (vp->cur_tx - (volatile unsigned int)vp->dirty_tx < TX_QUEUE_LEN - 2) { vp->tx_full = 0; netif_unpause_tx_queue(dev); } else netif_stop_tx_queue(dev); } else { /* Clear previous interrupt enable. */ #if defined(tx_interrupt_mitigation) prev_entry->status &= cpu_to_le32(~TxIntrUploaded); #endif netif_unpause_tx_queue(dev); /* Typical path */ } dev->trans_start = jiffies; return 0; } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct net_device *dev = dev_id; struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr; int latency, status; int work_done = vp->max_interrupt_work; ioaddr = dev->base_addr; latency = inb(ioaddr + Timer); status = inw(ioaddr + EL3_STATUS); if (status == 0xffff) goto handler_exit; if (vp->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n", dev->name, status, latency); do { if (vp->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n", dev->name, status); if (status & RxComplete) vortex_rx(dev); if (status & UpComplete) { outw(AckIntr | UpComplete, ioaddr + EL3_CMD); boomerang_rx(dev); } if (status & TxAvailable) { if (vp->msg_level & NETIF_MSG_TX_DONE) printk(KERN_DEBUG " TX room bit was handled.\n"); /* There's room in the FIFO for a full-sized packet. */ outw(AckIntr | TxAvailable, ioaddr + EL3_CMD); netif_resume_tx_queue(dev); } if (status & DownComplete) { unsigned int dirty_tx = vp->dirty_tx; outw(AckIntr | DownComplete, ioaddr + EL3_CMD); while (vp->cur_tx - dirty_tx > 0) { int entry = dirty_tx % TX_RING_SIZE; int tx_status = le32_to_cpu(vp->tx_ring[entry].status); if (vp->capabilities & CapNoTxLength) { if ( ! (tx_status & TxDownComplete)) break; } else if (inl(ioaddr + DownListPtr) == virt_to_bus(&vp->tx_ring[entry])) break; /* It still hasn't been processed. */ if (vp->msg_level & NETIF_MSG_TX_DONE) printk(KERN_DEBUG "%s: Transmit done, Tx status %8.8x.\n", dev->name, tx_status); if (vp->tx_skbuff[entry]) { dev_free_skb_irq(vp->tx_skbuff[entry]); vp->tx_skbuff[entry] = 0; } /* vp->stats.tx_packets++; Counted below. */ dirty_tx++; } vp->dirty_tx = dirty_tx; /* 4 entry hysteresis before marking the queue non-full. */ if (vp->tx_full && (vp->cur_tx - dirty_tx < TX_QUEUE_LEN - 4)) { vp->tx_full = 0; netif_resume_tx_queue(dev); } } if (status & DMADone) { if (inw(ioaddr + Wn7_MasterStatus) & 0x1000) { outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */ /* Release the transfered buffer */ dev_free_skb_irq(vp->tx_skb); if (inw(ioaddr + TxFree) > 1536) { netif_resume_tx_queue(dev); } else /* Interrupt when FIFO has room for max-sized packet. */ outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); } } /* Check for all uncommon interrupts at once. */ if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) { if (status == 0xffff) break; vortex_error(dev, status); } if (--work_done < 0) { if ((status & (0x7fe - (UpComplete | DownComplete))) == 0) { /* Just ack these and return. */ outw(AckIntr | UpComplete | DownComplete, ioaddr + EL3_CMD); } else { printk(KERN_WARNING "%s: Too much work in interrupt, status " "%4.4x. Temporarily disabling functions (%4.4x).\n", dev->name, status, SetStatusEnb | ((~status) & 0x7FE)); /* Disable all pending interrupts. */ outw(SetStatusEnb | ((~status) & 0x7FE), ioaddr + EL3_CMD); outw(AckIntr | 0x7FF, ioaddr + EL3_CMD); /* The timer will reenable interrupts. */ vp->restore_intr_mask = 1; break; } } /* Acknowledge the IRQ. */ outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ writel(0x8000, vp->cb_fn_base + 4); } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete)); if (vp->msg_level & NETIF_MSG_INTR) printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n", dev->name, status); handler_exit: return; } static int vortex_rx(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int i; short rx_status; if (vp->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG" In rx_packet(), status %4.4x, rx_status %4.4x.\n", inw(ioaddr+EL3_STATUS), inw(ioaddr+RxStatus)); while ((rx_status = inw(ioaddr + RxStatus)) > 0) { if (rx_status & 0x4000) { /* Error, update stats. */ unsigned char rx_error = inb(ioaddr + RxErrors); if (vp->msg_level & NETIF_MSG_RX_ERR) printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error); vp->stats.rx_errors++; if (rx_error & 0x01) vp->stats.rx_over_errors++; if (rx_error & 0x02) vp->stats.rx_length_errors++; if (rx_error & 0x04) vp->stats.rx_frame_errors++; if (rx_error & 0x08) vp->stats.rx_crc_errors++; if (rx_error & 0x10) vp->stats.rx_length_errors++; } else { /* The packet length: up to 4.5K!. */ int pkt_len = rx_status & 0x1fff; struct sk_buff *skb; skb = dev_alloc_skb(pkt_len + 5); if (vp->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n", pkt_len, rx_status); if (skb != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ /* 'skb_put()' points to the start of sk_buff data area. */ if (vp->bus_master && ! (inw(ioaddr + Wn7_MasterStatus) & 0x8000)) { outl(virt_to_bus(skb_put(skb, pkt_len)), ioaddr + Wn7_MasterAddr); outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); outw(StartDMAUp, ioaddr + EL3_CMD); while (inw(ioaddr + Wn7_MasterStatus) & 0x8000) ; } else { insl(ioaddr + RX_FIFO, skb_put(skb, pkt_len), (pkt_len + 3) >> 2); } outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */ skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; vp->stats.rx_packets++; #if LINUX_VERSION_CODE > 0x20127 vp->stats.rx_bytes += pkt_len; #endif /* Wait a limited time to go to next packet. */ for (i = 200; i >= 0; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; continue; } else if (vp->msg_level & NETIF_MSG_RX_ERR) printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of " "size %d.\n", dev->name, pkt_len); } outw(RxDiscard, ioaddr + EL3_CMD); vp->stats.rx_dropped++; /* Wait a limited time to skip this packet. */ for (i = 200; i >= 0; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; } return 0; } static int boomerang_rx(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; int entry = vp->cur_rx % RX_RING_SIZE; long ioaddr = dev->base_addr; int rx_status; int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx; if (vp->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG " In boomerang_rx(), status %4.4x, rx_status " "%8.8x.\n", inw(ioaddr+EL3_STATUS), (int)inl(ioaddr+UpPktStatus)); while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){ if (--rx_work_limit < 0) break; if (rx_status & RxDError) { /* Error, update stats. */ unsigned char rx_error = rx_status >> 16; if (vp->msg_level & NETIF_MSG_RX_ERR) printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error); vp->stats.rx_errors++; if (rx_error & 0x02) vp->stats.rx_length_errors++; if (rx_error & 0x10) vp->stats.rx_length_errors++; if (rx_error & 0x04) vp->stats.rx_frame_errors++; if (rx_error & 0x08) vp->stats.rx_crc_errors++; if (rx_error & 0x01) { vp->stats.rx_over_errors++; if (vp->drv_flags & HAS_V2_TX) { int cur_rx_thresh = inb(ioaddr + RxPriorityThresh); if (cur_rx_thresh < 0x20) outb(cur_rx_thresh + 1, ioaddr + RxPriorityThresh); else printk(KERN_WARNING "%s: Excessive PCI latency causing" " packet corruption.\n", dev->name); } } } else { /* The packet length: up to 4.5K!. */ int pkt_len = rx_status & 0x1fff; struct sk_buff *skb; if (vp->msg_level & NETIF_MSG_RX_STATUS) printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n", pkt_len, rx_status); /* Check if the packet is long enough to just accept without copying to a properly sized skbuff. */ if (pkt_len < vp->rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) { skb->dev = dev; skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ /* 'skb_put()' points to the start of sk_buff data area. */ memcpy(skb_put(skb, pkt_len), le32desc_to_virt(vp->rx_ring[entry].addr), pkt_len); rx_copy++; } else { void *temp; /* Pass up the skbuff already on the Rx ring. */ skb = vp->rx_skbuff[entry]; vp->rx_skbuff[entry] = NULL; temp = skb_put(skb, pkt_len); /* Remove this checking code for final release. */ if (le32desc_to_virt(vp->rx_ring[entry].addr) != temp) printk(KERN_ERR "%s: Warning -- the skbuff addresses do not match" " in boomerang_rx: %p vs. %p.\n", dev->name, bus_to_virt(le32_to_cpu(vp->rx_ring[entry].addr)), temp); rx_nocopy++; } skb->protocol = eth_type_trans(skb, dev); { /* Use hardware checksum info. */ int csum_bits = rx_status & 0xee000000; if (csum_bits && (csum_bits == (IPChksumValid | TCPChksumValid) || csum_bits == (IPChksumValid | UDPChksumValid))) { skb->ip_summed = CHECKSUM_UNNECESSARY; rx_csumhits++; } } netif_rx(skb); dev->last_rx = jiffies; vp->stats.rx_packets++; #if LINUX_VERSION_CODE > 0x20127 vp->stats.rx_bytes += pkt_len; #endif } entry = (++vp->cur_rx) % RX_RING_SIZE; } /* Refill the Rx ring buffers. */ for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) { struct sk_buff *skb; entry = vp->dirty_rx % RX_RING_SIZE; if (vp->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb(vp->rx_buf_sz); if (skb == NULL) break; /* Bad news! */ skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ vp->rx_ring[entry].addr = virt_to_le32desc(skb->tail); vp->rx_skbuff[entry] = skb; } vp->rx_ring[entry].status = 0; /* Clear complete bit. */ outw(UpUnstall, ioaddr + EL3_CMD); } return 0; } static void vortex_down(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; /* Turn off statistics ASAP. We update vp->stats below. */ outw(StatsDisable, ioaddr + EL3_CMD); /* Disable the receiver and transmitter. */ outw(RxDisable, ioaddr + EL3_CMD); outw(TxDisable, ioaddr + EL3_CMD); if (dev->if_port == XCVR_10base2) /* Turn off thinnet power. Green! */ outw(StopCoax, ioaddr + EL3_CMD); outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD); update_stats(ioaddr, dev); if (vp->full_bus_master_rx) outl(0, ioaddr + UpListPtr); if (vp->full_bus_master_tx) outl(0, ioaddr + DownListPtr); } static int vortex_close(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int i; netif_stop_tx_queue(dev); if (vp->msg_level & NETIF_MSG_IFDOWN) { printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n", dev->name, inw(ioaddr + EL3_STATUS), inb(ioaddr + TxStatus)); printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d" " tx_queued %d Rx pre-checksummed %d.\n", dev->name, rx_nocopy, rx_copy, queued_packet, rx_csumhits); } del_timer(&vp->timer); vortex_down(dev); free_irq(dev->irq, dev); outw(TotalReset | 0x34, ioaddr + EL3_CMD); if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */ for (i = 0; i < RX_RING_SIZE; i++) if (vp->rx_skbuff[i]) { #if LINUX_VERSION_CODE < 0x20100 vp->rx_skbuff[i]->free = 1; #endif dev_free_skb(vp->rx_skbuff[i]); vp->rx_skbuff[i] = 0; } } if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */ for (i = 0; i < TX_RING_SIZE; i++) if (vp->tx_skbuff[i]) { dev_free_skb(vp->tx_skbuff[i]); vp->tx_skbuff[i] = 0; } } MOD_DEC_USE_COUNT; return 0; } static struct net_device_stats *vortex_get_stats(struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; unsigned long flags; if (netif_running(dev)) { save_flags(flags); cli(); update_stats(dev->base_addr, dev); restore_flags(flags); } return &vp->stats; } /* Update statistics. Unlike with the EL3 we need not worry about interrupts changing the window setting from underneath us, but we must still guard against a race condition with a StatsUpdate interrupt updating the table. This is done by checking that the ASM (!) code generated uses atomic updates with '+='. */ static void update_stats(long ioaddr, struct net_device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; int old_window = inw(ioaddr + EL3_CMD); if (old_window == 0xffff) /* Chip suspended or ejected. */ return; /* Unlike the 3c5x9 we need not turn off stats updates while reading. */ /* Switch to the stats window, and read everything. */ EL3WINDOW(6); vp->stats.tx_carrier_errors += inb(ioaddr + 0); vp->stats.tx_heartbeat_errors += inb(ioaddr + 1); /* Multiple collisions. */ inb(ioaddr + 2); vp->stats.collisions += inb(ioaddr + 3); vp->stats.tx_window_errors += inb(ioaddr + 4); vp->stats.rx_fifo_errors += inb(ioaddr + 5); vp->stats.tx_packets += inb(ioaddr + 6); vp->stats.tx_packets += (inb(ioaddr + 9)&0x30) << 4; /* Rx packets */ inb(ioaddr + 7); /* Must read to clear */ /* Tx deferrals */ inb(ioaddr + 8); /* Don't bother with register 9, an extension of registers 6&7. If we do use the 6&7 values the atomic update assumption above is invalid. */ /* Rx Bytes is unreliable */ inw(ioaddr + 10); #if LINUX_VERSION_CODE > 0x020119 vp->stats.tx_bytes += inw(ioaddr + 12); #else inw(ioaddr + 10); inw(ioaddr + 12); #endif /* New: On the Vortex we must also clear the BadSSD counter. */ EL3WINDOW(4); inb(ioaddr + 12); /* We change back to window 7 (not 1) with the Vortex. */ EL3WINDOW(old_window >> 13); return; } static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; u16 *data = (u16 *)&rq->ifr_data; u32 *data32 = (void *)&rq->ifr_data; int phy = vp->phys[0]; switch(cmd) { case 0x8947: case 0x89F0: /* SIOCGMIIPHY: Get the address of the PHY in use. */ data[0] = phy; /* Fall Through */ case 0x8948: case 0x89F1: /* SIOCGMIIREG: Read the specified MII register. */ if (data[0] == 32) { /* Emulate MII for 3c59*, 3c900. */ data[3] = 0; switch (data[1]) { case 0: if (dev->if_port == XCVR_100baseTx) data[3] |= 0x2000; if (vp->full_duplex) data[3] |= 0x0100; break; case 1: if (vp->available_media & 0x02) data[3] |= 0x6000; if (vp->available_media & 0x08) data[3] |= 0x1800; spin_lock(&vp->window_lock); EL3WINDOW(4); if (inw(ioaddr + Wn4_Media) & Media_LnkBeat) data[3] |= 0x0004; spin_unlock(&vp->window_lock); break; case 2: data[3] = 0x0280; break; /* OUI 00:a0:24 */ case 3: data[3] = 0x9000; break; default: break; } return 0; } spin_lock(&vp->window_lock); EL3WINDOW(4); data[3] = mdio_read(ioaddr, data[0] & 0x1f, data[1] & 0x1f); spin_unlock(&vp->window_lock); return 0; case 0x8949: case 0x89F2: /* SIOCSMIIREG: Write the specified MII register */ if (!capable(CAP_NET_ADMIN)) return -EPERM; if (data[0] == vp->phys[0]) { u16 value = data[2]; if (vp->phys[0] == 32) { if (data[1] == 0) { vp->media_override = (value & 0x2000) ? XCVR_100baseTx : XCVR_10baseT; vp->full_duplex = (value & 0x0100) ? 1 : 0; vp->medialock = 1; } return 0; } switch (data[1]) { case 0: /* Check for autonegotiation on or reset. */ vp->medialock = (value & 0x9000) ? 0 : 1; if (vp->medialock) vp->full_duplex = (value & 0x0100) ? 1 : 0; break; case 4: vp->advertising = value; break; } /* Perhaps check_duplex(dev), depending on chip semantics. */ } spin_lock(&vp->window_lock); EL3WINDOW(4); mdio_write(ioaddr, data[0] & 0x1f, data[1] & 0x1f, data[2]); spin_unlock(&vp->window_lock); return 0; case SIOCGPARAMS: data32[0] = vp->msg_level; data32[1] = vp->multicast_filter_limit; data32[2] = vp->max_interrupt_work; data32[3] = vp->rx_copybreak; return 0; case SIOCSPARAMS: if (!capable(CAP_NET_ADMIN)) return -EPERM; vp->msg_level = data32[0]; vp->multicast_filter_limit = data32[1]; vp->max_interrupt_work = data32[2]; vp->rx_copybreak = data32[3]; return 0; default: return -EOPNOTSUPP; } } static unsigned const ethernet_polynomial = 0x04c11db7U; static inline u32 ether_crc(int length, unsigned char *data) { int crc = -1; while(--length >= 0) { unsigned char current_octet = *data++; int bit; for (bit = 0; bit < 8; bit++, current_octet >>= 1) crc = (crc << 1) ^ ((crc < 0) ^ (current_octet & 1) ? ethernet_polynomial : 0); } return crc; } /* Pre-Cyclone chips have no documented multicast filter, so the only multicast setting is to receive all multicast frames. Cyclone and later chips have a write-only table of unknown size. At least the chip has a very clean way to set the other filter modes. */ static void set_rx_mode(struct net_device *dev) { struct vortex_private *vp = (void *)dev->priv; long ioaddr = dev->base_addr; int new_mode; if (dev->flags & IFF_PROMISC) { /* Unconditionally log a net tap. */ printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name); new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm; } else if (dev->flags & IFF_ALLMULTI) { new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; } else if ((vp->drv_flags & HAS_V2_TX) && dev->mc_count < vp->multicast_filter_limit) { struct dev_mc_list *mclist; int i; for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { int filter_bit = ether_crc(ETH_ALEN, mclist->dmi_addr) & 0xff; if (test_bit(filter_bit, vp->mc_filter)) continue; outw(SetFilterBit | 0x0400 | filter_bit, ioaddr + EL3_CMD); set_bit(filter_bit, vp->mc_filter); } new_mode = SetRxFilter|RxStation|RxMulticastHash|RxBroadcast; } else if (dev->mc_count) { new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; } else new_mode = SetRxFilter | RxStation | RxBroadcast; if (vp->rx_mode != new_mode) { vp->rx_mode = new_mode; outw(new_mode, ioaddr + EL3_CMD); } } /* MII transceiver control section. Read and write the MII registers using software-generated serial MDIO protocol. See the MII specifications or DP83840A data sheet for details. */ /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually met by back-to-back PCI I/O cycles, but we insert a delay to avoid "overclocking" issues. */ #define mdio_delay() inl(mdio_addr) #define MDIO_SHIFT_CLK 0x01 #define MDIO_DIR_WRITE 0x04 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) #define MDIO_DATA_READ 0x02 #define MDIO_ENB_IN 0x00 /* Generate the preamble required for initial synchronization and a few older transceivers. */ static void mdio_sync(long ioaddr, int bits) { long mdio_addr = ioaddr + Wn4_PhysicalMgmt; /* Establish sync by sending at least 32 logic ones. */ while (-- bits >= 0) { outw(MDIO_DATA_WRITE1, mdio_addr); mdio_delay(); outw(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } } static int mdio_read(long ioaddr, int phy_id, int location) { int i; int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; unsigned int retval = 0; long mdio_addr = ioaddr + Wn4_PhysicalMgmt; if (mii_preamble_required) mdio_sync(ioaddr, 32); /* Shift the read command bits out. */ for (i = 14; i >= 0; i--) { int dataval = (read_cmd&(1< 0; i--) { outw(MDIO_ENB_IN, mdio_addr); mdio_delay(); retval = (retval << 1) | ((inw(mdio_addr) & MDIO_DATA_READ) ? 1 : 0); outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } return retval & 0x10000 ? 0xffff : retval & 0xffff; } static void mdio_write(long ioaddr, int phy_id, int location, int value) { int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; long mdio_addr = ioaddr + Wn4_PhysicalMgmt; int i; if (mii_preamble_required) mdio_sync(ioaddr, 32); /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (write_cmd&(1<priv; long ioaddr = dev->base_addr; /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */ EL3WINDOW(7); outw(2, ioaddr + 0x0c); /* The RxFilter must accept the WOL frames. */ outw(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD); outw(RxEnable, ioaddr + EL3_CMD); /* Change the power state to D3; RxEnable doesn't take effect. */ pci_write_config_word(vp->pci_dev, 0xe0, 0x8103); } #endif static int pwr_event(void *dev_instance, int event) { struct net_device *dev = dev_instance; struct vortex_private *np = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; if (np->msg_level & NETIF_MSG_LINK) printk(KERN_DEBUG "%s: Handling power event %d.\n", dev->name, event); switch(event) { case DRV_ATTACH: MOD_INC_USE_COUNT; break; case DRV_SUSPEND: vortex_down(dev); netif_stop_tx_queue(dev); if (np->capabilities & CapPwrMgmt) acpi_set_WOL(dev); break; case DRV_RESUME: /* This is incomplete: the actions are very chip specific. */ activate_xcvr(dev); set_media_type(dev); start_operation(dev); np->rx_mode = 0; set_rx_mode(dev); start_operation1(dev); break; case DRV_DETACH: { struct net_device **devp, **next; if (dev->flags & IFF_UP) { dev_close(dev); dev->flags &= ~(IFF_UP|IFF_RUNNING); } unregister_netdev(dev); release_region(dev->base_addr, pci_tbl[np->chip_id].io_size); #ifndef USE_IO_OPS iounmap((char *)dev->base_addr); #endif for (devp = &root_vortex_dev; *devp; devp = next) { next = &((struct vortex_private *)(*devp)->priv)->next_module; if (*devp == dev) { *devp = *next; break; } } if (np->priv_addr) kfree(np->priv_addr); kfree(dev); MOD_DEC_USE_COUNT; break; } case DRV_PWR_WakeOn: if ( ! (np->capabilities & CapPwrMgmt)) return -1; EL3WINDOW(7); /* Power up on: 1=Downloaded Filter, 2=Magic Packets, 4=Link Status.*/ outw(2, ioaddr + 12); /* This RxEnable doesn't take effect if we immediately change to D3. */ outw(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD); outw(RxEnable, ioaddr + EL3_CMD); acpi_set_pwr_state(np->pci_dev, ACPI_D3); break; } return 0; } #ifdef MODULE void cleanup_module(void) { struct net_device *next_dev; #ifdef CARDBUS unregister_driver(&vortex_ops); #elif ! defined(NO_PCI) pci_drv_unregister(&vortex_drv_id); #endif /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_vortex_dev) { struct vortex_private *vp=(void *)(root_vortex_dev->priv); unregister_netdev(root_vortex_dev); outw(TotalReset | 0x14, root_vortex_dev->base_addr + EL3_CMD); if (vp->capabilities & CapPwrMgmt) acpi_set_WOL(root_vortex_dev); #ifdef USE_MEM_OPS iounmap((char *)root_vortex_dev->base_addr); #else release_region(root_vortex_dev->base_addr, pci_tbl[vp->chip_id].io_size); #endif next_dev = vp->next_module; if (vp->priv_addr) kfree(vp->priv_addr); kfree(root_vortex_dev); root_vortex_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "make KERNVER=`uname -r` 3c59x.o" * compile-cmd: "gcc -DMODULE -Wall -Wstrict-prototypes -O6 -c 3c59x.c" * cardbus-compile-command: "gcc -DCARDBUS -DMODULE -Wall -Wstrict-prototypes -O6 -c 3c59x.c -o 3c575_cb.o -I/usr/src/pcmcia/include/" * eisa-only-compile: "gcc -DNO_PCI -DMODULE -O6 -c 3c59x.c -o 3c597.o" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */